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A novel method based on laser induced breakdown spectroscopy(LIBS) combined with 

random forest regression(RFR) was proposed to quantitative analysis of multielement of fourteen 

steel samples.  Normalized LIBS spectrum of steel in which characteristic line(Si, Mn, Cr, Ni 

and Cu) identified by NIST database was used as analysis spectrum. Then, two parameters of RFR 

were optimized by out-of-bag (OOB) error estimation. The performance of calibration model was 

investigated by different input variables(the whole spectral bands(220-800nm) and spectra feature 

bands(220-400nm), respectively). In order to validate the predictive ability of multielement 

calibration model in steels, we compared RFR with partial least-squares(PLS) and support vector 

machines(SVM) to predict the concentrations of multielement in steels. And, the three quantitative 

techniques are evaluated in terms of prediction accuracy and root mean square error(RMSE). 

Random forest is shown to correctly model nonlinear effects dues to self-absorption in the plasma 

and to provide the best results. It confirms that LIBS technique coupled with RFR has a good 

potential for the in situ rapid determination of multielement in steels and even metallurgy field.   
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A novel method based on laser induced breakdown spectroscopy(LIBS) and random forest 

regression(RFR) was proposed to quantitative analyze of multi-elements in fourteen steel samples.  

Normalized LIBS spectra of steel in which characteristic line(Si, Mn, Cr, Ni and Cu) identified by NIST 10 

database were used as analysis spectra. Then, two parameters of RFR were optimized by out-of-bag 

(OOB) error estimation. The performance of calibration model was investigated by different input 

variables(the whole spectral bands(220-800nm) and spectra feature bands(220-400nm), respectively). In 

order to validate the predictive ability of multi-elements calibration RFR model in steels, we compared 

RFR with partial least-squares(PLS) and support vector machines(SVM) by means of prediction accuracy 15 

and root mean square error(RMSE). Thus, RFR model can eliminate the influence of nonlinear factors 

dues to self-absorption in the plasma and provide a better predictive result. It confirms that LIBS 

technique coupled with RFR has a good potential for the in situ rapid determination of multi-elements in 

steels and even metallurgy field.    

1. Introduction  20 

Iron and steels is one of the most significant engineering and 

construction materials due to its low price and widely 

applicability. Some added elements(such as silicon, chromium 

and nickel) play an important role in improving its mechanical 

and chemical properties in steelmaking processes. Thus, the 25 

content of these elements must be strictly controlled, which  

contributes to improving the performance of the steel materials 

and a rapid and precise analytical method is desirable. It 

becomes particularly significant for accurately and sensitively 

quantitative analysis of steels in metallurgy and related fields. 30 

Conventional quantitative analysis technologies for steels 

mainly include:1-6 chemical analysis, atomic emission 

spectrometry(AES), optical emission spectroscopy(OES), X-ray 

fluorescence(XRF), inductively coupled plasma mass 

spectrometry(ICP-MS), chromatography and so on. However, 35 

these techniques require complicated sample preparation and 

much analysis time, which hinders their application for in-situ, 

on-line and real-time analysis. 

    Laser induced breakdown spectroscopy(LIBS) is a new type 

of plasma spectral quantitative analysis technology with capable 40 

of rapid and real-time analysis. Compared with conventional 

analytical techniques, LIBS has many obvious advantages,7-9 

such as multi-elements simultaneous analysis, all types of the 

sample(solids, liquids, and gases) can be analyzed, less sample 

requirement and minimal sample preparation. Therefore, LIBS 45 

is considered to be one of the most valuable and prospect 

analysis tools. At present, the LIBS technology has become an 

international research focus on the metallurgical analysis.10-13 

Application of LIBS to metallurgical industry including iron ore 

selection,14,15 process control16,17 and iron slag analysis18 has 50 

been widely studied by many groups. Several review 

works16,19,20 have already been present. 

