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Cell signaling events are orchestrated by dynamic external biochemical cues. By rapidly perturbing cells 

with dynamic inputs and examining the output from these systems, one could study the structure and 

dynamic properties of a cellular signaling network. Conventional experimental techniques limit the 

implementation of these systematic approaches due to the lack of sophistication in manipulating 10 

individual cells and fluid microenvironment around them; existing microfluidic technologies thus far are 

mainly targeting adherent cells. In this paper we present an automated platform to interrogate suspension 

cells with dynamic stimuli by simultaneously monitoring cellular responses in a high-throughput manner 

at single-cell resolution.  We demonstrate the use of this platform in an experiment to measure Jurkat T 

cells in response to distinct dynamic patterns of stimuli; we found cells exhibit highly heterogeneous 15 

responses under each stimulation condition. More interestingly, these cells act as low-pass filters, only 

entrained to the low frequency stimulus signals. We also demonstrate that this platform can be easily 

programmed to actively generate arbitrary dynamic signals. We envision our platform to be useful in 

other contexts to study cellular signaling dynamics, which may be difficult using conventional 

experimental methods. 20 

 

 

 

Introduction 

 T lymphocytes are a critical component of the adaptive 25 

immune response. Activation of T cells induces rapid signaling 

through multiple kinase cascades to alter gene expression and 

ultimately leads to rapid proliferation and cytokine release.1, 2 The 

dynamic feature of these signaling pathways is essential for full 

functionality of T cells.3, 4 Dysregulation of T cell intracellular 30 

signaling has been implicated in a multitude of diseases such as 

asthma,5 allergic reactions,6 autoimmunity,7 lupus,8 and tumor 

immunity.9 Although many components of the T cell receptor 

signaling network have been identified, the signal transduction 

properties of these dynamic processes are difficult to be discerned 35 

with conventional experimental methods, which typically 

measure cellular response to a simple stimulus concentration step 

change.  

 To better understand the structure and dominant feedback 

controls in complex signaling networks, system identification 40 

methods, originally developed in control engineering, have 

recently been applied.10-13 By stimulating cells with a dynamic 

input signal and measuring the gain and delay of the output 

signal, the signal transduction properties of a particular signaling 

pathway can be analyzed.14 However, this approach requires 45 

rapid perturbing and monitoring of cells on short timescales:15 for 

example, calcium signaling,  with a time scale of seconds to 

minutes,16 is an event too fast to interrogate for experiments done 

in bulk. Moreover, due to heterogeneity among cells, 

conventional population-average assays can mask individual cell 50 

dynamics.16, 17  The successful adoption of a systematic 

engineering approach relies on rapid delivery of dynamic stimuli 

and simultaneous monitoring of high-throughput readouts at 

single cell resolution. Specifically, as suspension cells, T cells 

pose additional challenges during these types of experiments. 55 
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 Microfluidics offer new opportunities to study cellular 

signaling dynamics.18-23 There has been multiple techniques 

developed for suspension cell trapping, such as dielectrophoresis 

(DEP),24, 25 optical tweezers,26 valves,27, 28 microarray,29, 30 or 

hydrodynamic focusing31, 32. However, creating changes of 5 

cellular chemical microenvironment are still difficult with these 

platforms.  

 The ability to rapidly and robustly vary the microenvironment 

perceived by cells is critical for this systematic approach to cell 

signaling study.15 Achieving this goal requires actively delivery 10 

of complete dynamic signal in both time and concentration level, 

i.e. frequency and amplitude domains. Several microfluidic 

designs exist in this functional domain. One such microfluidic 

design used for chemotaxis study generates a spatial varying but 

temporal static chemical gradient.33 Some designs have generated 15 

oscillatory chemical signals.10-12, 34 35 While these schemes allow 

rapid on-and-off switch and can modulate frequency of the 

stimuli, it is difficult to vary concentration levels (the amplitude).  

 Some designs have demonstrated ways to temporally modulate 

concentration level through mixing of volume fractions.36 20 

However, precisely controlling volume fractions is difficult, 

always resulting complicated device design and operation such as 

use of multilayer devices and multiple syringe pumps.37-40 The 

mixing step requires long residence time or auxiliary structures.41 

Due to the capacitance associated with these extra components, 25 

the temporal resolution of dynamic signal is often limited. In 

addition, these approaches have not been shown to handle 

suspension cells.   

