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This work combines nanotechnology, biology and network analysis tools to understand the 

propensity of neurons to form complex networks. We utilized nano-fabrication techniques to 

realize porous silicon substrates in which the pore size is in the small nano-meter range. We used 

the described substrates to analyze the effect of a nano-geometry on the adhesion and 

organization properties of neural cells in comparison to nominally flat substrates. We observed 

that neural cells on the porous substrates create highly clustered, small world topology patterns. 

We conjecture that neurons with a similar architecture may elaborate information more 

efficiently than in random or regular grids. 
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N2A cells on porous substrates create highly clustered, small world topology patterns.  

63x50mm (300 x 300 DPI)  

 

 

Page 2 of 35Integrative Biology

In
te

gr
at

iv
e

B
io

lo
gy

A
cc

ep
te

d
M

an
us

cr
ip

t



Networks of Neuroblastoma Cells on Porous Silicon Substrates Reveal a 

Small World Topology 

 

Giovanni Marinaro
1,2

, Rosanna La Rocca
1
, Andrea Toma

1
, Marianna Barberio

3
, Laura Cancedda

1
, Enzo 

Di Fabrizio
4,5

, Paolo Decuzzi
1,5,6

 and Francesco Gentile
7,5,1,†

 

 

1
 Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy 

2
 European Synchrotron Radiation Facility, CS40220, 38043 Grenoble Cedex 9, France 

3
 Department of Physics, Università della Calabria, Via P. Bucci 33c, 87036 Rende, Italy 

4
 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia 

5
 Department of Experimental and Clinical Medicine, University of Magna Graecia, 88100 Catanzaro, Italy 

6
 Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, Texas 77030 – USA 

7
 Department of Electrical Engineering and Information Technology, University of Naples, 80125, Naples, Italy 

 

† author to whom correspondence should be addressed: gentile@unicz.it 

 

The human brain is a tightly interweaving network of neural cells where the complexity of the network is given by 

the large number of its constituents and its architecture. The topological structure of neurons in the brain translates 

into its increased computational capabilities, low energy consumption, and nondeterministic functions, which 

differentiate human behavior from artificial computational schemes. In this manuscript, we fabricated porous silicon 

chips with a small pore size ranging from 8 to 75 nm and large fractal dimensions up to Df~2.8. In culturing 

neuroblastoma N2A cells on the described substrates, we found that those cells adhere more firmly and proliferate 

on the porous surfaces compared to conventional nominally flat silicon substrates, that were used as a control. More 

importantly, we observed that N2A cells on the porous substrates create highly clustered, small world topology 

patterns. We conjecture that neurons with a similar architecture may elaborate information more efficiently than in 

random or regular grids. Moreover, we hypothesize that systems of neurons on a nano-scale geometry evolve in time 

to form networks in which the propagation of information is maximized. 

 

Key Words: porous silicon, small world networks, neural networks, nano-topography, fractal 

dimension, cell adhesion, free energy principle. 
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Introduction 

The human brain contains an extraordinary number of neuronal cells of diverse types (i.e. on the 

order of 1012
), the complexity of human behavior depends less on the specialization of individual 

nerve cells and more on the fact that a great many of these cells form complex networks
1
. 

Neurons are specialized, adherent, electrically excitable cells which have the function to process 

and transmit information through electrical and chemical signals
1, 2

. While the behavior of 

individual neurons has been extensively investigated, when a large number of these neurons 

forms 2 or 3 dimensional architectures unexpected properties may arise, which are not explicable 

in terms of simple components. This a typical example of a complex physical system, in which 

interactions among a large numbers of elements yield collective phenomena with improved 

abilities in contrast to isolated components of that system
3-5

. A fundamental understanding of 

how individual neurons interact to form (perhaps hierarchical) clusters, and how the topology of 

these networks affect the quality, density and spread of information throughout the network, may 

help to elucidate the mechanisms through which the brain marshal its millions of individual 

nerve cells to produce behavior, and how are these cells influenced by the environment
1
. This 

theme is attracting increasing interest and may be the key to understand the human brain and its 

diseases and ultimately to emulate its computational capabilities
6
. 

Neurons, like the large majority of cells, can sense and respond to a wide range of external 

signals, both chemical and physical, and, on integrating and analyzing this information, they can 

change their morphology, dynamics and organization. The adhesion, growth, migration, 

differentiation of neural cells is regulated by the response to environmental signaling, and this 

encompasses a wide range of physical cues that are generated at, or act on, the adhesive interface 

between cells and the surrounding matrix. Transmembrane adhesion receptors of the integrin 

family are responsible for the described processes
7-9

. Focal adhesions comprehend integrin-

based molecular complexes which are sensitive to, and may recognize, the biochemical 

characteristics of the substrate, as well as its rigidity and spatial organization. These are dynamic 

actin–integrin links, the formation and maturation of which are driven by feedback from spatial 

and temporal interactions between the actin cytoskeleton, and are present in the periphery of 

cells in the form of flat, elongated structures. Differently from focal adhesions, focal complexes 

are the earliest microscopically visible integrin containing structures, which appear as spots with 
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diameter ranging from ~100 nm down to ~30 nm or less
8
. Therefore, geometries with details in 

the low nanometer range may affect and guide the organization of neuronal cells on a substrate. 

Thus, nanotechnology may provide instruments to understand how the cellular sensory 

machinery interacts with extremely small cues to regulate adhesion and migration, and to explore 

strategies to obtain neuronal networks with the desired characteristics. As for some examples, 

using anisotropic gratings in the sub micrometric range, in which the spacing of the gratings was 

varied over a significant range, Ferrari et al demonstrated the nano-topographic control of 

neuronal polarity
10

; using either gratings and ordered arrays of pillars Ankam et al proved how 

the size and spacing of these features would determine the fate of human embryonic stem cells to 

neuronal or glial lineage
11

; using a variety of different substrate preparations, ranging from 

islands of carbon nanotubes to posts, ridges or pillars, to randomly rough surfaces, research 

groups worldwide demonstrated independently that topographic cues at the nano-scale may 

direct, control and, in some cases, improve neuronal adhesion
12-15

, growth
16

, differentiation
17, 18

, 

organization or self-organization into simple to complex networks
19-23

, electrical signaling
24

. 

