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The optical response of plasmonic nanogaps is challenging to address when the

separations between the two nanoparticles forming the gap is reduced to a few

nanometers or even subnanometer distances. We compare results of the plasmon

response within different levels of approximation, and identify a classical local

regime, a nonlocal regime and a quantum regime of interaction. For separations

of a few Ångstroms, in the quantum regime, optical tunneling can be produced

modifying strongly the optics of the nanogap. We consider a classical effective

model, so called Quantum Corrected Model (QCM), that has been introduced to

correctly describe the main features of optical transport in plasmonic nanogaps.

The basics of this model are explained in detail, and its implementation is ex-

tended to include nonlocal effects and address practical situations involving dif-

ferent materials and temperatures of operation.

1 Introduction

Surface Plasmon Polaritons, the collective oscillations of free electrons that are

excited resonantly in metals by an optical electromagnetic field, can be local-

ized in finite structures acting as optical nanoantennas. The resulting Localized

Surface Plasmon Polaritons (LSPPs) allow manipulating light at the nanoscale

and obtaining strong and very confined local field enhancements1–6. This opens
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f Departamento de Fı́sica Teórica de la Materia Condensada, Universidad Autónoma de Madrid,

E-28049 Madrid, Spain
g Department of Electrical and Computer Engineering, MS378, Laboratory of Nanophotonics, Rice

University, Houston Texas 77005, USA

1–34 | 1

Page 1 of 34 Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



a route to a variety of applications, in e.g. Surface Enhanced Raman Spec-

troscopy (SERS)7–11, control of radiation from single quantum emitters12–17, or

generation of high harmonic pulses at extreme ultraviolet frequencies via non-

linear processes18. The optical response of many plasmonic systems3,4,7–9,19–22

has been successfully addressed using Maxwell’ Equations. Within this clas-

sical approach different materials are separated by sharp boundaries and the

material properties are given by the position and frequency dependent dielec-

tric function ε(r,ω). Within the local, linear dielectric response, we can relate

the dielectric displacement D and the electric field E at a position r through

D(r,ω) = E(r,ω) + 4πP(r,ω) = ε(r,ω)E(r,ω), where the medium polarisa-

tion P verifies 4πP(r,ω) = (ε(r,ω)− 1)E(r,ω) (in atomic units). Equivalently,

P(r,ω) = χ(r,ω)E(r,ω), where χ(r,ω) = (ε(r,ω)− 1) is the medium polaris-

ability. For an isotropic and homogeneous medium, ε and χ can be described

as scalars, while in the general case these are tensors of rank 2. The described

linear relationship between E and P excludes possible non-linearities that occur

for strong fields23–25, and it only depends on the particular point of evaluation r.

Among the different plasmonic configurations, gap-nanoantennas composed

by two metal particles separated by a narrow dielectric gap [as those schemati-

cally depicted in Fig. 1(a) and Fig. 1(b)] are particularly interesting as they serve

to probe many fundamental optoelectronic processes in the nanoscale. The local

classical approach of metallic nanogaps predicts that arbitrarily large charge den-

sities can be induced at the opposite sides of a vanishingly narrow plasmonic gap,

leading to extremely intense fields at the gap3–5,7–9,19–22,26,27 and to strongly red-

shifted hybridized bonding LSSP resonances that arise from Coulomb coupling

between the modes. The lowest energy gap mode is known as Bonding Dimer

Plasmon (BDP) and its redshift with narrowing gap is usually a good fingerprint

of the plasmonic cavity21,22,28–32. Within the local classical treatment, the tran-

sition from the separated to the overlapping nanoparticles is characterised by the

discontinuity of the energy of the resonances, with a sharp change of the optical

response at the touching point. After contact, a set of Charge Transfer Plasmons

(CTPs) that blueshift with increasing overlap appears.21,29,33,34 This behaviour is

outlined by the solid blue lines in Fig. 1(c).

Local classical treatments, however, disregard nonlocal and quantum effects35,36

that lead, for example, to the size dependence of the plasmon energy of individual

nanoparticles37–45. In addition to quantum-size effects, the complex quantum in-

teractions between electrons can also change dramatically the optical response of

very narrow, nanometer and subnanometer gaps, a regime progressively available

for experimental test, where the limitations of classical descriptions are mani-

fested46–55. A local classical description of the response of metallic nanoparticles

does not properly account for the correlated motion of the conduction electrons

and their spill out the nanoparticle surfaces. Thus, the classical local model fails

to capture (i) the finite spatial profile of the screening charge56 with smooth tran-

sition of the electron density at the interfaces, instead of sharp discontinuities,

(ii) strong nonlocal interactions so that, in general, the centroid of the screening

charge density does not coincide with the geometrical interface, (iii) tunneling

between the metal nanoparticles particles, where the conductive contact can be

established prior to the direct geometrical contact.

To be able to capture these effects, one possibility is to perform rigorous
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theory of surface screening2,64–73. The nonlocal hydrodynamical (NLHD) de-

scription has attracted considerable interest because of its numerical efficiency

for arbitrarily-shaped objects47,74–84 and the possibility to obtain semi-analytical

solutions using transformation optics85. The introduction of nonlocality via the

standard NLHD model produces a blueshift of the plasmonic modes with respect

to the local classical solution, as schematically depicted with the dotted red line

in Fig. 1(c). The NLHD results are adequate for metals such as silver and gold

whose optical response is significantly affected by d-electrons, but the blueshift

obtained for simple free-electron metals is in contradiction with full quantum

results86,87. Some approaches have proposed to recover nonlocal results by a

convenient rescaling of the local distances86,87 and thicknesses88 at the metal

interfaces, providing good descriptions of the plasmon energies and dispersions

in nanometric gaps. Recently, the inclusion of the realistic density profile above

the surface into the NLHD description allowed to retrieve the full quantum and

experimental results both for d-electron and simple metals89, at the price of the

increased computational cost. While the above treatments address the nonlocal

screening, it is only recently that the charge transfer between the particles due to

quantum tunneling could be accounted for within a classical treatment appropri-

ate for large systems. The Quantum Corrected Model62 (QCM) was introduced

to account for the tunneling current accross the gap via the insertion of an effec-

tive conductive medium in the gap [red areas sketched in the dimers of Fig. 1(a)

and Fig. 1(b)]. The conductivity of this effective medium is set from the electron

transmission properties of the interparticle barrier. The method was first success-

fully tested against TDDFT calculations of the optical response of nanogaps of

small particles62, and latter used to interpret experimental results for subnano-

metric realistic gaps46,90.

As sketched in Fig. 1(c), we can distinguish between three different sepa-

ration distance regimes in plasmonic gaps. The classical regime corresponds to

wide gaps, down to a separation that depends on the size of the particles but can

be estimated as ∼ 2−5 nm, where a classical local approach gives basically the

same results as nonlocal treatment. We identify this range of large separations

as a local classical regime. As the gap becomes smaller, both local and nonlocal

classical descriptions predict a similar qualitative behaviour: continuous redshift

of plasmonic modes and rise of the near fields. However, quantitative differences

emerge, as observed in Fig. 1(c). We thus define the range of separation distances

below ∼ 2− 5 nm down to ∼ 0.3− 0.5 nm as the one corresponding to strong

nonlocal effects. For separation distances below ∼ 0.3−0.5 nm the electron tun-

neling between the nanoparticles quenches the strong charge concentration across

the gap and thus critically affects the plasmonic response60. This pure quantum

effect can become significant even for larger distances under intense lasers34. We

thus identify a third range of plasmonic gaps size, below ∼ 0.3−0.5 nm, where

pure quantum effects take over. As depicted in Fig. 1(c), in this quantum regime

the electron tunneling leads to a gradual transition from modes that red-shift to-

wards modes that blue-shift with narrowing gaps (left hand side of the figure).

The three ranges of distances identified in this introductory figure correspond to

the three levels of theoretical modeling required to correctly address the optical

response of the strongly interacting plasmonic nanogap system.