 To develop a system that is high-throughput, operationally 

simple, easy to integrate with a chemical delivery module, we 30 

built a platform off of a cell trap array device20  that uses passive 

hydrodynamic focusing to sequentially trap and monitor 

suspension T cells through time. Our platform allows rapid 

perturbing of chemical microenvironment and simultaneous 

monitoring of high-throughput cell response at single-cell 35 

resolution. The microfluidic component of this platform 

incorporates on-chip valves that enable rapid delivery of 

complete dynamic signals in both frequency and amplitude 

domain using only binary inputs. The system delivers versatile 

waveforms of signals in a large dynamic range while using 40 

relatively simple fabrication and operation steps, making this 

platform likely a convenient tool for end-users.  

Material and Methods 

Device Design 

 Our device consists of a single-layer PDMS that is plasma 45 

bonded onto a standard glass slide (Fig. 1A). It is composed of 

two functional modules: pneumatic valves to generate stimulatory 

signals and cell trap arrays to facilitate high-throughput imaging.  

 We use two sets of on-chip pneumatic valves (Fig. 1B), which 

are key to generating versatile dynamic signals. By integrating 50 

the valves on-chip, we eliminate pressure fluctuations associated 

with using external macro-scale switch valves and tubing. This 

feature enables stable flow and faster response time of the 

system. The design is all in a single layer,25 avoiding the time-

consuming and labor-intensive processes of fabricating multiple 55 

layer devices.26 Each set of valves forms a two-sided clamp on 

each of the two solution inlets (spacing of 10 µm between valve 

and channel of 10 µm in width). By alternate actuation of the two 

valve sets, we can modulate the laminar interface between co-

flowing streams (Fig. 1D&E).25 The flow then splits into multiple 60 

cell trap arrays downstream. Cells in the middle four chambers 

are exposed to the dynamic stimuli created by the fluid switching, 

while cells in each of the two side chambers experience constant 

stimuli as a positive or negative control (Fig. 1A, D&E).  

 Because of the small dimensions of flow channels (width of 30 65 

µm and height of 15 µm), on-chip filters upstream from the cell 

chambers were included in the design to prevent debris from 

clogging the cell traps. The cell trap arrays were adopted from a 

previous design from our lab,20 where cells are passively trapped 

via hydrodynamic focusing (Fig. 1C). Due to the small inner 70 

volume of the device, we chose to use a pressure source to 

provide for a more stable flow, as opposed to a flow source.  

Figure 1. (A) Micrograph of microfluidic device: pneumatic valves (red) and fluid flow module (blue). (B) Enlarged bright field image of pneumatic 

valves when actuated. (C) False color image of Jurkat cells (green) trapped in cell chamber (red dot line). (D&E) Fluorescent image of alternate

switching between fluorescein solution (bright) and PBS (dark).  
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Device Fabrication 

 To make a device, polydimethylsiloxane mixture (PDMS, 

Sylgard 184, Dow Corning, Midland, MI) was cast over a hybrid 

two-layer master. The bottom layer of the master is 2 µm high 

and was etched on a new silicon wafer by deep reactive-ion 5 

etching (DRIE). The process ensured the high uniformity of this 

shallow layer, which is difficult to achieve using photoresist spin 

coating. The top layer of the master is 15 µm high and was spin  

coated onto the bottom silicon feature using negative photoresist 

(SU-8 2015, Microchem, Newton, MA) and processed by 10 

standard UV photolithography. The master was treated with 

tridecafluoro-1,1,2,2-tetrahydrooctyl-1-trichlorosilane vapor 

(United Chemical Technologies, Bristol, PA) in a vacuum 

desiccator for 12 hours to prevent adhesion of PDMS during the 

molding process. PDMS mixture (A and B in 20:1 ratio) of 1 mm 15 

thick was first poured onto the master and partially cured in a 75 

°C oven for 15 minutes. Then, another layer of 4 mm PDMS 

mixture (A and B in 10:1 ratio) was added onto the bottom layer 

and incubated for another 4 hours. The difference in stiffness 

offers both mechanical support (top layer) and elasticity for the 20 

pneumatic side valves (bottom layer). The PDMS was peeled off 

from the master and cut into individual devices. Holes were 

punched with 19-gauge needles and the PDMS devices were 

plasma bonded onto a clean glass slide.   

Experimental Setup 25 

 All solutions and cell suspension were prepared and contained 

in 15 mL tubes (Falcon tube, BD biosciences, San Jose, CA). 

Tubes were connected to the device through polystyrene tubing 

(PE4, Scientific Commodities). Pneumatic valves were initially 

filled with water at 30 psi through the valve inlet; during the 30 

experiment, valves were alternatively actuated at 50 psi. To prime 

the device and create a liquid environment, filtered 2% bovine 

serum albumin (BSA, Fisher Scientific) in 1X phosphate buffered 

saline (PBS, Boston BioProducts) were pressurized 

simultaneously from all ports into the device using a pressure 35 

around 5 psi. This priming step removed any air bubbles and 

prevented undesired adhesion of cells to channel walls. To load 

cells after priming the device, the cell inlet was replaced with 

tubing connecting to the cell suspension, while all other ports 

stayed connected to priming solution. The cell suspension was 40 

driven into device by applying 1 psi at the cell inlet and no 

pressure at the outlet. Pressures were adjusted at stimulus and 

buffer inlets to keep priming solution flowing into device, which 

ensured unidirectional loading of cells to trapping chambers. 