    Quantitative analysis methods on LIBS mainly refer to 

calibration method and calibration-free(CF) approach.21 The 

first one is based on a set of calibration samples of known 55 

content, whereas CF-LIBS assumes local thermodynamic 

equilibrium(LTE) in the laser plasma to calculate its plasma 

temperature and its electron density, from which the 

composition of the sample is then derived, regardless of the 

matrix effect. The simplest and most widespread quantitative 60 
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analysis method is the standard calibration method, which 

construct the relationship between the integrated intensity of the 

analysis line or intensity ratio(analysis line vs reference line) of 

interest element and the known concentration of a set of 

calibration samples. The most common calibration curve is 5 

univariate, and its regression model is established by using the 

intensity of single feature line and the corresponding 

concentration of the element under test. However, the univariate 

calibration model can not often meet requirement of the 

quantitative analysis due to the fluctuation of laser energy, the 10 

inhomogeneity of samples and complex matrix effect.22 The 

chemical composition of steel sample is affected by many 

matrix effects. There are serious overlapping spectral peak of 

the spectrum in the iron substrate, and the traditional univariate 

calibration model fails to eliminate the impact of these 15 

interference factors. Multivariate calibration method is an 

effective tool to overcome matrix effect for complex sample. At 

present, many multivariate calibration algorithms have been 

developed for quantitative analysis, such as partial least 

squares(PLS),23-26 principal components analysis(PCA),27-30 20 

artificial neural network(ANN),31-34 support vector machines 

(SVM),35-37 and so on. However, Random Forest regression 

(RFR), a new regression algorithm based on multiple regression 

trees, was proposed by Leo Breiman in 2001.38 It is based upon 

an ensemble of decision trees, from which the prediction of a 25 

continuous variable is proved as average of the predictions of 

all trees. In RF regression, an ensemble of regression trees is 

grown from separate bootstrap samples of the training data 

using the classification and regression tree(CART) algorithm. It 

has been proved that RFR has a good tolerance for the noise, as 30 

well as avoid over-fitting phenomenon by many researchers. 

    J. Remus proposed an approach of LIBS and RF to identify 

and classify five different materials(four rock samples and one 

pen ink sample).39 However, in this article, we present a novel 

method for quantitative analysis of multi-elements in steels by 35 

means of integrating LIBS technology with RFR. Normalized 

LIBS spectra of steel were used as analysis spectrum. Two 

parameters (ntree-number of trees and mtry-random variables) 

of the RFR algorithm were optimized using out-of-bag (OOB) 

error estimation. The performance of calibration model was 40 

investigated by different input variable(the whole spectral 

bands(220-800nm) and spectra feature bands(220-400nm), 

respectively). Both the whole spectral bands and spectra feature 

bands are the peak intensity at each wavelengths. In order to 

validate the predictive ability of multi-elements calibration 45 

model in steels, we compared the result of RFR with partial 

least-squares(PLS) and support vector machines(SVM) by 

means of prediction accuracy and root mean square error(MSE).  

2. Experimental  

2.1 LIBS setup and acquisition conditions 50 

The spectra for steel samples were recorded and collected 

by  the LIBS system. A schematic diagram of the LIBS system 

on this work is presented in Figure 1. A dual-wavelength (the 

optional wavelength at 532nm and 1064nm) single pulse Q-

switched Nd:YAG laser with the fundamental wavelength at 55 

1064nm, the pulse laser energy of 80mJ(6 GW/cm2), the pulse 

duration of 10 ns full width at half maximum (FWHM), and the 

repetition rate of 20Hz was used. The steel samples were placed 

directly on an X-Y-Z manual micrometric stage. The laser beam 

was focused onto the sample surface vertically by a 50mm 60 

focal-distance lens, producing a spot of about 2 mm diameter. 