The objective of this paper is to discuss comprehensively the QCM as a
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method that can incorporate quantum effects and in particular electron tunnel-

ing in many practical situations of interest. Notably, the QCM has typically

used a local framework, but can incorporate nonlocality as demonstrated for

2D-particles91. Here, we develop a nonlocal QCM that we apply to dimers of

realistic size. We analyze the plasmonic response with and without inclusion of

nonlocality and/or tunneling to reveal the relative importance of each contribu-

tion for gaps of different sizes. This is highly relevant for the interpretation of

experimental data obtained in plasmonic nanogap systems.

In the following, we first describe the technical details of the QCM46,62, and

discuss the relevance of the long-range image charge interactions for the correct

description of the electron tunneling barrier. We detail the step-by-step proce-

dure to define the effective medium required in the QCM for the case of arbitrary

metals surrounded by a dielectric. We also show how nonlocality can be in-

corporated into the model. We then discuss local classical, nonlocal classical,

local QCM and nonlocal QCM results of the optical response of Au dimers to

identify separately the effects of tunneling and nonlocality. Last, we discuss the

implementation of the QCM for different materials, and consider the influence of

temperature. Throughout the paper atomic units are used unless otherwise stated.

2 Implementation of the local QCM

In this section, we first describe the quantum mechanical calculation of the static

tunneling between two closely located metallic surfaces (subsection 2.1). The

metal-to-metal tunneling barrier is obtained within the simple Jellium model

(JM) description of the leads. A typical Scanning Tunneling Microscopy (STM)

approach is then used to obtain the conductance of the junction (subsection 2.2).

Within the JM the metal is described as a gas of interacting electrons moving in

a uniform positive background charge representing ionic cores. The interface be-

tween the background charge and the vacuum defines the so-called jellium edge

that delimits the free electron system. For the flat metal surfaces the jellium edge

is located in front of the surface atomic layer at a distance typically given by half

the separation between successive atomic planes in the direction perpendicular

to the surface. Under the assumption of a linear potential drop across the gap,

the calculated conductance yields the static conductivity. Despite its simplicity,

the JM captures the collective plasmonic modes of the conduction electrons at

surfaces, in individual nanoparticles and nanoparticle dimers56,59,60,92. The JM

has also been successfully used to model effects associated with conduction elec-

trons in a variety of metallic systems such as in electronic and optical properties

of metal clusters and surfaces93–96, charge transfer reactions between atoms and

surfaces97, conductances of molecular junctions98, and strong-field effects.99.

The second part of this section will discuss the basis of the QCM, i.e., how to

incorporate the optical conductivity derived from a quantum mechanical calcu-

lation into the classical calculations of the plasmonic response (subsection 2.3).

Upon the adiabatic assumption, typical for the description of the strong field

ionisation in atomic and molecular physics100–102, the static conductivity (ob-

tained quantum mechanically) is extended towards optical frequencies via a sim-

ple Drude model. We initially consider free electron metals in vacuum, but the

more general scenario incorporates the contribution of the d-electrons to the re-
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sponse of the metal and the presence of an arbitrary dielectric as surrounding

medium (subsection 2.4).

The key aspect of the QCM with respect to previous classical models is the

introduction of an effective medium of adequate permittivity (that relates to the

optical conductivity) at the gap between metallic interfaces, to account for the

possibility of charge transfer accross the gap. Significantly, the definition of the

effective medium incorporates the resistive nature of the gap impedance. This

effective material can then be inserted into a conventional solver of the Maxwell’s

equations to obtain the optical response for an arbitrary geometry (subsection

2.5).

We notice that the QCM is compatible with different quantum approaches, as

the only input needed is the conductivity of the junction, which can be obtained

with use of a jellium model of the metal nanoparticles, or with a full atomistic

description. Atomistic studies63 of plasmonic dimers have pointed out some

quantitative differences with respect to the jellium model for small clusters, but

the main trends of the results are qualitative similar.

2.1 Electron tunneling

For typical plasmonic systems, where the size of the gap between the nanopar-

ticles is much smaller than the radius of curvature, the local geometry of the

junction can be approximated as two flat semi-infinite parallel metallic surfaces

separated by a dielectric gap of size ℓ. To calculate the energy Ω- and separation

ℓ-dependent electron transmission T (Ω, ℓ) through the potential barrier between

the flat free-electron metal leads we use a wave packet propagation method de-

tailed previously103. Briefly, a ”probe” electron wave packet is launched from

inside of one of the metal leads onto the junction. The transmitted and reflected

electron fluxes are collected in two virtual detectors placed in the asymptotic re-

gions so that the transmission T and reflection R coefficients can be extracted.

Because of the symmetry of the model system, we consider only the electron

motion along z, the direction perpendicular to the surfaces. The one-dimensional

time-dependent Schrödinger equation, describing the evolution of the ”probe”

electron wave packet, is then directly solved on a grid of equidistant points.

The potential acting on the conduction electrons in the system is derived by

transforming the well established model potentials proposed in Ref.104. Specif-

ically, a constant potential inside the metal is imposed, which is consistent with

the JM description. As a result of this simplification, the effects of a contact

between particular crystallographic faces63 cannot be addressed. However, for

realistic plasmonic system the contact area is rather large so that the contact can

be assumed to occur between poly-crystal surfaces rather than mono-crystalline

ones. Provided that the pertinent parameters such as the surface work function

are set from empirical data, the JM is well suited for the description of the elec-

tric field-induced inter-particle tunneling of conduction electrons across the ultra

small plasmonic junction. Note that the use of the JM is not a limitation of the

QCM. The properties of the effective medium that fills the gap could be derived

on the basis of full atomistic quantum calculations provided their feasibility.

The explicit form of the model potential for the electron interaction with a
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semi-infinite metal surface is given by:

Vs(z− zim) =
exp(−ξ(z− zim))−1

4(z− zim)
, z > zim, (1)

−
U0

Aexp(B(z− zim))+1
, z ≤ zim, (2)

where the U0, zim, and ξ parameters are set as in Ref.104 for (111) metal surfaces.

For Na we can use the tabulated data for the (110) surface (see data summarized

in Table 1) or the potential calculated with density functional theory for a spher-

ical dimer34. The numerical values for A and B can be obtained by requiring

continuity of the potential and its derivative at z = zim. Within the JM of metal

the tunneling barrier is mainly determined by the vacuum part of the interface

potential, thus the calculated transmission of the junction is robust with respect

to the choice of the surface orientation.

U0(eV) ξ (a−1
0 ) φ(eV) (zg − zal)(a0) (zim − zal)(a0)

Ag 9.64 1.17 4.56 2.215 2.22

Au 11.03 1.33 5.55 2.225 2.14

Cu 11.89 1.27 4.94 1.97 2.11

Na 6.1 1.0 2.9 1.52 2.12

Table 1 Jellium model potential parameters: work function φ, jellium edge zg and image

plane position zim with respect to the surface atomic layer zal for different metals. Values

are given in units of Bohr radius, 1 a0 = 0.529 Å

For an electron on the vacuum side above the surface (z > zim), the poten-

tial Vs given by eqn.(1) converges to the classical attractive image potential,

which is of paramount importance for the correct description of the tunneling

barrier60,105,106. When two metal surfaces are brought in front of each other, the

image potential has to be corrected by the inclusion of the multiple images term

Vmi(z) accounting for the cross terms in the screening interactions:105,106

Vmi(z) =
1

4

∞

∑
n=1

{

−1

(z− z
(l)
im )+nZ

+
−1

(z− z
(r)
im )+nZ

}

, z
(l)
im ≤ z ≤ z

(r)
im , (3)

where the indexes (l) and (r) stand for the left and right metal surface, respec-

tively. For z inside the metals, z < z
(l)
im or z > z

(r)
im , the multiple image term van-

ishes Vmi(z) = 0.

Table 1 connects the position of the image plane zim and jellium edge zg

to the position of the surface atomic layer zal . The distance ℓ between the two

surfaces is given by the separation between their jellium edges ℓ= z
(r)
g −z

(l)
g , thus

defining the contact at ℓ= 0. In this section we will give a detailed description of

the results obtained for an Au-Au junction, but Table 1 also gives the parameters

of the model for Ag and Cu.