After cells were loaded, priming solutions at stimulus and buffer 45 

inlets were replaced by stimulus solution and cell media, 

respectively. After closing the cell inlet by pinching the tubing, 

stimulus and buffer were driven to their respective inlets by 

constant a pressure between 1 and 5 psi to stimulate cells with 

dynamic signal. The pressure source was provided by an air 50 

compressor regulated through solenoid valves in a customized 

pressure control box. A custom Matlab (MathWorks) GUI 

controlled these solenoid valves that modulate the actuation or 

shutoff of pressure.   

Cell Culture and Treatments 55 

 The Jurkat E6-1 human acute T cell lymphoma cell line 

(American Type Culture Collection) was cultured in RPMI 1640 

Medium without Phenol Red and with L-glutamine (Sigma-

Aldrich) at 37°C in a humidified 5% CO2 incubator. The media 

was supplemented with 10 mM HEPES buffer, 1 mM sodium 60 

pyruvate, 100 units/mL penicillin-streptomycin (Cellgro), 1X 

MEM Nonessential Amino Acids, and 10% fetal bovine serum 

(Sigma-Aldrich).  

 Cytoplasmic Ca2+ concentration was monitored using Fluo-3, 

AM, cell permeant (Life Technologies). Cells were incubated for 65 

40 minutes with 5 µM Fluo-3 and 0.05% w/v Pluronic F127 at 

37°C before being washed 3 times with PBS and resuspended in 

white RPMI. Cells were loaded into the device at 0.5x106 

cells/mL for approximately 20 minutes before they received 

stimulation.  70 

Time-Lapse Microscopy and Image Analysis 

 Once cells were loaded in the device, images were acquired 

with a Nikon Eclipse Ti inverted fluorescent microscope using a 

FITC filter cube (Omega XF22). Time-lapse microscopy was 

performed using Elements Software (Nikon) with frame rates of 75 

0.1 Hz to avoid photo bleaching of the Ca2+ dye, Fluo-3. 

 Images were analyzed in an automated fashion using custom 

Matlab (MathWorks) scripts. Analyzed cells were manually 

chosen based on presence in the first and final frame. The mean 

fluorescence intensity was calculated for each region of interest 80 

(ROI) with the removal of background fluorescence at each time 

point. 

Characterization of Stimulus Profiles at Various Flow Rates, 
Temporal Resolutions and Concentration Levels 

 To assess the performance of our device in various 85 

experimental conditions, we empirically characterized the 

chemical stimulus profiles at various flow rates, temporal 

resolutions and concentration levels. We recorded the fluorescent 

intensity acquiring images (Infinity 3, Leica) at a frame rate of 5 

Hz. Image analysis was done using custom MATLAB 90 

(MathWorks) scripts. With these scripts, we manually identified a 

ROI for each row and calculated the mean intensity in that ROI 

for all frames. 

 To visualize the effect of flow rates on stimulus profiles within 

the cell trapping chamber, we pressurized fluorescein solution 95 

(0.05 mg/mL, Sigma-Aldrich, St. Louis, MO) and PBS into the 

device at various pressures: 1, 2, and 3 psi, while alternating these 

two solutions at a constant frequency of 50 mHz. We also 

repeated this experiment with fluorescein isothiocyanate 

conjugate bovine serum albumin of 10 mg/mL (FITC-BSA, 100 

Sigma-Aldrich, St. Louis, MO) solution (Fig. S1). 

 To characterize the temporal resolution of stimulus profiles, 

we alternated fluorescein solution (0.05 mg/mL) and PBS at 4 

frequencies: 5, 10, 100, 500 mHz, while pressurizing both 

solutions at 3 psi. The alternation was automated by a customized 105 

pressure control box and controlled through a customized Matlab 

GUI communicating to the box.  

 To characterize the stimulus profiles at various concentration 

levels, we alternated fluorescein solution (0.05 mg/mL) and PBS 

at 10 relative durations to generate 10 corresponding 110 

concentration levels (pure PBS as 0, pure fluorescein solution as 

10 and the other 9 combinations for corresponding intermediate 

levels), while both solutions were pressurized at 2 psi. At each 
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concentration level, pulse duration of one solution was fixed at 

base pulse duration, while pulse duration of the other solution 

was varied. Base pulse duration of 50, 100, 200 and 500 ms were 

tested. By combining the base pulse with a range of scalar 

multiples (0-9) of basic pulse duration, 10 concentration levels 5 

were produced. Each concentration level was held for 10 sec by 

repeating the relative duration of binary pulses.  