In few cases, the adhesive behavior of neuroblastoma N2A cells was verified over porous silicon 

with a fixed
25

 or smoothly variable pore size
26

. Recalling that, according to the IUPAC 

definition
27

, surfaces with a pore size smaller than 2 nm, comprised between 2 and 50 nm, and 

larger than 50 nm, are categorized as micro-porous (MiP), meso-porous (MeP) and macro-

porous (MaP) silicon, respectively, results presented in
25, 26

 indicate that nerve cells are sensitive 

to nano-scale surface topography with feature sizes smaller than 20 nm, that is, in the MeP 

regime. Porous silicon is promising smart material obtained from bulk silicon through well 

assessed electrochemical procedures. The size and shape and distribution of the holes in the 

porous matrix can be finely adjusted on changing few parameters of the fabrication process, 

including the etching time, current intensity, active etchant concentration, temperature of the 

process
25, 28

. The growing interest in porous silicon (PSi) for several biomedical applications is 

justified by its distinctive attributes that include, but are not limited to, biodegradability under 

physiological conditions
27

, biocompatibility
29, 30

, hydrophobicity
28

, photoluminescence
31

 

properties. For all this, porous silicon has been utilized for fabricating smart devices for a variety 

of applications including the controlled release of drugs
32

, for the separation from serum of the 

low molecular weight content for spectroscopic and spectrometric analysis
33, 34

, for orthopedic 

implants. 
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In this manuscript, using electrochemical methods described in Fig.1 and in the Materials and 

Methods, we realized porous silicon chips with a small pore size ranging from 8 to 75 nm (that 

is, in the MeP and MaP regimes) and large fractal dimensions up to Df~2.8. Moreover, using the 

described substrates, we assessed the ability of porous silicon to boost the assembly of 

neuroblastoma N2A cells into highly clustered networks in comparison to unetched silicon, that 

was used as a control. Results indicate that porous silicon substrates with a large fractal 

dimension promote the formation of small world topology patterns of N2A cells. It is 

hypothesized that neurons in a network with a similar topology may transmit information more 

efficiently than those left free to evolve over simple unconstrained surfaces. 

 

Results 

Fabrication and characterization of the porous silicon substrates. Two different topologies 

of porous silicon were obtained, namely (i) MaP silicon with an average pore size S of S~75 nm, 

and (ii) MeP silicon. In the case of MeP silicon, the pore dimension was finely adjusted to have 

an average pore size in the low MeP regime, that is S~8 nm; and an average pore size in the 

intermediate MeP regime, that is S~18 nm. In the following, we shall indicate with small pore 

MeP (SP MeP) silicon the first configuration, and with large pore MeP (LP MeP) silicon the 

second configuration. 

Several SEM micrographs of the MaP substrates were taken over different samples to assess 

uniformity and reproducibility. Fig.2a-b,c reproduce SEM micrographs of a MaP surface taken 

at different magnifications ranging from 10 000× (Fig.2a) to 100 000× (Fig.2d). The 

morphological details of the porous surface are more clearly revealed in Fig.2e which represents 

an ultra-high magnification image of the inset in Fig.2d. The described ultra-high resolution 

SEM images have a sufficient level of detail to allow a precise evaluation of the pore size 

distribution in the macro-porous regime, that is, for pores larger than 50 nm, even without the 

need of adsorption/desorption isotherms. From these and other similar images, using image 

analysis algorithms described in previous works
25

, we derived the pore size distribution as 

reported in Fig.2i. The pores size S varies around the average value S~75 nm with a small 

standard deviation ~5 nm, which confirms the uniformity of the pores over the substrate with 
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few pores below the 50 nm limit. In addition to this, the SEM image in Fig.2b reveals the 

thickness t of the porous matrix in the silicon substrate that, for particular subset of parameters 

used here, is about t=250 nm (that is, from 3 to 4 times the average pore size). Additional SEM 

images of the pore substrates are conveniently included in a separate Supporting Information 

file #1 to further verify the pore size distribution. The topology of the macro-porous silicon 

matrix was further verified through AFM imaging, as in Fig.2f,g. From this, using algorithms 

thoroughly described in 
35

 a power spectrum was derived (Fig.2h) and used to estimate the 

effective fractal dimensionality Df of the substrate that reads Df~2.7, which is very close to the 

value Df~2.8 found for a meso-porous architecture as in 
25, 28

. The fractal dimension is an index 

for characterizing fractal patterns by quantifying their complexity as a ratio of the change in 

detail to the change in scale, therefore, it can be used to describe intimately the topography of a 

variety of systems at the smaller scales. In this case, a high degree of fractality, compared to the 

Df2.2 of an unmodified flat silicon substrate
25

 and to the value Df=2 of an ideal Euclidian 

surface, indicates that the surface reveals a hierarchical structure which bridges the micro and 

nano scales, and this may be responsible
28

 for the artificial, increased hydrophobicity of the 

sample exhibiting a contact angle of ~120° (Fig. 1.l) and this status is generally preserved for a 

few days after fabrication. Differently, the Si substrate is hydrophilic with a contact angle =60°. 

For our specific purposes, the PSi substrates were oxidized post fabrication thus providing a 

hydrophilic surface with contact angles of 35° (Fig. 1.m). 

The MeP silicon substrates were characterized similarly. The small pore configuration is 

investigated in Fig.3a,b, where the SEM micrograph in Fig.3a and the AFM profile in Fig.3b do 

both confirm that the average pore size S is S~8 nm with a standard deviation ~4 nm. 

Differently, the large pore MeP silicon exhibits a larger S~18 nm pore size (~5 nm) and this is 

confirmed by the SEM and AFM images reported in Fig.3d-e. The pore size distributions for the 

small and large pore size silicon patterns are reported in Fig.3g for direct comparison. The AFM 

profiles of the substrates were further processed to determine the corresponding power spectrum 

density functions (Fig.3c,f) using the methods described above and in the Materials and 

Methods. From these, the fractal dimensions of the surfaces were determined being Df~2.8 for 

the SP MeP architecture, and Df~2.5 for the LP MeP surface. Contact angle measurements of the 

samples upon heating show that the substrates are rendered hydrophilic with a contact angle of 
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31° (Fig.3.m) that is similar to that derived for the MaP architecture. And thus the surface 

energy is comparable for all the porous substrates that is to say that differences in cell adhesion 

and networking may be ascribed to the geometry of the substrates solely. 

Cell Adhesion and Proliferation on MaP Silicon Substrates. The described porous substrates 

were used for verifying the ability of nano-sized geometries to guide cell growth and adhesion in 

comparison to nominal flat surfaces (that are, the unmodified silicon substrates). Notice that a 

similar analysis is here conducted on the MaP silicon substrates solely to confirm and expand the 

adhesion behavior of N2A cells on MeP surfaces already obtained from the same authors of the 

present paper and reported in 
25

. 