Finally, the total potential accounting for the long-range image-potential tail

of the electron-surface interaction is given by

U(z) =Vs(z− z
(l)
im)+Vs(z

(r)
im − z)+Vmi(z) (4)
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Fig. 2 Quantum-mechanical input to the QCM. (a) Potential across the gap for several

values of separation ℓ as a function of position along z, where the zero position

corresponds to the gap center. The results are obtained for gold surfaces separated by

vacuum when considering long range interactions in the potentials given by image

charges [eqn. (3) and eqn. (4)] (red lines) and without considering these long range

interactions within the DFT LDA (blue lines).

In order to illustrate the role of the long-range image-charge interactions we

occasionally use the effective one electron potential U1e(z) as derived from the

density functional theory (DFT) studies within the local density approximation

(LDA). In this case we perform the static DFT calculations of a plasmonic dimer

formed by spherical nanoparticles, extract the potential along the dimer axis, and

then use it in the quantum transport calculations62. The known defect of the

LDA is that it misses the long-range correlations and fails to reproduce the image

potential tail of the electron surface interactions107. In Fig. 2 we show the poten-

tial obtained at the vacuum junction between Au surfaces for different separation

distances. We compare the potentials obtained including the long-range image-

charge interactions and using the DFT LDA calculations. The latter choice leads

to overestimate significantly the barrier between the two surfaces60. The QCM

calculations presented in this paper use the potential model given by eqns. (1)–(4)

that account for the image-charge interaction. The results in Fig. 2, which were

obtained for a relatively simple static case of flat interfaces, represent all the in-

formation that will ultimately be required to implement the QCM, as we discuss

in the next subsections. The probability of transmission through the junction for

an electron moving perpendicular to the interface T (Ω, ℓ) is determined by the

potentials described here, and calculated as the ratio between the transmitted and

incident electron fluxes accross the gap.

2.2 Conductivity of the gap

It is possible to convert the calculated electron transfer probability T (Ω, ℓ) into

a static conductivity σ0 of the plasmonic gap. Within a standard approach used

in the description of e.g. STM junctions106, the tunneling current density J(V, ℓ)
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trough the junction between two planar jellium surfaces for a (small) applied bias

V is given by108:

J(V, ℓ,θ) =
kBθ

2π2

∫ ∞

0
dΩT (Ω, ℓ) ln

(

1+ e(EF+V/2−Ω)/kBθ

1+ e(EF−V/2−Ω)/kBθ

)

(5)

T (Ω, ℓ) depends on the electron energy Ω and separation distance ℓ. The zero

energy is placed at the bottom of the conduction band. The logarithmic factor ac-

counts for the temperature θ effects arising from the Fermi-Dirac energy statistics

in the leads, where kB is the Boltzmann constant.

The conductance per unit area is given by:

G(ℓ,θ) =

(

∂J

∂V

)∣

∣

∣

∣

V=0

, (6)

where from eqn (5) one obtains the final expression for the conductance G(ℓ,θ):

G(ℓ,θ) =
1

2π2

∫ ∞

0
dΩT (Ω, ℓ)

1

1+ e(Ω−EF )/kBθ
, (7)

We discuss the effect of temperature θ in subsection 5.1. We assume otherwise

θ = 0 K in the following and eqn (7) simplifies to

G(ℓ) =
1

2π2

∫ EF

0
T (Ω, ℓ)dΩ. (8)

Finally, assuming that the bias is given by V =Eℓ, where E is the electric field

in the vacuum gap between the metal surfaces, the conductivity of the junction

σ0(θ, ℓ) =
∂J
∂E

is given by

σ0(ℓ) = ℓG(ℓ), (9)

which holds only for ℓ not too small. For very narrow gaps the described ap-

proach is not valid primarily because the fields in the junction can no longer be

considered as homogeneous, so that the V = Eℓ approximation breaks.

Fig. 3 shows the electron transmission probability T (EF , ℓ) between left and

right leads, as calculated at the electron Fermi energy EF for the Au junction.

These results are obtained both with the model potential that accounts for the

long-range interactions [given by eqn. (3) and eqn. (4)] as well as with the

DFT LDA potential that misses the long-range contribution (potentials displayed

in Fig. 2). Except for very narrow gaps ℓ . 2 Å, T (ℓ) shows in both cases a

nearly exponential dependence with the junction size ℓ, as typical of many tun-

neling processes. For small ℓ the potential barrier becomes low and the electrons

are transferred from metal to metal via direct transitions over the barrier. The

transmission probabilities tend then to 1 in a non-exponential manner as the gap

closes, reflecting the formation of a continuous solid. Fig. 3 also demonstrates

that, consistent with the overestimation of the potential barrier, the DFT LDA

description results in too small transmission probabilities. The junction width

where the tunneling process becomes important is underestimated by about 1Å

within DFT LDA.

Fig. 3 also shows that, similarly to the transmission probability T (EF , ℓ),
the static conductivity σ0 (open circles) approximately follows an exponential
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Fig. 3 Quantum-mechanical input to the QCM. Transmission at the Fermi Energy

T (EF , ℓ)(continuous line) and static conductivity σ0 (open circles), both calculated

quantum-mechanically, as a function of separation distance ℓ. The results are obtained

for gold surfaces separated by vacuum when considering long range interactions in the

potentials given by image charges [eqn. (3) and eqn. (4)] (red lines) and without

considering these long range interactions within the DFT LDA (blue lines).

dependence with ℓ except for the shortest distances. Indeed, because of the rapid

decrease of the transmission probability with lowering of the electron energy,

only a small energy region around the Fermi level contributes to the tunneling

current (conductivity σ0) which is determined by T (EF , ℓ) [see eqns. (8) and

(9)]. The decay lengths of these two exponential functions are of the order of one

atomic unit (≈ half Å). The long range image-charge interactions also influence

σ0 considerably, as manifested by the faster decay of the conductivity with ℓ
obtained using the LDA approximation (higher potential barrier in Fig. 2, blue

lines) as compared to the more accurate model that includes the image potential

(red lines).

2.3 Effective medium within the QCM: Drude metals in vacuum

We describe now how to account for the tunneling between plasmonic nanoparti-

cles within the framework of classical Maxwell’s equations which is the essence

of the QCM. The interest in such approach is obvious since standard electromag-

netic solvers can be applied so that the impact of quantum effects on the optical

properties of practical plasmonic systems can be efficiently calculated. To some

extent, the underlying idea here is similar to the text book examples relating e.g.

the macroscopic dielectric constant of the medium to the polarizability of indi-

vidual molecules109. In this subsection, we concentrate on particles made of a

free-electron metal and surrounded by vacuum.

The typical curvature radius R of plasmonic nanoparticles is of some tens of

nanometers, much smaller than the gap widths at which tunneling effects become

important. Under this condition, the quantum effects for a region of the nanogap

characterized by a local separation distance ℓ can be modeled by assuming that
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quantum effects in that position show similar behaviour to a pair of planar metal

surfaces separated by the same separation ℓ. According to the discussion intro-

duced in the previous sections, in the static case the current density between these

two surfaces is given by

J(ℓ) = σ0(ℓ)E. (10)

Eqn. (10) describes the tunneling regime typical for STM with small and ex-

ponentially decaying σ0 and an static homogeneous electric field E inside the

junction. For time varying fields we use the adiabatic assumption that has proven

its validity for example in the description of strong field ionisation in atomic

and molecular physics100–102. Under this assumption, the frequency-dependant

currents and fields at the gap can be related through the static conductivity as

J(ℓ,ω) = σ0(ℓ)E(ω), (11)

where, similar to eqn. (10) homogeneity of the optical fields in the junction is as-

sumed. Note that σ0 is a real number so that the junction has resistive character.

Similar equations have been recently derived110,111 within a framework of the

Tien-Gordon theory developed for microwave fields112. Our approach is valid

for moderate separations of a few Å but not for ultra narrow gaps of atomistic di-

mensions, as the model does not account for field penetration into the nanoobject

neither it allows for a simple interpolation of the tunneling and contact regimes.