Quantification of Effective Molecular Dispersion in a Cell 

Trapping Chamber 

 In order to quantify the effective dispersion of stimulus 10 

molecule in our device, we delivered a plug of 500 ms of four 

fluorophore solutions in PBS background: fluorescein (0.05 

mg/mL), FITC-dextran average molecular weight 4000 Da (mw 

4000, 5 mg/mL), FITC-BSA (10 mg/mL) and FITC-dextran mw 

70000 (12.5 mg/mL) at five discrete pressures at 1, 2, 3, 4 and 5 15 

psi and measured the fluorescence intensity as a function of both 

travelled distance and time.42 Video recording and image analysis 

follow the same setup as stated previously.  

 To extract parameters that describe the dispersion pattern, we 

use the Matlab curve fitting toolbox to fit the time series values of 20 

fluorescence intensity by a Gaussian in the form of Eqn. 1.42  

� � ���� � � � 	 
 exp ���� � �
� ��� 

(1) 

 Extracted parameters include background signal (d), peak 

intensity (a), time to reach peak intensity at the center of row n 

(��), and a parameter to measure the decay rate of Gaussian (c) 25 

(Fig. 4A). Mean flow velocity is estimated using Eqn. 2. 42 

� � ����	���	�������	��������	��	 ��20		��	 ��1
��$ � �%  

(2) 

 The effective dispersion coefficient, &'((, is calculated using 

Eqn. 3. 42 

&'(( � �� 
 ��

4 
 �  

(3) 30 

 Because &'(( should be measured after transient regions,42, 43 

only parameter values at row 20 were used to compute &'((. This 

process was repeated for all five pressures of each molecule. 

Under Taylor dispersion assumption, &'(( is a linear function of  

����/& as in Eqn. 4,42 35 

&'(( � +����/&	 
(4) 

in which k (a constant) is only dependent on the geometry of the 

channel cross section. We plot &'(( against ����/& to estimate 

k, in which w is channel width and D is molecular diffusivity. We 

also plot &'(( against �� as in Eqn. 5, 40 

&'(( � +′�� 

(5) 

in which k’ is a simple correlation to compare dispersion of 

different molecules under same flow rate. Finally, the standard 

deviation of Gaussian a related to c as ����- � √���/2�. The 

 
Figure 2. Stimulus profiles are affected by flow rates as driven at (A&D) 1psi, (B&E) 2psi, (C&F) 3psi. Profiles were generated by alternatively 

delivering fluorescein solution and PBS at 50 mHz at all driving pressures. Top panels: heatmaps of spatial (Y axis) and temporal (X axis) 

fluorescent intensity (color bar) in single observation chamber. Bottom panels: The corresponding average ROI fluorescent intensity (Y axis) plots as 

function of time (X axis) shows the evolution of plug-like waveforms to Gaussian-like waveforms. 
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rise time is estimated as twice this standard deviation, which 

accounts for 95% of the area under the Gaussian. Results are 

summarized in Table 1. 

Results and Discussion 

Effect of Flow Rate on Stimulus Profile 5 

 In our device, chemical stimuli are delivered in forms of 

alternating fluid boluses. Taylor and Aris described how transport 

of these signals can be affected by dispersion in long straight 

channels.44, 45  In order to understand the actual chemical micro-

environment experienced by cells in our microfluidic device, we 10 

empirically examined what controls the flow and transport 

behavior and how much the flow in our device deviates from 

Taylor-Aris model.   

 We first examined the effect of flow rates on stimulus profiles. 

Fig. 2 (A to C) shows the resulting spatial-temporal profiles of 15 

average ROI fluorescent intensity of fluorescein driven by 

various pressures. Increased flow velocities under large driving 

pressures (Fig. 2) result in less lag throughout the trap array. In 

spite of possible cell loading variation among each row, the lag 

per row is roughly constant and predictable at each pressure 20 

condition, which is important for robust operation. This result 

indicates that rise time and delay in our device can be easily 

tuned by adjusting the driving pressure. Using quantified flow 

rate data (Figure 2S), we estimate the shear stress is between 0.3 

dyne/cm2 at 1psi and 2 dyne/cm2 at 5psi. 25 

 To characterize dispersions in the device, we used several 

fluorescent solutes. As expected, dispersion of all fluorescent 

molecules causes continuous evolution of the stimulus profile 

from an initial plug-like waveform to a final Gaussian-like 

waveform (Fig. 2, D to F, Fig. S1). At high flow rates, due to 30 

shorter residence time, the stimulus profile is less dispersed than 

that at low flow rate. This feature enables multiplex stimulation 

of cells with signals of the same temporal characteristics (i.e. 