Neuroblastoma cells were incubated over fragments of silicon substrates (~15 × 15 mm) and at 

different time points, namely 24, 36, 48, and 60 h, the silicon substrates were first washed to 

remove loosely adhering and death cells; then, the remaining cells were fixed and labeled with 

DAPI. The cells adhering within a region of interest (ROI) of ∼1 × 1 mm
2
 were counted using 

fluorescent microscopy following the procedure described in the Materials and Methods. For 

each substrate, more than 40 ROIs were considered to provide a meaningful sample size for 

statistical analysis. The number of adhering cells per unit surface is shown in Fig.4a as a 

function of time and in Fig.4b as a function of sample preparation. It may be observed that the 

number of cells increases with time for the porous substrate and is practically constant for the flat 

silicon substrate, used as a control. Moreover, the number of adhering cells is significantly larger 

on the porous substrate for all the considered time points. Taken together, the diagrams in Figure 

4 demonstrate that the adhesion and growth of N2A cells is accelerated on a porous substrate in 

opposition to the development of N2A cells in standard conditions, where standard conditions 

are herein embodied by a nominal flat surface. This experimental evidence supports the notion 

that cells preferentially adhere and grow over substrates with a nanometer architecture rather 

than on flat Si substrates, possibly because those samples have a large fractal dimension well in 

line with the results obtained in precedent works
25, 36

. 

Topological properties of Networks of N2A on the PSi substrates. Fig.5a is a confocal image 

of the nuclei of neuroblastoma cells (which are stained with DAPI and thus appear in blue) over 

a flat silicon substrate taken 36 h after incubation. Similarly, Fig.5d represents a confocal image 

of an ensemble of N2A cells cultured over a MaP silicon substrate and acquired at the same time 
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point t=36 h. In the following, we shall call nodes the centers or nuclei of the cells (these are, the 

components of the circuit), which interact through edges that connect pairs of those nodes (these 

are, the interactions of the circuit). Also, sometimes we may use interchangeably the terms 

network or graph to indicate a set of nodes and corresponding edges in a plane. The images are 

disposed one above the other in the panel of Figure 5 for direct comparison. From this, it may be 

deduced that the cells over a non-corrugated Si substrate are distributed apparently randomly in 

the plane. Differently, neuroblastoma cells over a MaP Si substrate have the propensity to 

organize to form few, highly clustered groups of individual cells. The corresponding graphs are 

reported as Figures 5 b (flat Si substrate) and e (MaP Si substrate). In the first graph (flat Si 

substrate), the edges are distributed uniformly in the ROI, in opposition to this, in the second 

graph (MaP Si substrate) one can notice the emergency of connections either (i) within the 

groups (intra-group interactions) and (ii) between the groups (inter-group interactions). This is 

further evidenced in the diagrams reported in Figure 5 c and f, in which the frequency 

distribution of nodal distances in a network is represented for the flat Si (c) and MaP Si (f) 

substrates. In the first diagram, the distribution can be fitted by a Gaussian function, where the 

average value of the function is the average distance between the nodes (that is here expressed in 

pixels). In the second diagram, the nodal distances distribution resembles a bimodal function, in 

which the first peak corresponds to the average distance between the nodes in a group (average 

intra-nodal distance), and the second peak corresponds to the average distance between groups of 

nodes (average inter-group distance). 

The Guassian one peaked function that describes the nodal distances in the flat silicon instance, 

may be a distribution that minimizes the free energy content of N2A cells on flat silicon, in this 

case the individual cell configuration dominates over the organization of cells in clusters and 

thus the single N2A cell is the stable element. Differently, in the nano-scale porous case, the 

system is maintained in a state of lowest energy by a bimodal distribution, whereby the stable 

element in the system is a group or cluster of cells that is therefore the stable element. We may 

review these findings on saying that in the first case (that is, the flat silicon substrate) the 

elementary block of the system is the cell, in the second case (that is, the nano structured porous 

surface) the elementary block is the cluster of cells. 
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The observation that cells on a porous surface create clusters of cells in opposition to flat silicon 

in which they are instead uniformly distributed, here reported for the MaP silicon configuration, 

is a general result that was likewise recorded for the SP and LP MeP architectures. In the 

Supporting Information file #2, we include similar examples of N2A cells wiring diagrams 

derived on SP and LP MeP silicon substrates, and these reveal the same behavior described for 

the MaP structure. 

Even if we seeded the same amount of cells on both surfaces at the initial time (see the Materials 

and Methods), maybe because flat silicon presents less anchorage points with respect to modified 

porous silicon, cell density on flat silicon after 24 hours is largely reduced. To surpass this 

limitation, we performed additional experiments, herein reported, in which the initial cell density 

on flat silicon is artificially augmented from 3 to 5 times the initial value (from ~105 cells per 

substrate up to ~5x105 
cells per substrate). In doing so, we could compare the behavior of N2A 

cells on different substrates (that are, flat and porous) at the same effective cell density (that is 

about 200 to 400 cells/mm2
, see also Figure 4 in the main text). The corresponding N2A cells 

wiring diagrams, and the distributions of the number of edges of these diagrams (that are single 

peaked) are reported in the Supporting Information Figures S3.1,2 and confirm the behavior of 

neural cell on the surface is not influenced by cell density. The propensity of cells to form 

complex patterns is thus regulated by the sole substrate topography, that is a notable result.  

The described diagrams represent examples extracted from a significantly larger set of data. 

These suggest that a porous architecture may boost the spontaneous organization of 

neuroblastoma cells into clustered networks. This hypothesis was verified through an analysis of 

the data on a statistical basis. Confocal images of the cells over the substrates were analyzed per 

each substrate preparation and for all the considered time points using the methods described in 

the Materials and Methods. The clustering coefficient Cc and the characteristic path length Cpl, 

derived as a function of time for the silicon and porous substrate, are shown in Fig.6a and b. 

These are two parameters that are widely used do describe the topological properties of a graph. 

The clustering coefficient describes the propensity of the nodes of a graph to form few groups in 

which the elements of the groups are inter-connected by the an elevated number of edges
37-39

. 

The clustering coefficient ranges between 0 and 1 and is here averaged over all nodes of a graph 

to yield a global clustering parameter. The characteristic path length is the shortest path between 
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a generic couple of nodes averaged over all pairs of nodes in a graph
39

. It is generally greater 

than 1 and indicates the number of steps that on average separates two nodes randomly taken in 

the network. The reader may find in the Materials and Methods and in the Supporting 

Information file #4 an operational definition of these two parameters. 

The bar chart in Fig.6a indicates that the cells incubated on the porous substrates exhibit a 

clustering coefficient which varies over the interval ~0.3 – ~0.7, differently, cells incubated on 

the flat silicon surface exhibit a lower clustering coefficient that does not exceed 0.05, the 

observed difference between flat and porous silicon substrates is statistically significant (p<0.05) 

for all the time points considered in the analysis. The data presented in the diagram indicate that 

cells deposited on the porous substrates tend to cluster together differently from the cells on a 

simple flat silicon surface. 