Since the typical sizes of the tunneling gaps are at the nanometer scale, i.e.,

100 times smaller than the wavelength of optical frequencies, eqn.(11) can be

generally considered as a local one. One can now consider the relationship

between the permittivity of an effective medium that fills in the gap of two

plasmonic nanoparticles and the conductivity accross the gap within classical

Maxwell’s equations:

εg(ℓ) = 1+ i 4πσ0(ℓ)/ω, (12)

and realize that this relationship connects classicaly the current density accros the

gap and the optical field inside the gap, exactly in the same way as the quantum

relationship between the tunneling current and the field in the gap. We note that at

this stage any description of the dielectric properties of the metal can be adopted

(Drude, empirical,...), and σ0(ℓ) can be calculated with quantum methods, as

discussed earlier or with any other level of sophistication in the description of the

junction.

While the simple model resulting in eqn. (12) describes the STM or tunneling

regime with well separated nanoparticles, it does not allow to directly address all

gap sizes down to the touching regime, where the junction progressively behaves

as a continuous metal bridge. We seek an effective dielectric medium that has the

permittivity described by eqn. (12) for large separations and that becomes iden-

tical to the surrounding metal at small ℓ. In this respect, assuming particles made

of a free-electron Drude metal is instructive as it allows to obtain simple analyt-

ical expressions. Within the Drude model, the frequency-dependent permittivity

of the particles is given by:

εm(ω) = 1−
ω2

p

ω(ω+ iγp)
(13)
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where ωp is the plasmon frequency and γp describes the damping. In this paper

we use ωp = 9.065 eV and γp = 0.0708 eV for gold, as extracted from a fit to

empirical data at low energies113.

To describe the effective material at the gap, and taking into account that for

small separations electrons are easily transferred and the gap becomes metallic,

we also use a Drude-type expression, which allows an easy interpolation to the

continuous metal case at ℓ = 0. We write the permittivity εg of the effective

medium at the gap as:

εg(ω, ℓ) = 1−
ω2

p

ω(ω+ iγg(ℓ))
, (14)

which is related to the conductivity by

σ(ω, ℓ) =−iω(εg(ω, ℓ)−1)/4π. (15)

The separation-dependent loss parameter γg allows to set the permittivity (and

thus the conductivity) to a desired value for each ℓ. If we now require that the

tunneling regime, given by eqn. (12), must be reproduced by eqn. (14) for large

separation distances, ℓ→ ∞, we obtain

γg(ℓ) =
ω2

p

4πσ0(ℓ)
, (16)

where we have approximated γg(ℓ)− iω ≈ γg(ℓ), since σ0(ℓ) becomes exponen-

tially small when ℓ increases (Fig. 3). Notice that within this approximation, due

to the exponential increase of γg for large ℓ, eqn. (12) is recovered independently

of the gap plasmon frequency assumed in eqn. (14). We take it as equal to the

value describing the particles ωp to facilitate recovering the metal permittivity εm

when contact is established. In principle, one could directly apply eqn. (16) for

each sufficiently large value of ℓ. Nonetheless, looking at the behaviour of σ0 in

Fig. 3 suggests using a simple exponential function.

For vanishing gaps the permittivity of the effective medium εg should tend

towards the permittivity of the metals εm for all wavelengths, as the potential

barrier between the particles disappears. Thus, for ℓ→ 0 we should recover the

dielectric constant of the Drude metal, or equivalently γg → γp. However, eqn.

(16) does not necessarily extrapolate directly to γp at ℓ= 0 (due to the limitations

on the quantum calculation of the conductivity σ0 for small separations). We

then proceed as follows. Taking into account the exponential dependence of σ0

with separation found for moderate ℓ and the ℓ= 0 limit, we impose

γg(ℓ) = γpeℓ/ℓc . (17)

The description of the effective material given by this simple exponential expres-

sion is a key aspect of the implementation of the QCM. ℓc is chosen to verify eqn.

(16) for sufficiently large ℓ. In our implementation, we impose that eqn. (16) is

exactly verified for the specific ℓ = ℓ0 at which the transmission at the Fermi

energy T (EF , ℓ0) is one percent. We explicitly checked that the final results are

robust with respect to the choice of the matching point ℓ0, as far as it is located

in the deep tunneling regime62. Fig. 4 shows the results for γg obtained for Au
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Fig. 4 Description of the effective medium used in the QCM. The loss parameter γg

required for the effective medium in the gap is plotted as a function of separation

distance ℓ. Solid lines correspond to the exponential expression used for the QCM

implementation, while crosses are obtained from eqn. (16) using the static conductivity

σ0 calculated quantum-mechanically. The results are obtained for gold surfaces

separated by vacuum with [red lines, Eqn. (3) and Eqn. (4)] and without [blue lines, DFT

LDA] taking into account long-range image-charge interactions.

(ωp = 9.065 eV, γp = 0.0708 eV), where we consider in the quantum calculation

of σ0 long range interactions [eqn. (3), red lines] or only short range interactions

within the DFT-LDA approach are considered [eqn. (4), blue lines], as explained

in previous sections. In the tunneling regime for ℓ & 3 Å, the exponential de-

pendence given by eqn. (17) provides a reasonable approximation to the γg(ℓ),
obtained directly from the calculated tunneling characteristics using eqn. (16),

particularly when the image charge interactions (long range) are accounted for.

We obtain in this case ℓc = 0.4 Å. The discrepancy between eqn. (16) and the ex-

ponential fit becomes rather large at short distances, where the STM-type model

resulting in eqn. (16) does not apply.

Following our procedure, γg becomes very large for large separation dis-

tances, obtaining resistive contacts, i.e., the effective material has mostly real

conductivity. Indeed, at optical frequencies for sufficiently large separation dis-

tances, γg(ℓ)≫ω, and the purely static conductivity is recovered σ(ω, ℓ)=σ0(ℓ).
As the gap closes γg decreases, σ(ω, ℓ) becomes complex and the effective mate-

rial acquires inductive character to become pure metallic at very small ℓ, recov-

ering the value of the metal εm at both sides of the gap. The resistive to inductive

transition is not described within tunneling STM theory, thus a direct comparison

between predictions of the QCM and full quantum calculations is then needed in

order to validate our approach.

We performed such an analysis for a Na nanosphere dimer. Na is a prototype

of a free-electron metal with ωp = 5.16 eV, and γp = 0.218 eV. The JM approx-

imation can then be used, allowing to perform full quantum Time-Dependent

Density Functional Theory (TDDFT) calculations of the plasmonic response of a
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2.4 Generalization of the QCM to noble metals and dielectric gaps

In the previous section, we described the plasmonic material as a free-electron

gas using the classical Drude permittivity given by eqn (13). This description is

valid for materials such as Na but for noble metals such as gold or silver it does

not account for the significant contribution of d-electrons to the optical response.

Further, the surrounding medium was considered to be vacuum. The QCM can

be straightforwardly extended to the case of arbitrary metals surrounded by any

dielectric medium46. The permittivity of metals εm, as obtained from the litera-

ture113, can be decomposed as:

εm(ω) = εd
m(ω)−

ω2
p

ω(ω+ iγp)
(18)

which explicitly distinguishes between the contribution from interband transi-

tions involving d-electrons εd
m, and that from the free electron gas (right-hand

side term). In contrast to eqn (13), εd
m does not need to be equal to 1 and can be

frequency-dependent. ωp and γp can be obtained from fitting εm at low frequen-

cies, where the d-electron contribution is comparatively weak. For the calcula-

tions of gold dimers presented here ωp = 9.065 eV and γp = 0.0708. εd
m is then

directly obtained from eqn. (18) using empirical data.113

To describe the permittivity of the QCM effective medium at the gap εg, we

treat the free electrons as in the previous section and introduce a contribution of

the d-electrons that decays exponentially for increasing gaps, with a decay length

ℓd .