same frequency of rise and fall) but various shapes (e.g. square-

wave or Gaussian-like).  35 

 This multiplex feature is beneficial in the fast screening of a 

wide range of input conditions in a single experiment. For 

example, this feature can be used to study the threshold stimulus 

concentration cells can sense, as dispersion shifts both the timing 

and concentration of stimulus perceived by cells in different 40 

locations of the array. Within each observation chamber, it is 

possible to generate data for up to 40 cells in each row, or 

multiple of 40 cells for a group of several rows, where stimulus 

profile can be regarded as the same. To harness the power of 

multiplexing requires exact knowledge of stimulus profile in as a 45 

function of time and location, which will be quantified in later 

sections of this work.  

Temporal Resolution of Stimulus Profile 

 One goal of our device is to interrogate cells with stimulus 

signals spanning broad timescales and frequency space. To assess 50 

its dynamic range and temporal resolution, we visualized the 

 
Figure 3. The temporal resolution is revealed by stimulus profiles oscillating in wide temporal ranges: (A) 500 mHz (2 s), (B) 100 mHz (10 s), (C) 

10 mHz (100 s) and (D) 5 mHz (200 s). Profiles were generated by alternatively delivering fluorescein solution and PBS at driving pressure of 3 psi. 

Heatmaps show spatial (Y axis) and temporal (X axis) average ROI fluorescent intensity (color bar) in single observation chamber.  
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stimulus profiles by alternating fluorescent molecule solutions 

with PBS at various frequencies. 

 Figure 3 depicts the resulting spatial-temporal profiles of 

fluorescein intensity at various frequencies. Depending on 

frequencies, dispersion affects fluorescent profiles to different 5 

extents. At frequencies slower than 10 mHz (period longer than 

100 sec), the effect of dispersion becomes less apparent. This is 

because residence time (8 sec at driving pressure of 3 psi) 

becomes much smaller compared to the timescale of alternating 

period. At frequencies faster than 500 mHz, waveforms are only 10 

resolved in the first few rows, dynamic signals become 

homogenized into an average, constant level stimulus as they pass 

along the chamber.  

 We note that dispersion puts a physical limitation on attainable 

temporal resolution to all setups that use flow system to deliver 15 

oscillatory or other dynamic signals. Although as shown here and 

in other works11, 35 that higher flow-rates can help improve the 

temporal resolution, it is at the cost of reagent expense, which can 

be significant when using biochemical cues such as cytokines, 

etc. Thus, this tradeoff should be carefully weighed for each 20 

application.  

  Moreover, since chemical cues transported in vivo are also 

subject to the same physical limitations posed by dispersion, we 

argue T cells are unlikely to utilize chemical signals with 

timescales shorter than 2 seconds to encode distinguishable 25 

information.14 If this hypothesis holds true, then the temporal 

resolution of our device should be sufficient for dynamic studies 

of T cell signaling pathways.  

 

 30 

Molecular Diffusivity Dependence of Dispersion 

 While the standard technique to perform device 

characterization is to use soluble fluorescent molecules (with 

molecular weight ranging from low hundreds to thousands), most 

biologically relevant stimuli are non-fluorescent and are often of 35 

small molecular weight (e.g. H2O2) or macromolecules (e.g. 

cytokines).  As such, their dispersion patterns cannot be measured 

easily. To study how molecular weight (and more directly 

molecular diffusivity) affects stimulus profiles, we analyzed the 

dispersion patterns of various fluorescent molecules with distinct 40 

molecular sizes and shapes: fluorescein (mw 332), FITC-dextran 

(mw 4,000), FITC-BSA (mw 66,000), and FITC-dextran (mw 

70,000).  

 We find that similar conclusions can be made for profiles of 

other fluorophores as those for fluorescein (Fig. S1): (1) the 45 

stimulus profiles continuously evolve as a function of residence 

time (flow rate), and (2) the stimulus signal can be generated 

across wide timescales with an upper bound resolution of 2 

seconds.  