Similarly, the diagram in Fig.6b shows that cells on porous silicon substrates have a low Cpl 

ranging from 2 to 4, while neuroblastoma cells on flat silicon reveal higher values of Cpl that 

may reach and surpass 10. And thus, networks of N2A cells on a substrate modified at the nano-

scale (that are, the porous silicon substrates) have preferential routes of communication between 

nodes of the network (which are closer) in comparison to networks of N2A cells on a regular 

smooth surface (that is, the flat Si substrate), in which instead nodes are farther. Similarly to the 

case of Cc, the difference between the Cpl coefficients derived for the porous and flat Si 

substrates is statistically significant (p<0.05) for all the considered time frames in the analysis. 

The complete sets of wiring diagrams of N2A cells on the nano structured porous surfaces and 

flat silicon for all the times of the analysis are reported in the Supporting Information file #5 

and #6, respectively. 

The spatial invariance of the un-modified flat silicon with respect to porous silicon may explain 

the observed propensity of neuroblasoma cells to form organized structures on a nano-scale 

surface (that are, the porous silicon substrates) in opposition to a nominally flat surface (that is, 

the un-modified silicon substrate). On a porous surface with pores in the nanometer range, 

neuronal like cells with their filipodia are stimulated to sense and explore their nearest 

surroundings and migrate until they may find, interact and connect to other cells to form 

hierarchical clusters of those cells. Differently, on flat, low fractal dimension surfaces the 

anchorage points are strongly reduced, cells with their filipodia can sense no differences in the 
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external environment and a similar absence of information variation on small scales may prevent 

their migration. 

Possibly more important than this, in the present study we demonstrate that, depending on the 

substrate preparation, the nuclei of the cells are displaced to occupy precise positions in the 

plane. That is, the cells reproduce specific patterns. The reason why those cells form some 

patterns and disregard other geometries is, at the present, still matter of debate. We may assume 

that the main drivers for neural cells organization in the plane are the following: (i) energy 

optimization, whereby (neural) cells create networks which minimize energy consumption; (ii) 

information propagation, and thus cells on a substrate form networks through which the 

information propagation is maximized; (iii) neural morphogenesis, the positions of the cells on 

the substrate is dictated by the morphology of neurons and synaptic connections on that 

substrate. And thus we may have 3 different criteria which regulate cells networking, and namely 

the energy criterion, the information criterion, the biology (or evolution) criterion. It is 

reasonable to speculate that the above criteria are not independent, and that the cells fate is 

dictated by a (perhaps non-linear) balance of energy, information, biology. Provided that the 

described mechanisms should be investigated independently with experiments, if proved correct 

this hypothesis would reveal itself an unprecedented tool for neural analysis, in that it would 

state the equivalence between energy, information theory and biology. And thus, making 

experiments or studies in one of those fields, one would obtain information in the remaining. An 

example of this is represented by the observation that, in determining the positions of the nuclei 

in the plane (that is maybe governed by an information principle, and this shall be largely 

discussed in the following of the paper), one could predict the actual synaptic connections length 

upon cell differentiation. 

 

Discussion 

In the present study we used N2A neuroblastoma cells that is a cell line derived from a brain 

tumor, in contrast to primary neuronal cultures. This choice is justified by convenience, ease of 

use, availability. The statistically significant number of experiments allowed to extend the 

generality of our results. It is known
40

 that neuroblastoma cell lines express neuronal and 

neuroendocrine properties. One of the hallmarks of neuroblastoma cells in culture is their 
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spontaneous or induced elaboration of neuritic processes. Moreover, those cell lines possess 

diverse neuronal properties, including: the synthesis of neurotransmitter biosynthetic enzymes; 

expression of neurofilaments; opioid, muscarinic and neurotrophin receptors expression; dense 

core granules presumed sites of catecholamine storage; immunoreactivity to neuron specific 

enolase
40

. In addition to this, the ability of neuroblastoma cell lines to differentiate in response to 

a variety of biologic response modifiers has led to the use of neuroblastoma cell lines as model 

systems to study neuronal and neuroendocrine cell development
40

. Differentiation includes 

elaboration of extensive neuritic processes that are ultrastructurally and electrophysiologically 

similar to normal neurons. For all this, a N2A neuroblastoma cell line may represent a simpler 

model of a primary neuronal cells culture, and still not that coarse to miss to capture or reflect 

some of the most salient features and biologically relevant aspects of primary neurons. 

Taken together, the diagrams in Figure 6 indicate that N2A cells on a surface modified at the 

nano-scale, that are the porous silicon substrates, have an increased ability to create patterns in 

which the nodes of the patterns form highly clustered groups (large Cc) and the elements of the 

groups are connected by a finite, and generally low, number of steps (small Cpl), in contrast to a 

nominally flat surface. This is even more evident in the scatter plots in Figures 7 a to d, where 

the Cc and Cpl values of N2A cells on the porous and flat silicon surfaces are reported in an 

individual diagram at diverse time frames and this permits to visualize at a glance the differences 

between the described substrates. In a Cc-Cpl plane, the cells on the porous substrates and those 

on a flat silicon substrate are described by sets of points that are separated and occupy different 

regions of the plane, and the described difference is even more pronounced with time (you may 

interpret this like: the systems evolve towards a position of equilibrium with time, we shall 

discuss later what the physical meaning of such a status may be). Cells on the porous substrates 

are confined in the upper left region of the diagram, while cells on a flat silicon substrate are 

confined in the lower right side of the diagram (minor differences in the position between groups 

of cells on the porous surfaces can be ascribed to the different fractal structure of MaP, SP and 

LP MeP silicon, that is reflected by their fractal coefficients that are, respectively, Df~2.7, 

Df~2.8, Df~2.5, and that are generally larger than that revealed by flat silicon, that is Df~2.3). 

This is an interesting result per se, in that shows that the topography of a substrate affects the 

network anatomy of an ensemble of N2A cells that interact with that substrate. Nevertheless, it 
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deserves to be debated even further. Consider the diagram in Fig.7e. This is a conceptual scheme 

built after the fundamental works of Watts and Strogatz
5, 41, 42

, Amaral and collegues
43

 and 

references therein. It tells us that it is possible to categorize classes of networks on the basis of 

the two clustering coefficient and characteristic path length parameters solely. Regular ordered 

networks have elevated clustering coefficients and characteristic path lengths, on the contrary, 

random graphs possess low clustering and short paths. More interestingly, there exists a third 

class of complex graphs that lies between the extremes of order and randomness
3, 5

: small world 

networks exhibit short paths and high clustering, similar networks are named small world in 

analogy with the concept of small world phenomenon developed in social psychology
44

. N2A 

cells on porous substrate meet these requirements, therefore they belong to the class of small 

world networks. (Of course, the definition of a small world network is a little bit more rigorous 

than this discursive thesis. With Watts and Strogatz
42

, a graph  with a specific Cc and Cpl 

shares the properties of a small world network if CcCr and Cpl~Cplr, where Ccr and Cplr are the 

clustering coefficient and characteristic path length of a random network with the same number 

of nodes and edges of . In a separate Supporting Information file #5, we provide evidence of 

this. The Cc and Cpl values of a randomly generated set of graphs are reported for comparison 

with the networks of N2A cells on the porous substrates. This proves mathematically the initial 

hypothesis that cells on a porous surface reveal a small world topology. In the Supporting 

Information file #6, for comparison, we include the networks of N2A cells on flat silicon for all 

the times of the analysis). 