εg(ω, ℓ) = ε0(ω)+(εd
m − ε0)e

−ℓ/ℓd −
ω2

p

ω(ω+ iγg(ℓ))
. (19)

ε0 is the relative permittivity of the surrounding dielectric medium, which does

not need to be vacuum and can depend on frequency. γg(ℓ) in the Drude term is

obtained as in the previous section [eqn (16) and eqn (17)], where we continue

using the jellium approach to obtain the quantum value of the static conductiv-

ity σ0 since the quantum charge transfer is dominated by the free electrons. A

more complex ab initio calculations including the d-electrons and actual dielec-

tric material in the plasmonic gap could also be used if feasible. εg thus tends

to the permittivity of the particles for vanishing gaps, and to the value of the

surrounding medium for large separations (γg(ℓ→ ∞)→ ∞) .

The decay length ℓd of the d-electron contribution (εd
m − ε0)e

−ℓ/ℓd is of the

order of the Bohr radius since the electron density probability associated with the

d-electrons is confined to the proximity of the metal. The exact value of ℓd can

be set in several ways. For example, from the radial decay of the 5-d orbital114

we can set ℓd = 1.5 a.u≈ 0.8 Å for gold and other typical materials. This is the

value used in the calculations in this paper. We could also consider that the d-

electron contribution should decay faster than the free-electron component, due

to the higher localisation of the d-orbitals, and use a ℓd somewhat smaller than ℓc.

Nonetheless, it is the Drude term that gives the critical conductive contribution to

the permittivity setting the regime of conductive coupling between the nanopar-

ticles across the gap. Therefore, as we have explicitly checked for local QCM

calculations of Au dimers, the calculated optical response of the nanoparticle

assembly is robust with respect to the specific choice of the ℓd .
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2.5 Implementation of the QCM in classical Electrodynamics

We describe in this section how to implement the QCM using an electrodynamic

solver of Maxwell’s equations. The metallic particles are characterized as a

medium of permittivity εm (possibly obtained from empirical data) that is de-

limited by sharp interfaces. The position of the interface is chosen at the jellium

edge in the JM description of metal, as indicated in Table 1. This choice is not

unique, and one can also consider the classical metal boundary defined by the

position of the centroid of the screening charge at the surface86,87. For the imple-

mentation of the QCM, however, it is important that the classical definition of ℓ
corresponds to the one used in the quantum calculations of the tunneling current.

This definition will be also relevant when comparing experiments and calcula-

tions with the aim of establishing a criterion of absolute separation distances.

The distance-dependent effective medium of permittivity εg described in the

previous section needs to be inserted in the gap. In the general case of the

nanoparticle dimer the junction is not between two planar surfaces so that there

is not a single global distance. For each pair of opposite points separated by the

local distance ℓ, the local εg can be set to the same value as the permittivity cal-

culated for the corresponding ℓ-wide flat gaps. This simple approach assumes

that the nanoparticle surfaces are of sufficiently large radius of curvature to be

considered as locally flat, an assumption that should be valid considering typi-

cal experimental geometries. εg remains constant along the line joining opposite

points, but can change as we move in the orthogonal direction of the gap, leading

in general to an spatially inhomogenous εg.

A general prescription to determine how to define opposite points and the

connecting line is not necessarily straightforward, but typical structures often

present a ’natural’ option. For example, for configurations azimuthally symmet-

ric with respect to a given axis [z in Fig. 1(a) and Fig. 1()], we define the local

ℓ as the distance between opposite points linked by a line parallel to this axis.

Conveniently, the expected polarization of the fields, which is critical for the

tbunneling, is also often expected to be along the same axis. For a more complex

configuration it may be beneficial to define opposite points as those connected by

a line parallel to the local electric field vector, and the distance as the length of

this line.

Fig. 1(a) sketches the insertion in the gap of the effective medium with

spatially-inhomogeneous permittivity εg, for a dimer composed of two metal-

lic spheres. The plasmonic response can then be found using a classical solver

of Maxwell’s equations. For the results obtained here, two different solvers have

been used: a finite element solver (COMSOL Multiphysics) and a boundary el-

ement method (BEM).115 The BEM requires the gap to be divided into different

areas characterized by a mean distance to avoid inhomogenous distributions of

material. A possible implementation for the case of a bowtie antenna is sketched

in Fig. 1(b). For azimuthally symmetric configurations, we have often found suf-

ficient to consider ∼ 3−8 shells placed in the region of the gap where the local

distance is smaller than around 6 Å, but different scenarios may require different

number of shells. For example, if field discontinuities are present at the contact

regions between two shells and one of the particles, it can be convenient to use

more shells.
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The described implementation of the QCM comprises a series of steps to de-

fine the permittivity εg of the effective medium to be inserted in the gap. It is,

however, possible to conceive modifications of the given procedure that would

change to some extent the value of εg. In a previous work considering free-

electron metals62, we showed very little change of the plasmonic response after

modification of the exact definition. We have also verified that ignoring the con-

tribution of the d-electrons to εg for two Au spheres does not essentially modify

the extinction and near field enhancement spectrum within the local QCM model.

Thus, the QCM seems generally robust to modifications on the implementa-

tion details. Nonetheless, two conditions should likely be respected: the effective

medium should have a strong resistive component except possibly for very nar-

row gaps, and εg should model correctly the exponential decay of the absolute

value of the gap impedance with distance determined from the quantum calcula-

tions of the transmission probability.

3 Extension of the QCM to include nonlocal effects

A critical parameter for classical calculations is the relationship between the po-

larization induced in a material and the electric fields. Up to here, we have con-

sidered a local description of a metal. It assumes that the polarization at a point

is proportional to the local fields at this same position, which introduces a certain

error by ignoring the influence of the surrounding charge distribution, in partic-

ular for strong interaction between interfaces. This is precisely the case of small

metallic particles and/or very narrow gaps.

Possibly the most common approach to introduce nonlocality when studying

plasmonic systems within a classical framework is the hydrodynamical model116,117,

which considers an extra term in the dynamics of the free electron gas connected

with its pressure and thus the deformation to an external perturbation. In this

model, nonlocality is introduced in k-space by using a permittivity that is not

only a function of frequency, but also of the wavevector k. In real space, this

description corresponds to introducing an additional contribution to the polariza-

tion from the immediate vicinity of the non-uniform charge density, so that the

polarization at each point is obtained via an integral comprising the electric fields

over the surrounding region.

We have recently discussed how, for a pure free electron gas such as Na, the

hydrodynamical model does not correctly reproduce certain aspects of the charge

densities associated to the localized surface plasmons87. The model predicts an

electron density that decays considerably before the jellium edge defining the

limit of the particles, i.e., the centroid of charge is displaced towards the interior

within this approach. In contrast, full quantum simulations reveal that, for these

free electron metals, the electron density is pushed a short distance towards the

outside of the particles, i.e. there is a spill-out of the electrons. Nonetheless, for

typical noble metals used in plasmonic experiments, the centroid of the charge

is indeed displaced towards the interior of the particles due to the influence of

the bound d-electrons, and the hydrodynamic approach can then be applied for

practical purposes47.

In the following, we describe briefly how we introduce the hydrodynamical

approach into both the classical local and QCM theoretical frameworks. First we
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discuss how the nonlocality is implemented into the optical response. Again, we

consider separately the contribution from bound and free electrons, and write the

electric displacement vector ~D as:

~D = ~E +4π~Pd +4π~Pc (20)

with ~Pd and ~Pc the polarization vector for bound (d-electrons) and conduction

electrons, respectively, and electric field vector ~E. As in standard studies of the

optical response of metal nanostructures, ~Pd is described via a local approxima-

tion:

4π~Pd(ω) = εd
m(ω)~E(ω) (21)

whereas nonlocal effects are incorporated by means of the polarization field ~Pc.

This free-electron polarization field is directly related to the induced current den-

sity ~Jc = ∂~Pc/∂t. For the implementation of nonlocal effects into the COMSOL

Multiphysics package it is much more convenient to work with ~Jc instead of ~Pc.