 We first tested how similar the dispersion pattern is to the 50 

Taylor-Aris model.44, 45  In the Taylor-Aris model, the effective 

dispersion coefficient is a linear function of  ����/&,42 where 

the slope k is only dependent on cross-section geometry as in 

Eqn. 4. This model predicts that molecules with smaller 

diffusivity have a larger &'((. However, the cell chamber in our 55 

design is a “leaky” serpentine channel where flow splits and 

recombines as compared to the “long straight channel” 

assumption in Taylors’ model.20 This “leakiness” did not result in 

visually dramatic changes in the concentration profiles, i.e. we 

did observe the Gaussian-like dispersion profile as in Taylor 60 

dispersion.44, 45   Next we quantified how the flow in our device  

 

Figure 4. Quantification of the effective dispersion in a cell 

trapping chamber. (A) A 500 ms pulse of fluorescein solution 

was delivered in PBS background. A Gaussian fit was applied to 

the spatial-temporal intensity function to extract parameters that 

described effective dispersion: a is peak intensity, d is 

background intensity, b is peak time, t is rise time. (B) Effective 

dispersion of various fluorescent molecules shows large deviation 

from Taylor’s model, which predicts constant slope k  for all 

molecules. (C) Under the same flow velocity, molecules with 

smaller intrinsic diffusivity have larger effective dispersion in 

accordance with the Taylor dispersion model. Nevertheless, the 

effect of complex flow pattern dominates in shaping effective 

dispersion, rendering effect of molecular diffusivity not apparent. 
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deviated from the Taylor’s model. Tayor-Aris model predicts that 

the parameter k is only dependent on cross-section geometry and 

independent of (or a very weak function of) molecular weight. 

 In order to experimentally measure and quantify the dispersion 5 

patterns of various fluorescent molecules, we used the framework 

by Bontoux et al.42 We delivered a short pulse of fluorescent 

solution of 500 ms, the shortest pulse we can generate that gives 

reliable fluorescent measurements (Fig. 4A and Eqn. 1). We 

measured and calculated mean flow velocity (U), effective 10 

dispersion coefficient (&'((� and rise time (t) at various locations 

in a cell chamber (Table S1). The rise time serves as a direct 

measurement of the extent of dispersion patterns. Fig. 4B plots 

the experimentally determined &'(( against ����/& for each 

fluorescent molecules.42 This result shows that k is not constant; 15 

it tracks the trend of various molecular weights and diffusivities, 

indicating that the dispersion deviates significantly from Taylor’s 

model. We repeated this experiment and found consistent results 

across experiment repeats (Fig. S2), thus the deviation from 

theory was unlikely caused by experiment-to-experiment 20 

variation. It is also interesting to note that the value of k is 

between 0.2 and 0.01 (Fig. 4B), which is much larger than the 

prediction of 0.003 in Taylor’s model,42, 43 indicating the complex 

flow path significantly increases the extent of dispersion. 

 We next ask to what extent and how molecular weight 25 

contributes to the effective dispersion because stimuli molecules 

may not be fluorescently labeled. When plotting &'(( against 

����/&, the lumped term makes it difficult to assess the 

contribution of each variable to &'((. In order to isolate the 

contribution of intrinsic diffusivity, we compare &'(( for various 30 

fluorescent molecules as only function of ��(Eqn. 5). Fluorescent 

molecules with higher molecular diffusivity (usually smaller 

molecular weight) have slightly smaller &'(( as characteristic of 

Taylor dispersion (Eqn.4). Accordingly, we would predict that 

stimuli with small molecular weight such as H2O2 are less 35 

dispersed compared to the fluorophores tested. This implies that 

the observed patterns are worst-case scenarios for experiments 

that require well-defined temporal patterns throughout the trap 

array. 

 Interestingly, the observed dependence on molecular 40 

diffusivity is much smaller than that in Taylor dispersion (as in 

Eqn. 4). We speculate that because the complex flow pattern 

unselectively increases the extent of dispersion regardless of 

molecular size, the effect of flow splitting and recombination 

dominates over the effect of molecular diffusivity in determining 45 

the apparent dispersion pattern. This renders the effective 

dispersion is almost only a function of flow velocity, which is 

convenient to control experimentally. This suggests that once k’ 

(Eqn. 5) is quantified using any fluorescent molecule, the 

effective dispersion of arbitrary molecule can be estimated, and 50 

we can predict the microenvironment as perceived by cells. This 

knowledge of stimulus profile is important to correlate with 

cellular responses to multiplexing stimulus conditions.   

Generating Dynamic Stimulus Profile Varying in Both Time 
and Concentration 55 

 Our ultimate goal is to be able to deliver dynamic stimuli with 

arbitrary waveforms that can simultaneously vary in time and 

concentration. Analogous to pulse-density modulation in signal 

processing where the amplitude of analog signal is represented by 

relative density of digital signal, here we modulate the relative 60 

pulse duration of stimulus and buffer to encode various 

concentration levels. By controlling the dispersion in the 

microfluidic channel, binary pulses can be homogenized into 

uniform concentration of various levels.  