The emission from the plasma created was collected with a 4-

mm aperture, with a 7mm focus fused silica collimator placed at 

45° angel with respect to the laser pules and a distance of 3 cm 

from the sample, and then focused into an optical fiber (with a 65 

1000 nm core diameter and 0.22 numerical aper-ture), which 

was coupled to the entrance of the Echelle spectrometer 

(ARYELLE-UV-VIS, LTB150, German). The spectrometer 

provides a constant spectral resolution (CSR) of 6000 over a 

wavelength range 220-800 nm displayable in a single spectrum. 70 

An Electron-Multiplying CCD camera (QImaging, UV 

enhanced, 1004 ×1002 Pixels, USA), coupled to the 

spectrometer was used for detection of the dispersed light. The 

overall linear dispersion of the spectrometer camera system 

ranges from 37 pm (at 220 nm) to 133pm/pixel (at 800nm). To 75 

prevent the CCD from detecting the early plasma continuum, a 

mechanical chopper is used in front of the entrance slit. The 

experiments were carried out under atmosphere condition, and 

the gate width of spectrometer was set to 2 ms. The detector 

was set to 1.5 µs delay time between the laser pulse in order to 80 

prevent the detection of bremsstrahlung radiation. 

2.2. Steel samples and LIBS measurements 

    A total of 14 typical steel samples were kindly provided by 

the China Xi-ning Special Steel CO., LTD(Xi-ning, Qing-hai, 

China). Table 1 lists the concentration of certain element of 14  85 
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Fig. 1 Schematic setup of LIBS’s experimental system 

steel samples. The original size of steel samples is too long to 

facilitate the experiment, and then an cylinder(the height was 6 

mm) was cut from random locations on each steel sample. LIBS 5 

spectra of 50 different position of each sample surface are 

gathered. In order to decrease the effects of shot to shot 

fluctuations, each measure spectrum was obtained by 

accumulating of 20 laser pulses. In this work, the analytical 

spectrum for each steel sample was the average of 50 LIBS 10 

spectra from different positions. The total of the spectra for 

steel sample was 14, ten samples were selected for the 

calibration the quantitative analysis(PLS, SVM and RFR) 

model, and the rest of samples were used for validation of the 

model. Background emission was subtracted from the spectral 15 

lines, and each LIBS spectra were normalized by the maximum 

integrated intensity. The data processing and quantitative 

analysis for steel samples by chemometrics methods were 

completed on Matlab(version 2007a, Mathworks).  

2.3. Support Vector Machines  20 

    Support vector machine(SVM) is a new and promising 

classification and regression method proposed by Vapnik.40 It 

Table 1 The elemental reference concentration of 14 steel 

samples(wt. %) 

Sample 

number 
Si Mn Cr Ni Cu 

1# 0.238 0.420 0.083 0.011 0.024 

2# 0.199 0.605 0.108 0.108 0.034 

3# 0.201 0.733 0.754 0.030 0.102 

4#* 0.277 0.622 0.939 0.018 0.016 

5# 0.297 0.891 1.16 0.013 0.026 

6# 0.200 0.542 0.972 0.046 0.062 

7# 0.199 0.581 0.985 0.022 0.031 

8#* 0.272 0.793 0.405 0.451 0.039 

9# 0.360 0.920 1.12 0.015 0.017 

10# 0.540 16.48 12.24 2.07 1.45 

11#* 0.72 10.15 16.16 4.04 0.124 

12# 0.63 1.76 17.10 8.58 0.41 

13# 0.455 1.15 17.41 8.16 0.298 

14#* 0.330 0.836 16.27 10.18 0.501 

* were selected for validation sample 25 

was originally developed for classification problems, but can 

also be extended to solve non-linear regression problems by 

means of ε-insensitive loss function. In statistical learning 

theory, empirical risk is the error of prediction results by the 

model and real results, however, structure risk is the sum of 30 

empirical risk and confidence interval. Traditional learning 

method are based on empirical risk minimization criterion, and 

it only emphasized the empirical risk minimum error of the 

training sample, no minimum confidence limit value, so there is 

a poorer generalization ability. With regard to structural risk 35 

minimization, the training error is used as its optimization 

constraints, and the minimize of trust scope value is used as 

optimization target, its generalization ability is much better than 

traditional learning methods. Therefore, SVM method proposed 

is aimed at minimizing the structural risk rather than the 40 

empirical risk, and preserving a good generalization ability 

rather than optimizing the agreement with a given (limited) 