Small world networks have recently attracted much attention and examples of small world 

networks have been studied or documented in a variety of fields ranging from cell biology and 

neuroscience
45-47

, to theoretical virology
48

, to dynamical systems
49

, to the study of connections in 

the world wide web and social networks
44, 50

. This fame is no surprise for two reasons: (i) the 

study of networks pervades all of science and (ii) the structure influences function. The intuition 

of Watts and Strogatz was that dynamical systems with short paths and high clustering may 

feature enhanced signal propagation speed and computational capabilities compared to regular 

grids of the same size. In small world networks, the spread of information may be extremely 

efficient
44

 and this could impact significantly the understanding, design or realization of 

artificial, biological, or hybrid neural networks, in which the quality, quantity and density of 
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information throughout those networks is largely increased in comparison to conventional 

lattices. 

The main results of this research are that the geometry of substrate (with a nanometer porous 

architecture) influences the networking properties of N2A cells in a plane and, specifically, it 

shapes cell graphs to have improved small world characteristics. Notice though that the present 

study is based on a preliminary topological analysis: it indicates where and how the cells are 

positioned in a plane, and it suggests that a similar arrangement may positively influence the 

communication among neurons, yet it gives limited information on the effective signaling 

coupling of those neurons. 

The effective readout of neural signaling in a network, and to which extent this signaling is 

affected by the architecture of the substrate, remains a fundamental goal, to afford which more 

sophisticated approaches are required, and are therefore left for future work. These approaches 

may include, but are not restricted to, high-speed functional multineuron calcium imaging 

(fMCI), large-scale synapse mapping, and multiple whole-cell and dynamic patchclamp 

recording techniques
51

. Moreover, in analyzing how signals propagate in a lattice of (perhaps 

randomly distributed) neurons, extra mathematical models are required and should be refined, 

which are, pairwise spike correlations for determining the surprise index in a network, the study 

and improvement of information theory mathematical tools, and the correlation between entropy 

and information in neural networks
52, 53

. Indeed, information theory quantifies how much 

information a neural response carries about the stimulus. This can be compared to the 

information transferred in particular models of the stimulus–response function and to maximum 

possible information transfer. 

 

Consider now the work of the physics and neuro-scientist Karl Friston. In 
54

 he proposes a free-

energy principle whereby biological systems (differently from other purely deterministic 

systems), and ultimately the brain apparatus, tend to maintain a state of high order: they tend to 

minimize the entropy content of the system sometimes violating the second law of 

thermodynamics and the fluctuation theorem
55

. Moreover, in the Supplementary Information of 

the cited Review, he demonstrates the equivalence between the free energy principle and the 

infomax principle. This maximum information preservation principle, introduced by Linsker
56

, 
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states that the signal transformation that is to be realized at each stage of a system is one that 

maximizes the information (the Shannon information rate) that the output signal values convey 

about the input signals values, subject to certain constraints and in the presence of processing 

noise. In the framework of the information theory applied to neuroscience, we may therefore 

tempt a very simple interpretation of the presented results. Nanometer cues on a surface (and 

these may be a nano-porous architecture or other), that are incidentally in the same order of 

magnitude of the mechanosensing machinery of neural cells, elicit the self-organization of those 

cells in a fashion that the propagation of information throughout the network is maximized. 

Also notice that the porous substrates used in the present study exhibit scale dependent 

relationships and a large fractal dimensions ranging from Df~2.5 for the LP MeP architecture, to 

Df~2.7 for MaP silicon, to Df~2.8 for the SP MeP structure, in contrast to Df~2.3 derived for flat 

silicon. Interestingly, the human cerebral cortex has a similar value of fractal dimensions Df~2.8 

and this reflects its complexity and self-similar nature
57

. On these basis, we may therefore better 

expand or argument the preceding hypothesis: on interacting with a substrate, N2A cells (and 

perhaps neurons) in a network form small world patterns (that is equivalent to say, they assume a 

conformation that maximizes the information rate throughout the network) if and only if the 

geometry of the substrate has a sufficiently high degree of complexity, i.e., a large fractal 

dimension (that is the value of complexity towards which brain has evolved
57

). This would 

explain why, differently from porous substrates, smooth silicon chips do not stimulate N2A cells 

to build efficient networks. 

If proved correct, this understanding could help to elucidate the mechanism that regulate the 

ways the human brain works, moreover, it may be used to design advanced circuits with the 

ability to break otherwise computationally intractable problems. 

 

Conclusions 

We fabricated porous silicon chips with a small pore size ranging from 8 to 75 nm and large 

fractal dimensions up to Df~2.8. In seeding neuroblastoma cells over similar substrates, we found 

that adhesion of those cells is enhanced in contrast to nominally flat silicon substrates. More 

importantly, we found that those cells on porous surfaces display high clustering and short paths, 
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that typically characterize small world networks. Based on these data, it can speculated that 

neurons with a similar topology may transmit and process information more efficiently than in 

conventional architectures. Moreover, we hypothesize that nano-sized geometries may elicit the 

spontaneous evolution of a system of nerve cells towards networks in which the spread of 

information throughout those networks is maximized. 

 

Materials and Methods 

Fabrication of the porous substrates. Porous silicon (PSi), is a form of Si containing a layer of 

nano sized pores artificially introduced in its microstructure, thus revealing an increased surface 

to volume ratio. PSi exhibits promising properties including highly controllable and reproducible 

pore size and distribution; bioreactivity; biocompatibility; biodegradability in physiological 

environment; hydrophobicity. Here, three different porous substrates were prepared, and namely 

(i) macro porous (MaP) silicon substrates with an average pore size larger than 50 nm, (ii) small 

pore meso porous (SP MeP) silicon substrates with an average pore size of 8 nm and and (iii) 

large pore meso porous (LP MeP) silicon substrates with an average pore size of 18 nm. 

Porous silicon was prepared via a porosification process as described, for instance, in
27

, and here 

recapitulated for sake of clarity. Porous silicon substrates were generated from a bulk boron-

doped p-type (100) silicon wafer via anodization. The original silicon wafer was placed in a 

teflon electrolytic cell where a platinum cathode and the silicon wafer (anode) are immersed in a 

hydrogen fluoride (HF) solution (Fig.1). Substrates with various pore sizes were obtained by 

tailoring the etching conditions, that are the intensity of etching current, the concentration of HF 

solution, and the length of process. 