 To demonstrate this idea, we generated a ramp signal with 10 65 

concentration levels (Fig. 5A). Pure buffer corresponded to a 

signal of 0 and original prepared stimulus solution corresponded  

 

Figure. 5 Dynamic stimulus varying in both time and concentration is 

automatically generated using only stimulus and buffer. (A) Schematic for 

signal synthesis by pulse-density modulation. Each color bar represents a base 

pulse duration: stimulus (red) and buffer (blue). Nine relative durations of 

binary solutions are delivered and converted to 9 corresponding stimulus 

concentration levels by controlling dispersion in microfluidic channels. (B) & 

(C) A ramp signal with 10 concentration level is generated using FITC-BSA 

solution and PBS using a base duration of 50 ms. (B) The spatial temporal heat 

map of average ROI fluorescent intensity within a cell chamber. (C) The 

corresponding fluorescent intensity profile shows the evolution of waveform 

from a step-like waveform to a linear waveform.  
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to a signal of 10. In order to generate other concentration levels, 

we first defined a base pulse duration. We applied the base pulse 

duration to either stimulus or buffer, and assign the other solution 

a relative duration corresponding to each concentration level. For 5 

example, we first defined a base pulse of 100 ms; to generate a 

signal of 1, we delivered 100 ms of stimuli and 900 ms of buffer; 

to generate a signal of 2, we delivered 100 ms of stimuli and 400 

ms of buffer; to generate a signal of 9, we delivered 900 ms of 

stimulus and 100 ms of buffer, etc. Each concentration level 10 

lasted for 10 second by repeating the corresponding combinatory 

pattern of pulses. We repeated this experiment at four different 

base pulses: 50 ms, 100 ms, 200 ms and 500 ms (Fig. 5B, C & 

S3) 

 For base pulse durations of 50 ms and 100 ms (Fig. 5B, C, and 15 

S3A), the device generated a step-like profile with 10 

distinguishable concentration levels in the first row. This step-

like waveform continuously dispersed out to be a more linear 

profile as it propagated through the chamber. However, for base 

pulse duration of 200 ms and 500 ms (Fig. S3B&C), we saw 20 

prominent oscillations at the first row. This indicated that signals 

with period longer than 2 sec (200 ms X 10) cannot be 

homogenized by the time it reached the first row of trapping 

chamber, which was consistent with previous results on temporal 

resolution of stimulus profiles. Since temporal resolution is the 25 

product of base pulse duration times total number of 

concentration levels, the shorter the base pulse duration, the more 

concentration levels can be discerned. The minimal base pulse 

duration is ultimately limited by mechanical properties of the 

valve actuation and switching speed between two solutions, 30 

which is below 50 ms in our device. Nevertheless, even using a 

base pulse duration longer than 200 ms, a ramp can be created. 

This implies that our device can support wide dynamic range of 

base pulse duration, temporal resolution and total concentration 

levels. Since there are 40 cell trapping sites on each row, a small 35 

region of the trap is sufficient to collect large number of cellular 

responses. Depending on the time span, temporal resolution, and 

total concentration levels required by a particular experiment, 

proper base pulse duration and portion of the trapping chamber 

can be chosen for cellular responses under the same desired 40 

stimulus waveform.  

 Since there are only two input solutions, our device 

substantially simplifies experimental operation by eliminating the 

need to prepare multiple solutions and switch solutions of 

discrete concentrations manually during experiments. Most 45 

existing schemes achieve concentration modulation through 

mixing of volume fractions, where mixing happens in the 

perpendicular-to-flow direction through natural diffusion or 

facilitated by auxiliary structures.40, 41 These schemes require 

either long residence time or complicated circuit design and 50 

 
Figure 6. Cytoplasmic calcium signalling synchronizes with low frequency oscillating stimulus. Heat map of 50 cells responding to (A) 50 mHz 

and (B) 5 mHz stimulation of 100 µM H2O2. Single cell traces are graphed from selected cells responding to (C) 50 mHz and (D) 5 mHz 

stimulation of 100 µM H2O2. The population is visibly synchronizing to the stimulus at 5 mHz, while response heterogeneity exists among 

population under each stimulation condition.  
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operation.  In contrast, our device achieves concentration 

modulation by using on-chip valve enabled clock. The dispersion 

facilitates mixing in the direction along the flow direction without 

any auxiliary structures. The synthesis and delivery of dynamic 

signal to trapped cells are automated by a Matlab GUI controlled 5 

pressure box, both of which are custom made. Desired stimulus 

waveform can be easily programed on spot in the Matlab GUI. 

Since timing is more flexible to modulate compared to volume 

fraction, our device allows more rapid and precise modulation of 

stimulus concentration with less complicity. This feature of 10 

modulating concentration level is unique to this device, as it 

would be difficult for the previous work by Chingozha et al.35 to 

modulate concentration level through pore structure with off-chip 

valves and large reagent flow rate.  