training set. In support vector regression, the input x is first 

mapped into a higher dimensional feature space by the use of a 

kernel function, and then a linear model is constructed in this 45 

feature space. The kernel functions used in SVM often include 

linear or polynomial functions, radial basis functions and 

sigmoid functions. Parameter C is a regularization constant 

which determines the trade-off between the model complexity 

and the degree to which deviations larger than ε are tolerated in 50 

optimization formulation. The generalization performance of 

SVR depends on a good setting of parameters: C, ε and the 

kernel type and corresponding kernel parameters. The selection 

of the kernel function and corresponding parameters is very 

important because they define the distribution of the training set 55 

samples in the high dimensional feature space. All SVM models 

in our present study were implemented using the shareware 

program LibSVM developed by Lin.41 The radial basis function 

was used as kernel function in this work. For RBF kernel, the 

most important parameter is the width of the radial basis 60 

function. 

2.4. Random Forest 

Random Forest(RF) as a new classification algorithm 

based on multiple classifier was proposed by Leo Breiman.38 In 

RF method, combined model },,1),,({ pkXh k K=θ consists of 65 

random vector(i.e. regression tree which is regard to the number 

and intensity of feature spectrum and consist of branching 

variables and nodes) by bootstrap resample method which is a 

Page 4 of 9Journal of Analytical Atomic Spectrometry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Jo
ur

na
lo

fA
na

ly
tic

al
A

to
m

ic
S

pe
ct

ro
m

et
ry

A
cc

ep
te

d
M

an
us

cr
ip

t



 

4  |  Journal Name, [year], [vol], 00–00 This journal is © The Royal Society of Chemistry [year] 

resample method with replacement, in which each tree casts an 

equal valued vote for the prediction at input vector X and where 

the }{ kθ is independent  identically distributed random vectors. k 

is the index for the tree in the forest and p is the total number of 

trees in the forest. For the k-th regression tree, we generate is a 5 

random vector kθ , independent of the previous random vectors 

11,..., −kθθ but with the same distribution; and we grow a tree 

using the training set and kθ , resulting in the predictor 

)},({ kXh θ where X is an input vector. Predictive vector is 

numeric, and random forest generated is multivariate nonlinear 10 

regression analysis model. The prediction result of random 

forest was produced by the the average of )},({ kXh θ  for k trees. 

The training set for random forest model were independent 

absolutely and selected from random vectors Y and X. The 

generalization mean square error of numeric predictive vector 15 

as follows: 

))X(hY(E Y,X −            (1) 

    In which, EX,Y is a function with regard to X and Y. 

    Random forest regression has the following characteristics:38 

a. When the number of trees in the forest tending to infinity: 20 

)),X(hEY(E)),X(hY(E Y,X

2

kkY,X

2

θ−θαν− θ→   (2) 

    In which, α and kv  are constant. 

b. For all θ and ),X(hE)Y(E, X θ=θ : 

)tree(PE)forest(PE ** ρ≤     (3) 

In which, 2

Y,X

* )),X(hY(EE)tree(PE θ−= θ
,ρ is weight related 25 

between relate ),X(hY θ− ,θ is independent. It pinpoints the 

requirements for accurate regression forests--low correlation 

between residuals and low error trees. The random forest 

decreases the average error of the tree employed by the factor  

ρ . The randomization employed needs to aim at low 30 

correlation. 

       The process of random forest regression algorithm as 

follows:42,43 

(1) There are n samples in the original dataset. b bootstrap 

sample set were random drawn with replacement using 35 

bootstrap resampling method, and thus construct b regression 

trees. Hence, some of the samples will be repeated, while others 

will be “left out” from the dataset and form out-of-bag(OOB) 

samples( about 37% of the samples in the original dataset). This 

left out data, which is called OOB data, is used to calibrate the 40 

performance of each tree. The predictive set for random forest 

was consisted by b OOB date that were generated by no drawn 

samples for the each bootstrap sample. 