The wafers were cleaned with acetone and ethanol to remove possible contaminant and then 

etched with a 4% wet HF (by Carlo Erba) solution. Therefore, they were rinsed with water and 

dried with N2. MaP silicon substrates were obtained by Si anodization, using an electrolyte 

mixture of HF, D.I. water and DMF (by Sigma-Aldrich) (9:1:115, v/v/v). A constant current 

density of 4 mA/cm2
 was applied for 4 min at 25 °C. SP MeP substrates were obtained by Si 

anodization using an electrolyte mixture of HF, D.I. water, and ethanol (by Sigma-Aldrich) (1:1:2, 

v/v/v). A constant current density of 20 mA/cm2
 for 5 min at 25 °C was applied. LP MeP 
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substrates were obtained using a constant current density of 4 mA/cm2
 for 5 min at 25 °C. In this 

case, an electrolyte mixture of HF, D.I. water, and methanol (by Sigma-Aldrich) (5:3:2, v/v/v) 

was used. In doing so, thin porous layers are obtained over the original flat substrate with a 

thickness of a few tens of microns. The samples were finally rinsed in D.I. water, ethanol, and 

pentane with 4 minutes steps. The PSi substrate were finally oxidized in oven at 200 °C for 2 

hours. 

Atomic Force Microscopy characterization of the samples. Atomic force microscopy (Veeco 

MultiMode with NanoScope V controller) was used for the measurement and characterization of 

the MaP structures. All the measurements were performed in a dry environment in intermittent 

contact mode over a sampling area of 500×500 nm
2
. Room temperature was hold fixed for all 

the acquisitions. Ultra-sharp Si probes (ACLA-SS, AppNano) with a nominal tip radius less than 

5 nm were used for achieve high resolution. Multiple measurements were done in different scan 

directions to avoid artefacts. At least four images in height mode (trace and retrace) were 

recorded per sample. The images had a resolution of 1024×1024 points and were acquired at a 

scanning rate of 1 Hz. The obtained images were processed with the WSxM software, using 

either flattening or plane fit according to the relief characteristics, with the minimal polynomial 

order needed. The characteristic average surface roughness (Ra) was thus deconvoluted for each 

substrate. Using conventional mathematical procedures implemented in Mathematica, a power 

spectrum (PS) was further derived for each image which, in turn, was used to derive the fractal 

dimension of the substrates, as explained in the following. 

SEM characterization of the samples. SEM images of the porous substrates were captured 

using a Dual Beam (SEM-FIB) - FEI Nova 600 NanoLab system. During acquisition, the beam 

energy and the corresponding electron current were fixed to 15 keV and 0.14 nA, respectively. 

The nano-porous morphology was imaged by employing the mode 2 configuration, whereby 

images can be magnified over 2500×103
 magnifications and ultra-high resolution can be 

achieved. 

Surface contact angle measurement. Surface hydrophilicity of the samples was determined by 

measuring the water contact angle with one drop of about 5 l of D.I. water using an automatic 

contact angle meter (KSV CAM 101, KSV Instruments LTD, Helsinki, Finland) at room 
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temperature. Four measurements were performed on each substrate to evaluate the average 

contact angle , at 5 s. 

Fourier analysis and fractal dimension of the substrates. The AFM profiles were processed to 

obtain the corresponding Power Spectrum density functions C(q) of the samples
28

: 

𝐶2𝐷(𝑞) =
1

(2𝜋)2
∫〈𝑧(𝜒)𝑧(𝑜)𝑒−𝑖𝑞𝜒𝑑𝜒2〉 (1) 

where (x, y) is the planar coordinate; z() is the surface profile measured from the average 

surface plane, defined as z=0; and q is the wave number, related to the characteristic 

wavelength  as q=2/. The symbol … stands for ensemble averaging over a collection of 

different surfaces with identical statistical properties. Since Eq.(1) is bidimensional, it is 

impractical for comparison purposes, for this, a more convenient 1D power spectrum density, 

C(q), is further derived using the FACA (Fractal Analysis by Circular Averaging) approach, 

being 

𝐶(𝑞) =
1

Γ
∮ 𝐶2𝐷(𝑞𝑥, 𝑞𝑦)𝑑𝛾

Γ

=
1

2𝜋
∫ 𝐶2𝐷(𝑞 𝑐𝑜𝑠𝜓, 𝑞 𝑠𝑖𝑛𝜓)𝑑𝜓

2𝜋

0

 (2) 

In (2), q and  are polar variables defined as q=(qx+qy)1/2 arctanqy/qx, and thus C(q) is the 

average C2D(q) taken over every circumference  of radius q and origin (qx=0, qy=0). In the case 

of self-affine surfaces, for which a rescale in the planar coordinates xbx and yby is 

accompanied by a rescaling in the normal direction z (b) bHz(), C(q) can be written as 

𝐶(𝑞) =
𝐻

2𝜋
(

ℎ𝑜

𝑞𝑜
)

2

(
𝑞

𝑞𝑜
)

−2(𝐻+1)

, q>qo (3) 

where qo is the lower cut-off wavenumber corresponding to an upper cut-off wavelength 

o=2/qo; and ho is related to the rms roughness amplitude as ho=21/2 
Rrms. A self-affine fractal 

surface can be consequently univocally identified by specifying the surface roughness (Rrms), 

the cut-off wavenumber qo and the coefficient H, known as the Hurst coefficient. In a loglog 

plot, the power spectrum density appears as a line with a slope  for q>qo. The slope  is related 

to the Hurst parameters as =2(H+1). The fractal dimension D of the surface can be derived from 

 or H as D=(8-)/2 or, equivalently, D=3-H. The fractal dimension D for a surface ranges from 

2, representing a perfectly flat surface (Euclidean dimension of a surface), to 3, representing an 
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extremely rough surface. For D=2.5, the so-called Brownian surfaces are identified which have 

totally random and uncorrelated profiles. 