In the hydrodynamical model, the time evolution of the induced current density

due to conduction electrons is described by the linearized Navier-Stokes equa-

tion:
∂~Jc

∂t
+ γp

~Jc =
ω2

p

4π
~E −β2~∇n (22)

where n =−~∇~Pc is the induced charge density. One immediately recognizes the

nonlocal contribution from the free electrons, i.e., the dependence on the gradient

of the induced charge density. Typically β =
√

3/5vF , where vF is the Fermi

velocity. In particular, one can show that in the frequency domain:

β2~∇(~∇~Jc)+ω(ω+ iγp)~Jc = iω
ω2

p

4π
~E. (23)

This equation for the induced current density and Maxwell’s equations are cou-

pled through their mutual dependence on the electric field ~E and ~Jc. They can

be solved simultaneously in COMSOL by choosing appropriate boundary condi-

tions for ~Jc, such as continuity of its normal component. This implementation of

nonlocal effects into our numerical framework reduces to a local response when

β is simply set to zero, making the integration of a local and nonlocal description

of different parts of a plasmonic system easy to realize.

Inclusion of the effective gap material in the hydrodynamical model leads to

what we named before as nonlocal QCM. An equation similar to eqn (23) can be

written within the gap region:

β2~∇(~∇~Jc)+ω(ω+ iγg)~Jc = iω
ω2

p

4π
~E (24)

where γg (see section 2.3 for its definition) replaces γp. At the current stage,

for the sake of simplicity, we assume that the optical response within the gap

region is local, i.e., β = 0 in the region. Regarding the polarization contribution

coming from bound electrons, it is treated in the same way as in local QCM and,

therefore, it does not appear explicitly in eqn (24).

Complementary to the hydrodynamical model, we also consider a simple ap-

proach to nonlocality introduced previously86,87, based on a simple rescaling of
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the separation distances to take into account the spatial distribution of the elec-

trons. To calculate the nonlocal results for two particles at a physical distances

d, as defined by the jellium edges, it is simply required to obtain the classical

local response at d+ dn separation, where dn is a distance given by the position

of the two centroids of charge, dn = −1.8 Å for Na and dn ∼ 1.7− 3.0 Å for

Au. This approach proved to be successful when predicting the observed peak

positions for two Na wires and distances up to a few Ångtröms87. Unfortunately,

it is not evident how to implement this method when a non-negligible quantum

charge transfer between the particles is considered, and thus it is only used here

for classical nonlocal calculations before contact. Other approaches to introduce

nonlocality have been recently discussed, such as adding an extra dielectric layer

of well defined properties to mimic the nonlocal displacement of the centroid of

charge at the surface.88.

4 Nonlocality and quantum effects in the plasmonic response

In the following, we analyze the response of a plasmonic dimer as a function of

separation distance to explore the different regimes sketched in Fig. 1(c): local,

nonlocal, and quantum. We calculate the optical response of a dimer composed

by two Au spheres of R= 25nm, using a local or nonlocal hydrodynamic descrip-

tion and with or without inclusion of the interparticle electron tunneling within

the QCM. In all calculations we solve the classical electromagnetic Maxwell’s

equations to obtain the optical response of the system. However, to distinguish

between different approaches, we denote as classical local the calculations where

the optical response of the metal is described by a local dielectric constant with-

out charge transfer across the gap, classical nonlocal refers to calculations where

the metal response is described within the hydrodynamical approach, also with-

out considering charge transfer between particles, the QCM local calculations

use a local dielectric constant for the metal and include the electron tunneling

within the QCM, and last, QCM nonlocal calculations consider the hydrodynam-

ical approach for the metal response and the QCM to include charge transfer due

to the tunneling.

The system holds cylindrical symmetry with respect to the z axis that con-

nects the particle centers, located at z± = R±d/2. d thus indicates the distance

between the two closest points between the particles (different from the local

separation ℓ) and z± is measured from the center of the junction. d < 0 cor-

responds to overlapping particles. Experimental values of the gold permittivity

are used113 and a plane-wave polarized along the dimer axis illuminates the sys-

tem. The near-field enhancement |Eg/E0| is defined as the ratio between the

electric field amplitude at the center of the gap Eg and the amplitude of the in-

cident field E0. After contact, the fields inside the metalic junction are strongly

screened therefore we only show the field enhancement for positive distances

d. Non-local results are performed with the Finite Element Method (COMSOL

Multiphysics), and the local calculations are obtained using the Boundary Ele-

ment Method (BEM). We test that both methods provide the same results for the

case of QCM local calculations.

The classical local response of dimers has been studied by many different

groups and is generally well understood21,118,119. We show the extinction spectra
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and near-field enhancement at the gap of the Au dimer for several representative

separation distances in Fig. 6(a) and Fig. 7(a), respectively. As pointed out

above, the near-field spectra are shown only for positive separation distances as

the local field gets quenched for overlapping dimers. As the spheres approach, the

Coulomb interaction leads to strong charge concentration at the opposed metal

surfaces, and thus to very intense fields120 in the gap and to hybridized plasmonic

modes that redshift strongly. The charges are antisymmetric with respect to the

plane perpendicular to the axis of the dimer at the center of the gap (z = 0).

Dark symmetric modes are not excited in our planewave scheme of illumination.

For moderate separations d, the lowest-energy Bonding Dimer Plasmon (BDP)

dominates the response, but for small d higher order modes are also efficiently

excited. All modes have a clear signature in both the extinction and the near field.

As the gap closes d → 0+, both the redshift of the modes and the magnitude of

the associated field enhancement diverge.

The response changes abruptly when conductive contact is established at d ≤
0. For overlapping particles, electron transfer between the particles becomes

possible, and the Charge Transfer Plasmon (CTP) modes29–31,121? emerge. The

lowest energy CTP appears at distinctively large wavelengths and corresponds to

a dipolar-like oscillation characterized by non-zero net charges of opposite sign

at each particle, an unphysical situation before contact. For small overlaps the

narrow wedges support very fast spatial oscillations of the charge distribution122

leading to many high order modes. The resonant wavelength of these modes

also diverges for d → 0−. As the overlap increases, the modes blueshift until

eventually the spectra of a single sphere would be recovered.

The divergence of the results as d → 0, right before and after contact, is

related to the description of the sharp interfaces between the metal and the sur-

rounding medium within the local classical approach. This leads to extremely

large and confined charges at the sharp wedges and narrow gaps producing the

divergence. Rounding the edges of the neck of the contact between two particles

would considerably diminish the expected number of resonances, their redshift

and the field enhancement. While Ref.21 discusses the implications of geomet-

rical rounding, nonlocal and quantum tunneling effects also result in effective

rounding of the geometry of the junction as follows from the results below. Ac-

counting for the nonlocal response within the hydrodynamical approach allows

to remove the unphysical divergences of the optical response of narrow gaps47,81

as shown in the results of Fig. 6(b) and Fig. 7(b).

Local and hydrodynamical nonlocal calculations indicate several similarities

both in their far field [Fig. 6(a) and Fig. 6(b)] as well as in the near field response

[Fig. 7(a) and Fig. 7(b)]. As the particles approach, the modes redshift strongly

and the corresponding field enhancement increases. Particle contact results in an

abrupt change in the spectra with the appearance of the Charge Transfer Plasmons

that blue-shift with increasing overlap. However, important differences appear

between the two models. Compared to the local results, the nonlocal description

generally ’softens’ the spectral trends85, as it captures the lack of sharp interfaces

in real systems. As distance goes to zero, either before or after contact, both the

shifts of the modes and the number of resonances efficiently excited are smaller

than for the local classical results. In a similar manner, the field enhancement

predicted by the nonlocal approach can be very large just before contact but not
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as large as obtained in the local case, with no apparent divergence as the gap

closes. In general, the differences between the two models are more significant

for narrow gaps or small overlaps. For example, when d changes from 2 to 1

a.u (1.06 to 0.53 nm) the local classical calculations predict that the low-energy

BDP extinction resonance peak redshifts from 765 nm to 871 nm, and that the

near field enhancement increases from 8100 to 14400. This is to be compared

with a wavelength change from 685 nm to 720 nm, and a field enhancement

increase from 4600 to 7200, obtained within the nonlocal hydrodynamical model

for the same separation distances.