(2) Suppose the variable number of original data is p, 

mtry(mtry<p) variable as alternative branching variable were 45 

chosen randomly at each node in every regression tree, and then 

in which the optimal branch is selected according to branch 

optimum rule. In random forests regression, parameter mtry = 

p/3;38 

(3) Since the beginning of each regression tree recursive branch 50 

of top-down, the smallest size set leaf node nodesize=5, as a 

regression tree growth termination conditions; the size and 

range of spectroscopy in the terminal nodes of the trees 

increases and the predictive accuracy decreases when the 

nodesize is increased above the optimum value. 55 

(4) The b regression trees generated constitute the regression 

model of random forests, and the performance of regression 

model was evaluated using mean square error(MSE) and 

coefficients of determination(R2) of OOB data: 

∑






 −=

∧
−

n

1

2

OOB

ii

1

OOB yynMSE

    (4)                                                    60 

2

y

OOB2

RF

MSE
1R

∧

σ

−=

             (5) 

Among them, 
iy is the bag outside data of the actual value of the 

dependent variable, 
iy

∧ is random forest predictive value for the 

data outside the bag, 
2

y

∧

σ is random forest data predicted variance 

outside the bag.       65 

3. Results and discussion 

3.1 LIBS spectra and spectral normalization 

Fig 2 shows the averaged normalization spectrum of 2# 

sample, which includes the emission lines of the major elements 

in steel. Steels are complex samples containing many chemical 70 

elements and thus related to LIBS spectra characterized by 

hundreds of atomic lines. Spectral lines of major element(Si, 

Mn, Cr, Ni and Cu) in steel sample were detected and identified 

based on NIST atomic database,44 which are summarized in 

Table 2. Some of the stronger elemental emission lines were 75 

used for quantitative analysis of steels. There are relative rich 

for Fe emission lines in steels, and spectral intensity of Si, Mn, 

Cr, Ni and Cu were affected by matrix effect from steel samples 

and the rich iron emission lines. In order to get a better 

quantitative performance, some simple pre-processing 80 

methods(i.g smooth and de-noise) based on five points moving-
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average were used to improve the signal-to-background ratio  

Table 2 Spectral line for quantitative analysis 

Element  Spectral line based on NIST database (nm) 

Si 
250.690, 251.432, 251.611, 251.920, 252.411, 

252.851 

Mn 
257.610, 259.372, 260.568, 279.827, 293.931, 

294.921 

Cr 
357.868, 359.348, 360.532, 425.433, 427.481, 

428.974, 520.451, 520.602, 520.842 

Ni 231.604, 234.554, 300.249, 310.156 

Cu 324.755, 327.396  

 

 

Fig. 2 The averaged normalization spectrum of 2# steel 5 

sample(a: 230-268nm; b: 270-350nm; c: 350-460nm; d: 480-

570nm) 

(SNR) of spectral line for specific element. There is a bit 

improvement for SNR of spectral line for specific elements and 

the analysis performance by moving-average method. 10 

3.2 Calibration model of multi-elements in steels with RFR 

    Calibration model is an essential aspect for quantitative 

analysis of steels using LIBS and RFR. In general, the 

establishment of the calibration model mainly includes three 

parts: (1) The optimization of modeling conditions sample, 15 

including the selection of input variables and the pretreatment 

method; (2) The selection of training samples in modeling, 

enough training samples with rich feature information and 

minimized interference are the precondition for accurately 

model, which determine the adaptability and reliability of the 20 

calibration model; (3) The implementation of modeling 

algorithm.  