Culturing neuroblastoma cells on the substrates. Mouse neuroblastoma (Neuro-2a, N2A) cell 

line was obtained from the American Type Culture Collection (ATCC). N2A cells were cultured 

in Dulbecco’s Modified Eagle’s Medium (DMEM) (Invitrogen, Carlsbad, California), 

supplemented with 10% fetal bovine serum (FBS, Invitrogen) and 5% penicillin G (100 U/ml) and 

streptomycin sulfate (100 mg/ml) (Invitrogen). The cells were grown at 37 °C in a humidified 5% 

CO2 atmosphere. Sterilized porous Si wafer specimens (15×15 mm approximately) were 

individually placed into single wells of a 6-well plate (Corning Incorporated). Thereafter, the 

wafer specimens were washed with phosphate-buffered saline solution (PBS, Invitrogen). The 

cells were finally seeded in complete cell culture medium and incubated for 24, 36, 48 and 60 h 

at 37 °C in a humidified 5% CO2/air atmosphere. After incubation, cell culture medium was 

removed and the cells were washed twice in PBS and fixed with 4% PFA (paraformaldehyde) and 

were incubated for 30 min at room temperature (RT). The cells were washed twice PBS and 

permeabilized with 0.05% triton (Invitrogen) for 5 minutes at RT. All cells fixed and 

permeabilized were stained with 100 l DAPI (40, 6-Diamidino-2-phenylindole, Sigma Aldrich) 

solution for 10 minutes at 4 °C in the dark. Finally, the DAPI solution was removed and each 

sample was washed with PBS. The total number of cells ntot initially deposited in each well for 

incubation was approximately 5~105
. The cells were sub-confluent throughout the duration of the 

experiment. 

Imaging adhering cells on the substrates. An inverted Leica TCS-SP2® laser scanning 

confocal microscopy system was used to image cells adhering on the substrates. All 

measurements were performed using a ArUv laser. The pinhole (80 m, or equivalently 1.5 

Airy units) and laser power (80% power) were maintained throughout each experiment. Confocal 

images of blue (DAPI) fluorescence were collected using a 405 nm excitation line and a 10× dry 

objective, so that cells with a characteristic size of a few microns could be clearly observed. For 

each substrate, a large number of images was taken for statistical analysis. Each image was 

acquired over a region of interest of 882×882 m
2
 (pixel size 1.72 m) and averaged over 4 

lines and 10 frames to improve quality and reduce noise. The images were digitalized into 
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512×512 pixel and stored on a computer. The fluorescent confocal images of the cells were 

exported into MatLAB® and Mathematica® for processing. 

Network analysis of N2A cells. Confocal images of the cells cultured on the substrates were 

processed to extract the (i) average cluster coefficient and (ii) characteristic path length as a 

function of time, the combination of these parameters gives an indication of the connectivity 

properties of the cells in a network. 

The clustering coefficient (Cc) is a parameter that, in graph theory, gives a measure of the 

propensity of the nodes of a graph to bundle or cluster together. And thus the extent of gathering 

of a group of cells may be lumped in the sole global metric parameter Cc: Cc spans from 0 to 1, at 

the limit of cc going to 0, the cells are poorly or not connected, when cc tends to 1, cells group to 

form a single aggregate. Images were pre-processed using a Gaussian filter to reduce noise and 

improve image quality. Cell graphs were therefore generated reproducing the spatial distribution 

of cells as a graph (mesh) of nodes (cells). In this framework, each nucleus (originally stained in 

blue DAPI) is a node of the network. The existence, occurrence and position of the nodes in this 

network, and how from these the clustering coefficient may be derived, is described in details 

in
38

, and is recapitulated below. In the first place, k-means segmentation algorithms are applied, 

whereby the original image is partitioned into =k different segments that gradually transition 

from bright (=1) to dark (=k). The information content of the image is thus associated to a 

gray level =t, and all the segments brighter than a certain threshold t, are disregarded as 

background. The remaining are instead maintained and their value is shifted to 1, and thus the 

class information for each pixel is presented with black pixels (binary 1) corresponding to the cell 

class, and with white pixels (binary 0) corresponding to the background class. k and t depend 

upon the particular problem at study and, for the present configuration, they were set as k=13 and 

t=7. The resulting image (g) is therefore down sampled, that is, if f is the average operator, f is 

shifted over g by steps of size d (and notice that d2
 is the expected area of a nucleus in pixels); in 

mathematical terms we say that we perform a 2D convolution of f and g, over a regular square 

grid of size d. The outcome of this is another image where the pixel intensity, ranging from 0 to 

1, indicates the probability for a pixel of being a cell. Upon application of another threshold, 

whereby a grid entry with probability greater than that of the threshold is considered to be a node 

of the graph, the spatial information of the cells is ultimately translated to their locations in the bi 
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dimensional grid. The nodes (that are, the cells) are thus organized in the plane as to form a 

graph (that is, a mesh). The properties of the graph, and particularly the clustering coefficient, 

may be derived solely if the connections amid the nodes are determined. To do this, the Waxman 

model is used, whereby the probability of being a link between two nodes exponentially 

decreases with the Euclidean distance between those nodes
38

. And thus at each pair of nodes a 

probability function can be associated being 

𝑝(𝑢, 𝑣) = 𝛼𝑒−𝑑(𝑢,𝑣) 𝛽𝐿⁄  (4) 

where d is the Euclidean distance between nodes u and v, and L is the largest possible Euclidean 

distance between two nodes of the grid. In Eq.(4),  and  are the Waxman model parameters 

and, on tuning these, the graph may be more or less dense.  and  should be chosen between 0 

and 1, in a fashion that the network is sufficiently dense to reflect the topology of the system 

without loss of information. For the present configuration, these parameters were set as =1 and 

=0.05. The probability p varies between 0 for a pair of nodes with an ideally infinite distance, 

and 1 for a pair of nodes with an ideally zero distance. On the basis of p, the graph can be 

conveniently reduced, still retaining the information necessary for deriving the clustering 

coefficient 

𝐶 =
𝐸𝑖

𝑛(𝑛 − 1) 2⁄
 (5) 

where n is number of neighbors of a generic node i, Ei is the number of existing connections 

between those, being n(n-1)/2 the maximum number of connections, or combinations, that can 

exists among n nodes. Notice that the clustering coefficient ci is defined locally, a global value, 

Cc, is derived on averaging ci over all the nodes that compose the graph. 

The Waxman model described above can be used to calculate the characteristic path length (Cpl) 

of the clusters of N2A cells at any time. The Cpl is a good estimate of the ability of neurons to 

communicate. It returns the average minimum distance between any pair of nodes in the graph. 

We shall call here the minimum distance between a generic couple of nodes the shortest path 

length (Spl), that is expressed as an integer number of steps. The information about the 

connections among the nodes in a graph is contained in the adjacency matrix A=aij, where the 

indices i, j run through the number of nodes n in the graph. aij=1 if there exists a connection 
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between i and j, aij=0 otherwise. In the analysis, reciprocity between nodes is assumed, and thus 

if information can flow from i to j, it can reversely flow from j to i. In the framework of graph 

theory, we call a similar network an undirected graph. Notice that this property translates into 

symmetry of A being aij=aji. Moreover, aii=0. 

We showed above how to derive the distances between nodes dij in the networks of N2A cells. 