Calcium Signaling in Response to Dynamic Stimulation of 15 

H2O2 

 Ca2+ is actively sequestered in the endoplasmic reticulum (ER) 

until T cell activation triggers its release.46 Upon stimulation, 

cytoplasmic Ca2+ concentration has been shown to oscillate 

through time, which is thought to be the result of stochastic 20 

distribution of receptor proteins within the membrane.47, 48 This 

dynamic calcium signaling ultimately leads to nucleation of 

NFAT and production of cytokine interleukin-2 (IL-2).2 Studies 

suggest a role of ROS in T cell activation, especially involved in 

calcium flux that follows TCR recognition.49-51  25 

 We used our device to examine the response of Jurkat cells to 

dynamic stimulation by alternating 100 µM H2O2 solution with 

white RPMI media at 2 psi. The shear stress experienced by these 

cells is estimated from flow velocity data (Figure 2S) to be 

around 1 dyne/cm2, much lower than the high shear stress blood 30 

cells are subjected to normally in the bloodstream.52 Our previous 

reports also indicated no recognizable effect on T cell signaling 

with the shear stresses estimated in the cell trapping chamber.20, 53 

Thus we assume signaling is unimpaired with the observed 

continuous flow conditions. Cytoplasmic Ca2+ concentration was 35 

monitored using fluorescence microscopy of Fluo-3 while cells 

experienced stimulation at a frequency of either 5 mHz or 50 

mHz. Under 10x magnification (e.g. for monitoring of cytosolic 

calcium dye such as fluo-3), only a few rows within an 

observation chamber can be monitored at the same time. These 40 

cells are assumed to be under approximately same stimulation 

profiles, because for each of the two frequencies the 

concentration profile has been experimentally shown to be similar 

at adjacent rows (Figure 3). Individual cell traces were analyzed 

over time, and a heat map of fluorescent intensity from 50 cells is 45 

shown in Figure 6 A&B. The cell number is randomly assigned 

and is not associated with location information.  

 The heat maps clearly show heterogeneity within the 

population of monitored cells under each stimulation condition 

and select individual cell traces are shown in Figure 6 C&D. The 50 

5-mHz signal entrained some cells within the population to 

exhibit cytoplasmic Ca2+ concentration oscillations at 

approximately the same frequency. In contrast, the cells 

experiencing 50-mHz stimulation do not appear to exhibit 

oscillations of cytoplasmic Ca2+ concentration at the same 55 

frequency as the driving frequency. These results suggest the 

calcium signaling pathway of Jurkat cells acts as a low-pass filter, 

not responding to stimulation at high frequencies while faithfully 

reflecting low frequency signals. The cut-off frequency of this 

particular pathway was shown to be between 50 mHz and 5 mHz. 60 

 Given these results, we demonstrated the value of this device 

to generate biologically relevant signals in order to interrogate 

cellular signaling pathways and probe its signal transduction 

properties. With a full spectrum of frequencies sampled, this 

device is capable of garnering the experimental data necessary for 65 

frequency response analysis and provide a more systematic 

approach to analyzing the underlying feedback control in a 

complex biological network. 

Conclusions 

  Here we present an automated platform capable of delivering 70 

an arbitrary dynamic stimulus and simultaneous monitoring of 

high throughput T cell signaling studies at single-cell resolution. 

We thoroughly characterized the stimulus profile at various flow 

rates, temporal resolution and concentration levels. We also 

developed a quantitative method to determine the effective 75 

dispersion from the complex flow in our microfluidic device. 

This result allows us to estimate the dispersion pattern of any 

arbitrary, non-fluorescent stimulus of interest and correlate cell 

response to multiplex stimulation conditions. Mixing based on 

on-chip valves clocking enables more precise and rapid way to 80 

modulate stimulus concentration, which is essential in 

interrogating fast cellular signaling. Finally, we investigated the 

role of ROS in Jurkat human T cells’ calcium signaling network 

by stimulating cells with two dynamic patterns of H2O2 signals. 

The results showed the heterogeneity among cell population and 85 

allowed us to estimate the cut-off frequency of calcium signaling 

network in Jurkat cells. Our results would not be observable in 

population-average based, bulk experiments and emphasized the 

unique value of our platform to enable the study of cellular 

signaling network properties. Although we demonstrated the 90 

concept of this device with T cells, as signal generation module is 

independent from the cell trapping module, the cell trapping 

module can be replaced to adapt to most cell sizes and types. We 

envision this platform to be applied to broad single-cell analyses, 

such as in pharmacodynamics, immunology, stem cells and 95 

cancer research.  
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