    Two important parameters in RFR are ntree-the number of 

the trees in the forest and mtry-the number of the peaks 

randomly selected as the candidates for splitting at each node. 25 

Theoretically, the predictive error of the regression tree tends to 

a finite upper bound when ntree reaches a certain value. In 

other words, ntree increased is over the optimum value. There 

is a general increase in the computational expense, but the 

improvement of the predictive accuracy is minor. mtry is one of 30 

the most major characteristic through each division that 

introduces random nodes for randomly selected attributes. It 

was assumed that there were P attributes in the training sample, 

and mtry attributes were extracted randomly as candidate 

attribute between each of the internal nodes in the decision tree 35 

(mtry < P). The effects of different ntree and mtry for the 

calibration model were investigated by the OOB error estimate 

(as shown in Fig. 3). ntree were 1, 100, 200, 300, 400, 500, and 

600, respectively. When the value of ntree is decreased too far, 

the results deteriorate significantly; if ntree reaches one, the 40 

random forest becomes a single unpruned regression tree. The 

OOB error of the RFR model is relatively high when ntree is 

below 300, and it reaches to a minimum when ntree reaches 

300. In other words, the quantitative accuracy of the RF model 

was found to be the best. If the number of trees in the forest is 45 

increased above the optimum, there is a general increase in 

computational expense, but the results do not improve 

significantly, and as well as the OOB error tended to be limited 

by an upper bound. mtry used to test were 6404, 7319, 8539, 

10247, 12809, 17078, 25617, and 51234, respectively. When 50 

mtry becomes very small, not enough peaks are considered at 

each split, and hence the predictive quality of each tree 

decreases. The exact value of mtry below which a decrease in 

predictive error is observed will depend on the number and 

relative importance of peaks present in the data set. Moreover, 55 

mtry =17078(namely P/3) was found to be the best choice based 

on the OOB error rate.38 Therefore, the two optimized 

parameters of the random forest are as follows: ntree = 300 and 

mtry = 17078. 

     Input variables is significant for calibration model of steels. 60 

N-fold cross-validation is a method for model selection in terms 

of the predictive ability of the models. In machine learning, 

dataset A was divided into training set B and test set C. In the 

case of the amount of dataset is not enough large, in order to 

make full use of dataset to investigate the performance of the 65 

model algorithm, dataset A will be randomly divided into n 

package, one of n package is as test set, rest of the n-1 package 

are the train set each time. In this work, the whole spectral 

bands and feature spectral bands as input variables were 

investigated to improve the predictive accuracy of RFR, and 70 

then the RFR calibration model for multi-elements in steels was 
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validated by OOB estimation and 10-fold cross validation(CV).  

 

Fig. 3 Relationship of OOB error rate with ntree and mtry 

Table 3 shows the correlation coefficients(R) and root mean 

square error(RMSE) with different input data of RFR model by 5 

means of OOB estimation and 10-fold CV. As seen as Fig. 2 

and table 2, due to the most spectral line of major element (Si, 

Mn, Cr, Ni and Cu) in steels are most distributed in the range of 

220-400nm, the spectral region of 220-400nm contains key 

features of specific element, hence, the spectra of 220-400nm 10 

are selected as the input data.  The calibration model of multi-

elements analysis in steels was constructed by the whole 

broadband(220-800) and the spectral feature bands(220-400nm) 

as input variables. For the calibration model with the whole 

LIBS spectra as input variables, RMSE and R were 1.5672 and 15 

0.9285, respectively. Although the whole spectral band has a 

rich spectral information, there are many interference 

information from other element spectra and matrix effect. The 

feature spectrum lines for Si, Mn, Cr, Ni and Cu in steels are 

distributed in the range of 220-400nm. Therefore, feature 20 

spectra bands as input variables may improve the performance 

of calibration quantitative analysis model to some extent. For 

the spectral feature bands(220-400nm), RMSE and correlation 

coefficient were 0.4691 and 0.9735, respectively. Compared 

with the whole spectral bands as input variables to construct 25 

calibration model, it shows a better performance by using 

feature spectral band as input variables. In hence, the feature 

spectral bands(220-400nm) were selected as input variables to 

construct quantitative analysis calibration model of multi-

elements in steel. OOB estimation is also a significant cross 30 

validation method in RFR. We compared OOB estimation with 

5-fold cross-validation (CV) error rates for predictive ability of 

steel samples. The predictive error of the OOB estimation was 

lower than of 10-fold CV. Unlike cross-validation, the OOB 

estimates required no additional computing. The OOB 35 

validation is convenient for the random forest models owing to 

the utilization of the bootstrap method of data selection. 