On the basis of dij, we may decide whether a pair of nodes is connected, we use at this end the 

formula: 

𝛼 𝑒−𝑑𝑖,𝑗 𝛽𝐿⁄ − 𝑅 ≥ 0 (6) 

in which R is a randomly generated variable, and the other terms of the Waxman model are 

defined above in the text. With these premises, we now show how to calculate the Spl for a 

couple of nodes nl and nm. In A, al,i, ai,m, account for all the pairs of nodes which are connected to 

nl and nm respectively. The sum of al,i, ai,m over all the nodes in A, ∑ 𝑎𝑙,𝑖 𝑎𝑖,𝑚, is stored in a new 

matrix A2 for all the l and all the m, and A2 has the same dimension of A. Now multiplicate A2 

and A repeatedly A2=A2.A until all the terms of A2 are non-zero and those terms in position ij will 

be the Spl between node i and node j. Finally, the characteristic path length Cpl is calculated like 

the average of Spl over A2. 

Statistical analysis. All the data are reported as the sample mean ± the standard deviation (SD). 

Pair-wise comparisons between means of different groups were performed using a Student t-test 

(two tailed, unpaired, unpaired) where, for each couple of normally distributed populations, the 

null hypothesis that the means are equal were verified. Everywhere in the text the difference 

between two subsets of data is considered statistically significant if the Student t-test gives a 

significance level P (P value) smaller than 0.05. Multiple comparisons were performed using an 

univariate analysis of variance (ANOVA). ANOVA provides a statistical test of whether or not 

the means of several groups are all equal, and therefore generalizes the Student t-test to more 

than two groups. ANOVA was used here for comparing more than two means. 
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Figure Legends 

Figure 1 Schematic of the work. PSi substrates were generated from a bulk boron-doped p-type 

(100) silicon wafer via anodization. The original silicon wafer was placed in a Teflon electrolytic 

cell, where a platinum cathode and the silicon wafer (anode) are immersed in a hydrogen fluoride 

(HF) solution (a-b). PSi substrates were therefore obtained with an average pore size spanning 

the MeP and MaP regimes (c). In culturing neuroblastoma N2A cells on similar substrates (d), 

we found that the surface topography influences the assembly of those cells into complex 

networks, which may described by the sole clustering coefficient and characteristic path length 

(e). 

Figure 2 The morphology of the macro porous silicon film is revealed in high resolution SEM 

micrographs with an increasing magnification factor ranging from 10 000 × (a), to 20 000 × (c), 
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to 100 000 × (d). (b) is a cross sectional SEM image of the macro porous substrate from which 

one can deduce the thickness t of the porous matrix that, for the present configuration, is about 

t~250 nm. (e) is an ultra-high magnification image of the inset in (d). This and other similar 

images can be used to estimate the pore size distribution in the upper porous surface (i), where 

the average pore size is S~75 nm the standard deviation is ~5 nm. Atomic Force Microscopy 

(AFM) was used to characterize the porous surface even further. AFM 2d (f) and 3d (g) images 

reveal the topography of the pores over a region of 500 nm per side. These images were 

therefore processed and used to derive the power spectrum density function C of the substrate, in 

which the change in the information content of the image is reported as a function of spatial 

frequency in a log log diagram. The slope of C in the region of the diagram in which it is linear, 

is proportional to the fractal dimension Df that for the present surface preparation reads as Df~2.7. 

The macro porous silicon chips are hydrophobic with a contact angle ~120°, for convenience, 

they were processed in an oven at high temperature T=290°C and rendered hydrophilic with a 

final contact angle ~35°. 

Figure 3 Characterization of the MeP silicon substrates. Ultra high resolution SEM micrographs 

of the samples reveal the porous structure at the smallest scales for the SP (a) and LP (c) MeP 

configurations. From these, using standard image analysis algorithms, the pore size distribution 

(g) and thus the average pore sizes may be determined that are S~8 nm, for the SP MeP substrate, 

and S~18 nm, for the LP MeP substrate. The samples were further analyzed using AFM imaging. 

The AFM profiles of the SP (b) and LP (e) MeP surfaces were processed to obtain the 

corresponding power spectrum (PS) density functions (c,f), which permitted to evaluate the 

characteristic fractal dimensions of the porous surfaces being Df~2.8 for the SP MeP architecture, 

and Df~2.5 for the LP MeP architecture. Contact angle measurements of the samples upon 

heating show that the substrates are rendered hydrophilic with a contact angle of 30° (h) that is 

similar to that derived for the MaP architecture. 

Figure 4 The macro-porous silicon surfaces were used as a substrate for N2A cell culture. 

Neural cells were incubated over the porous silicon chips and the number of adhering cells was 

measured over time. (a) indicates the number of adhering cells as a function of time, compared to 

the cells in adhesion on a flat silicon substrate used as a control, the same information is reported 
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in (b) as a function of substrate preparation. Both diagrams indicate that macro porous surfaces 

improve cell adhesion and proliferation. 

Figure 5 DAPI confocal images of N2A cells 36 h after incubation are reported in (a) for a flat 

silicon surface and in (d) for a MaP silicon substrate. The topology of those cells in a plane is 

revealed by the corresponding graphs (b-e) that are a simplified pictorial representation of the 

nuclei of the cells (which are, the nodes) and the signal connections between those cells (which 

are, the edges), that were calculated using the Waxman model described in the Materials and 

Methods. The distribution of the number of edges that you may find at different nodal distances 

is reported in the histograms in (c-f), these are single-peaked in the flat silicon case and double 

peaked in the macro porous silicon case, and this reflects the fact that cells are randomly 

distributed in the plane in the first instance (with an average cell distance that corresponds to the 

single peak of the distance distribution), and form groups of cells in the second instance (where 

the two peaks correspond to the intra and inter group distances). 

Figure 6 a statistical analysis permitted to derive the clustering coefficient Cc (a) and the 

characteristic path length Cpl (b) of the networks of N2A cells the flat and porous silicon 

substrates for all the considered times of the analysis. The diagrams demonstrate that cells on a 

porous surface display high clustering and short paths in contrast to cells on a continuous smooth 

surface (minor differences in the position between groups of cells on the porous surfaces can be 

ascribed to the different fractal structure of MaP, SP and LP MeP silicon, that is reflected by 

their fractal coefficients that are, respectively, Df~2.7, Df~2.8, Df~2.5, and that are generally 

larger than that revealed by flat silicon, that is Df~2.3). The definition and significance of the 

clustering coefficient and of the characteristic path length are provided separately in the 

Materials and Methods and throughout the paper. 

Figure 7 a to d are the scatter plots of the Cc and Cpl of networks of N2A cells on a flat silicon 

surface and the porous silicon surfaces at different time frames. They permit to visualize the 

different effects of the described surfaces on cell networking at a glance. The scheme in (e) 

divides or categorizes classes of different graphs on the basis of the Cc and Cpl solely: differently 

from regular lattices or random graphs, small world graphs have high clustering and short paths. 

Cells on porous silicon films reveal the characteristics of a small world network. 
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