The distribution of surface charges is critical to understand the differences

between the local and non-local classical responses. While in the local classical

calculations the plasmon-induced screening charges are located at the geomet-

rical surfaces of the metal, using the nonlocal hydrodynamic model results in

a displacement of the screening charges into the metal, inwards from the metal

surface80,86,87,123,124. Thus, when the distance between the geometrical surfaces

is zero, the screening charges across the junction are separated by a distance dn,

where dn/2 is the position of the centroid of the screening charge with respect to

the geometrical surface (jellium edge) of the individual nanoparticles. Since the

screened charges do not abruptly overlap when contact is established, the electro-

static interactions in the system do not diverge, in clear contrast to the classical

model where infinite localization of the charges is produced. The effect of the

spatial dispersion of the response is thus to round the sharp wedges of overlap-

ping geometries85.

The effect of the shift of the centroid of the screening charge with respect to

the geometrical surfaces of the gap can be further explored for d > 0 by using

the concept of distance rescaling87. In Fig. 6(b) and Fig. 7(b) we show spec-

tra corresponding to local classical calculations where the separation distance

is rescaled to d + dn (with dn = 2 a.u.= 1.06 Å) given by the actual separation

given by the position of the screening charges, and not by the system geometry.

Notably, this simple approach is in very good agreement with the more complex

hydrodynamical calculations, which supports the interpretation that the main role

of nonlocality is to displace and spread the centroid of charge density, effectively

lifting unphysical divergences.

We move next to one of the main aspects of this discussion, the quantum ef-

fects due to electron tunneling across the junction, as captured using the QCM.

Fig. 6(c) and Fig. 7(c) show the far- and near-field QCM results, respectively,

for a local description of the plasmonic response. For d & 3.5 Å, the tunneling

starts being negligible and thus the classical behaviour is recovered. However, for

shorter distances, as well as for all the overlapping cases considered, the electron

tunneling strongly modifies the response, as expected from previous studies of

related systems34,60,62. We thus denote the region of separations d < 3−4 Å as

the tunneling regime. Due to the tunneling current that emerges before contact

and neutralizes the induced charges of opposite sign at the junction, the classical

discontinuity of the optical response at contact, d = 0, is removed. In contrast,

the QCM calculations of the extinction cross-section [Fig. 6(c)] show a gradual

transition, with a threshold distance dth ≈ 0.35 nm separating two different situa-

tions34,60. As the gap closes, still being larger than dth, the hybridized plasmonic

modes of the dimer redshift similar to the results of classical calculations. At
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d = dth the redshifting modes gradually disappear and new modes correspond-

ing to the Charge Transfer Plasmons (CTPs) emerge that blueshift with further

decrease of d.33,125 The emergence of the CTPs at small but positive separation

distances d > 0 points out that the conductive contact between nanoparticles is

established prior to the direct geometrical overlap of their surfaces, owing to the

electron tunneling through the potential barrier separating the nanoparticles.

The QCM extinction spectra exhibit a moderate number of modes for all sep-

aration distances, in constrast to the prediction from local classical calculations

of dimers with narrow gaps and small overlaps. In the nonlocal classical case, we

discussed the relatively small number of modes as a consequence of the gradual

variation of the electron distribution near the interfaces, which softens the plas-

monic response. In the QCM, the softening is due to the charge transfer across

the separating vacuum. The transfer probability, as codified by εg, changes grad-

ually as we move transversally (plane xy) away from the center, from basically

metallic to identical to the surrounding vacuum.

The results of the local QCM also show how the charge transfer between par-

ticles at tunneling distances has a dramatic effect on the near field enhancement

at the center of the gap. For sufficiently large gaps d & dth the classical results are

basically recovered, with increasing enhancement for narrowing gaps. However,

for distances smaller than d ≈ dth, where the strongest enhancements are found,

the quantum electron transfer screens the charges at the gap, quenching the near

fields. This quenching can have important consequences in different optical tech-

niques, such as surface-enhanced spectroscopies, where large field enhancements

are often necessary.

Last, we analyze the situation where nonlocality and electron transfer across

the gaps are included simultaneously in our QCM calculations with a hydrody-

namical treatment of the metal response, as introduced in section 3. For suffi-

ciently large separation distances above dth the tunneling is negligible and the

nonlocal screening is the main reason of the difference with classical local de-

scriptions. We thus recover the classical nonlocal results both for the extinction,

shown in Fig. 6(d), and for the near-field enhancement, Fig. 7(d). For sepa-

rations below dth, the nonlocality also modifies the details of the response, as

observed when comparing the results of nonlocal QCM with those of the local

QCM simulations. Nonetheless, the influence of nonlocality on the response re-

mains relatively small when compared with the effect of quantum tunneling. The

latter is thus the key aspect determining the optical response of the system. Gen-

erally, the nonlocal and local QCM calculations yield very similar results over

the entire range of separations considered here.

Fig. 8(a) and Fig. 8(b) show the synthetic summary of the results obtained

in this section using local classical, nonlocal classical, local QCM and nonlocal

QCM calculations. The energy of the extinction plasmon resonance [Fig. 8(a)]

and the resonance near-field enhancement [Fig. 8(b)] are shown as function of

the distance between nanoparticles, d, for the most relevant plasmon modes. In

particular, Fig. 8(a) shows the spectral position of the extinction peaks for the

lowest energy BDP mode that exists for positive distances (down to d & dth when

using the QCM, and to d > 0 for the classical treatment) as well as for the two

lowest energy CTP modes that emerge at d . 1Å within the QCM and from d < 0

for classical treatments. Fig. 8(b) focuses on the range of d ≥ 0 and displays the
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maximum field enhancement of the BDP, as well as of the second CTP’ charge

transfer plasmon which emerges at ≈ 2.1 eV in the QCM calculations for d . dth.

The data points in Fig. 8(a) and Fig. 8(b) are extracted from Fig. 6 and Fig.

7, where they are marked with open circles. Along with the nonlocal results

obtained within the hydrodynamical model, we also show the results obtained

with the distance rescaling, where the nonlocal results at distance d are taken

as equal to the local values at d + dn. As already discussed, we obtain a good

agreement with the hydrodynamical approach for dn = 1.06 Å.

Considering the plasmonic response of the dimer, three regions of the inter-

particle separations d emerge, consistent with the introductory sketch of Fig. 1:

• At large separations (in our case for d & dcl = 2 nm (not shown in Fig. 8)

the local classical approach adequately captures the plasmonic response so

that we identify this distance range as the classical regime.

• For dth . d . dcl the differences between the local and nonlocal hydro-

dynamical results are clearly visible, and the electron tunneling trough the

potential barrier separating the nanoparticles is negligible. This is the non-

local regime. According to the distance rescaling, including nonlocal ef-

fects gives a similar effect as modifying the distance in the local calcula-

tions by a factor (1+dn/d), which allows to understand the increasing role

of the nonlocality for narrowing gaps. Note that the dn/d variation should

relate to a relative change in the spectral response between nonlocal and

local results. The absolute change would depend also on the size of the

particles, so that for large structures nonlocal effects can remain signifi-

cant for larger separations.

• The distance range d < dth corresponds to the quantum regime. At this

Ångstrom-scale separations, the electron transfer across the junction dom-

inates the optical response, and the differences between the nonlocal QCM

and local QCM results remain relatively small. Nonlocality does modify

to some extent the exact response, as can also be seen in Fig. 8. Never-

theless, the prediction of the local QCM calculations seems sufficient to

understand most of the features of the plasmonic response.

To finish this section, we emphasize three particularly clear signatures of the

tunneling regime for closely interacting spherical nanoparticles:60,62 (i) the grad-

ual transition in the dispersion of the gap modes at a small threshold separation

distance dth, where the modes stop redshifting and start a progressive blueshift

as the particles become closer, (ii) the emergence of a CTP mode at low energies

already for (small) positive distances, and (iii) the quenching of the near fields.

The presence of much fewer modes for small overlaps and narrow gaps when

comparing local QCM with local classical calculations is also striking but may

not be the easiest path to identify quantum effects, as the number of modes is also

comparatively small for nonlocal classical calculations or, after contact, for lo-

cal classical results with rounded wedges21. We also notice that the signature of

quantum effects on the far-field signal depends on the morphology of the gaps126.