Table 3 Correlation coefficients(R) and root mean square error 

with different input data of RF models 

Input data 
Calibration OOB estimation 

10-fold cross 

validation 

R RMSE R RMSE R RMSE 

the whole 

spectra 

(220-800nm) 

0.9385 1.5672 0.9163 1.6542 0.9063 2.6542 

spectra 

feature bands 

(220-400nm) 

0.9735 0.4691 0.9619 0.5324 0.9523 0.6392 

 40 

 3.3 Validation of predictive model of for steel with RFR 

    In order to validate the predictive abilities of calibration RFR 

model of multi-elements in steels, we compared RFR method 

with PLSR and SVM method. Input variable of these three 

methods for calibration model are feature spectral bands(220-45 

400nm). For the calibration model based on PLS, the best latent 

variables optimized by 5-fold cross-validation is 10. When the 

PLS model was trained upon the training set, the results were as 

follows: r2=0.873 and RMSE=1.760. For the calibration model 

based on SVM, the best parameters selected by GA(genetic 50 

algorithm) were used as input for an epsilon regression SVM 

with a radial basis function(RBF) kernel. The optimum 

parameters were set as: penalty parameter C = 97.006 and 

kernel parameter of RBF g = 0.082. The statistics for 10-fold 

cross validation inside the training set were r2 =0.880 and 55 

RMSE=0.726. 

Based upon the cross-validation results for all three 

models, Random Forest has a better predictive performance 

than the PLS and SVM models of multi-elements in steels. The 

same is true for the prediction of the external test set. Table 4 60 

shows the predicted results of multi-elements in steels with 

PLS, SVM and RFR model. The Random Forest model was 

able to predict percentage composition of multi-elements in 

steels for the test set with r2=0.95 and RMSE=0.69. As we can 

see Table 4, there is a good linear relationship between 65 

predictive value and conference value of multi-elements upon 

test samples, and the r2 of five elements in steels are above 

0.9000. Due to the concentration of Mn element is relative 

greater than of Si, Cr, Ni and Cu in steels, the linear relationship 

of Mn element for test steel samples shows the best. While, the 70 

concentration of Cu in steel is minor and less than 1.45%, 

therefore the quantitative analysis result was affected by strong 

spectral line from other elements and matrix effect. The ability 

of the Random Forest to predict percentage composition of 
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multi-elements in steels not contained within the training set, in  

Table 4 Predictive performance PLS, SVM and RFR model for 

quantitative analysis of muti-elements in steels 

Component Si Mn Cr Ni Cu 

PLS 
R

2
 0.8526 0.8673 0.8695 0.8663 0.8512 

RMSEP(wt. %) 2.7562 2.0548 1.9629 2.0192 2.2681 

SVM 
R

2
 0.8625 0.8775 0.8731 0.8792 0.8654 

RMSEP(wt. %) 2.5291 1.9562 1.7605 1.8243 2.2013 

RFR 
R

2
 0.9248 0.9764 0.9681 0.9654 0.9462 

RMSEP(wt. %) 1.8657 0.8324 0.7395 0.6892 0.9468 

 

conjunction with the 10-fold and out-of-bag cross-validation 5 

statistics, suggests that the model is useful for quantitative 

analysis of multi-elements in steels. 

Conclusion 

In this study, a novel method based on LIBS and RF was 

introduced for quantitative analysis of multi-elements in steel 10 

samples. The prediction results of both training and tested 

samples demonstrated that the developed RFR model is an 

effective approach for the multi-elements analysis of steel 

samples. 500 trees and 10172 random variables were optimized 

and selected as the best parameter for quantitative multi-15 

elements analysis of steel samples. The predict model for the 

steel sample contains their chemical composition and  

percentage content of steel samples. The spectral feature 

bands(220-400nm) as input variable combined with RFR for 

LIBS calibration method proved to be an efficient approach for 20 

multi-elements analysis in steels. The RFR proposed presented 

a good accuracy(r2=0.95 and MSE=0.69, respectively) for 

prediction of multi-elements(Si, Mn, Cr, Ni and Cu) in steels. 

Compared with predictive result using PLS and SVM, average 

predicted error rate of RF is lower than the results by PLS and 25 

SVM. Therefore, RFR will become a promising regression 

method for remote, real-time and in-situ analysis on quality 

supervision and process control in steel industry. 
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