An additional consequence of quantum effects is that the significant quenching

at the center of the gap expells the strong fields outside and thus establishes an

intrinsic quantum limit to the ultimate field confinement6,46.
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5 Extension of the QCM to different materials and tempera-

tures

We have focused up to now on gold dimers at 0K, but the QCM can be applied

to more general materials and circumstances in plasmonics. We discuss in the

following the effect of changing the temperature and of considering other metals.

5.1 Effect of Temperature

The quantum conductivity σ0 used in the implementations of QCM discussed

above has been obtained from eqn (8) assuming tunneling at 0K temperature.

More generally, eqn (7) should be applied to calculate the conductivity for non-

zero temperature.

Fig. 9(a) shows the static conductivity σ0 of the vacuum gap between two

flat Au surfaces. Results are obtained using eqn (7) as a function of the gap

separation ℓ for the case of zero temperature (open red circles), 500K (open blue

circles) and 5000K (open green circles). The temperature-independent electron

transmission probability at the Fermi energy T (EF) is also shown for reference

by the continuous line. The results are obtained as described in subsections 2.1

and 2.2. Fig. 9(b) plots the distance and temperature dependent loss parameter γg

used in the QCM description of the effective medium. A continuous line shows

the results of the exponential approximation given by eqn. (17), and symbols

show the results for γg directly deduced from σ0 using eqn. (16). The results for

0K are identical to those presented in Fig. 3 and in Fig. 4.

Most notably, σ0 and γg, which parameterize the electron transfer due to

quantum tunneling, are very little sensitive to the temperature. The results for

0K and 500K are essentially identical, with the difference small enough not to

be appreciated in the figure. Even for a temperature as high as 5000K, which is

considerably larger than the melting point of gold, the induced change of σ0 and

γg remains small. σ0 is robust to temperature changes because the ensuing smear-

ing of the Fermi distribution symmetrically opens the channels for the electron

tunneling in both directions. While the electron energy dependence of the barrier

transmission T (Ω) breaks this symmetry, the characteristic electron energy scale

of the change of T (Ω) is a fraction of eV. This requires very high temperature

for the corresponding electronic states to be populated. For practical purposes,

the observed temperature dependence of γg should be negligible, inducing much

weaker changes than other temperature-dependent effects such as thermal expan-

sion of the nanoparticles or changes in the bulk permittivity of gold.

5.2 Other materials

The QCM can be applied to other metals besides Au in a straightforward manner,

following the description in Sections 2 and 3. Fig. 9(c) shows the evolution with

ℓ of the tunneling probability at the Fermy energy T (EF) and of the quantum-

mechanically calculated static conductivity σ0, for Au, Ag, Cu and Na surfaces

separated by vacuum. The results are generally similar in all these cases, particu-

larly for the three noble metals. Overall, the lower is the metal work function (see

Table 1 for the work functions of Na, Au, Ag and Cu) the larger is the conductiv-

ity and thus the smaller is the loss parameter for a fixed value of gap separation
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a) 

c) 

b) 

d) 

Fig. 9 Modeling for different materials and temperatures. (a, c) Tunneling probability at

the Fermi Energy T (EF ) (solid lines) and quasi-static conductance σ0 (open circles) as a

function of gap separation distance obtained from quantum-mechanical calculations. In

(a) different temperatures are considered (0K in red, 500K in blue, and 5000K in green).

T (EF ) is independent of temperature therefore all three cruves fall on the same position,

and so do the red and blue circles of σ0. Values represented here for Au at 0K correspond

to those in Fig. 3 and Fig. 4. In (c) different materials are considered (Au in red, Ag in

blue, Cu in green, and Na in magenta). (b,d) Tunneling loss parameter γg describing the

effective medium in the gap as a function of gap separation distance. Solid lines

correspond to the exponential expression used for the QCM implementation, while

crossed points are obtained from eqn. (16) using the static conductivity σ0 calculated

quantum-mechanically. In (b) the same temperatures as in (a) are considered and overlap

of lines for 0K and 500 K is produced. In (d) different materials are considered as in (c).
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[see Fig. 9(d)]. For the four materials, and excluding the narrowest gaps, T (EF)
and σ0 follow an approximately exponential variation with ℓ. The exponential

expression for γg used in the QCM [eqn (17)] is a good fit to the values directly

deduced from σ0 using eqn. 16, with the exception of very short distances where

this equation does not apply.

From a practical perspective, to set the permittivity εg of the effective medium

at the gap, the QCM requires to know the permittivity of the metal surrounding

the gap (εm)113, the values of ωp and γp determining the free-electron contribu-

tion to εm, and the characteristic lengths describing the distance dependence of

the free-electron (ℓc) and bound d-electron (ℓd) terms defining εg. ωp and γp can

be obtained on the basis of the ω dependence of εm at large wavelengths, and ℓc

and σ0 as discussed in section 2. The d-electron contribution to the permittivity,

εd
m, at ℓ = 0 can then be obtained by substracting the free-electron contribution

from εm . For reference, Table 2 indicates the values used in our calculations for

ωp, γp, ℓc and ℓd in the case of Au, Ag, Cu and Na, all surrounded by vacuum.

For pure Drude-metals such as Na, the d-electron contribution is absent and ℓd

is not necessary. Notably, the decay length ℓc takes similar values for the three

noble metals, but is noticeably larger for Na. For systems separated by water or

dielectrics53, we also expect to find significantly larger ℓc.

ωp (eV) γp (eV) ℓc (Å) ℓd (Å)

Ag 9.175 0.0212 0.42 0.79

Au 9.065 0.0708 0.4 0.79

Cu 8.853 0.0954 0.47 0.79

Na 5.16 0.218 0.75 -

Table 2 QCM parameters for Au, Cu, Ag and Na in vacuum: plasma frequency ωp and

losses γp of the Drude contribution to the dielectric function; characteristic length ℓc and

ℓd of the exponential functions describing the increase of the loss parameter, and the

decay of the d-electron contribution to the screening, respectively. ℓc and ℓd are given in

Å, and γg and ωp are given in eV. The value of ℓd is the one used in our calculations

although other alternatives are possible (see text for discussion). ℓd is not given for Na

because d-electrons do not play a role in the screening in this material.

In Fig. 10 we compare the spectra of extinction and near field enhancement

|Eg/E0| at the center of the gap of Au, Ag and Cu spherical nanoparticle dimers

in vacuum as a function of the separation d of the gap. The field is polarized along

the dimer axis, and the radius of each of the two identical nanoparticles is R = 25

nm. The qualitative effect of tunneling is very similar for all three cases. As has

been already discussed for Au, the extinction exhibits a gradual transition from

large distances to the overlapping regime, and the CTP resonances emerge just

before physical contact is established. The transition occurs around a threshold

distance dth of a few Ångströms which separates a range of redshifting (towards

contact) and a range of blueshifting (progressive overlapping) of the plasmonic

modes. The near field enhancement is maximized for all three materials for a

gap separation of a few Ångstroms, near dth, and it is quenched strongly for

narrower gaps. dth is similar for the three cases due to the similar values of ℓc

obtained. Along with the qualitative similarities, the quantitative differences in

the permittivity of different metals can strongly affect the details of the plasmonic
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sical calculations adequately describe the optical properties of plasmonic dimers.

In the intermediate range of distances, above ≈ 0.35 nm, classical nonlocality

modifies the exact properties of the plasmonic modes. Nonetheless, nonlocal

effects do not change the qualitative behaviour predicted by classical local mod-

els and they can be modeled by simple distance rescaling. For junction widths

below ≈ 0.35 nm the system is in the quantum tunneling regime. For these ultra-

narrow gaps, the charge transfer across the junction radically modifies the optical

response of the dimer, leading to the quenching of the near fields and to a com-

plete spectral redistribution of plasmonic modes. These strong effects cannot

be captured even qualitatively by current classical theories based on the local or

nonlocal hydrodynamic descriptions of the metal. The different relative influ-

ence of nonlocal and tunneling effects depending on separation distance should

be observed in very general systems characterized by nanometer gaps, at least for

spherical terminations126, and can thus be helpful in the interpretation of experi-

mental measurements.
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