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Ultimate limit of field confinement by surface plasmon polaritons 
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Johns Hopkins University Baltimore MD 21218 USA 
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We show that electric field confinement in surface plasmon polaritons propagating at the 
metal/dielectric interfaces enhances the loss due to Landau damping and which effectively 
limits the degree of confinement itself. We prove that Landau damping and associated with 
it surface collision damping follow directly from Lindhard formula for the dielectric 
constant of free electron gas Furthermore, we demonstrate that even if all the conventional 
loss mechanisms, caused by phonons, electron-electron, and interface roughness scattering, 
were eliminated, the maximum attainable degree of confinement and the loss 
accompanying it would not change significantly compared to the best existing plasmonic 
materials, such as silver. 

 

Introduction 

Steady advances in nanofabrication made in the last decade had inspired research in nano-
plasmonics, a field that carries many exciting promises in various areas of technology such as 
sub-wavelength imaging, sensing, nano-scale optical interconnects and active devices [1,2].  In 
one way or another, these promises are all hinged upon the ability to concentrate optical field 
into the sub-wavelength dimensions that is a salient feature of surface plasmon polaritons 
(SPP’s), whose nature is a combination of electro-magnetic field with charge waves of free 
carriers in metal (or semiconductor). When the dimensions are reduced way below wavelength 
the magnetic field is greatly diminished (static limit), and the energy which is normally stored in 
the form of magnetic energy is instead stored in the form of kinetic energy of carriers (kinetic 
inductance) which makes sub-wavelength oscillation mode sustainable. Unfortunately and 
inevitably, the free carrier oscillations dissipate energy at a very high rate, of the order of 
γm~1014s-1 in noble metals and 1013s-1 in highly doped semiconductors. As a result, the losses in 
the SPP which are significantly sub-wavelength (in case of propagating SPP’s it means the SPP 
propagation constant β much larger than wave-vector in dielectric kd) are always on the scale of 
γm independent on the shape and exact size as long as it is significantly sub wavelength [3]. Due 
to these high losses the promises of nanoplasmonics, which include miniature efficient sources 
and detectors of radiation, nano-scale optical interconnects, super-resolution imaging, and others 
has not been fully realized yet. [4]  
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The reason the optical losses in metals are high is unfortunately the same one that makes support 
charge oscillations at optical frequencies sustainable in the first place. High free carrier density 
(Fermi level high in the conduction band) requisite to maintain high plasma frequency also 
assures that the density of states into which these electrons can scatter is also very high, with 
strong scattering following from this unfortunate fact. In optical range the metal loss is caused by 
more than one mechanism [5] – scattering by phonons, carrier-carrier Umklapp processes, 
residual intra-band absorption and scattering on surface imperfections can all contribute on more 
or less equal scales, hence their reduction is not simple. Nevertheless, some strides in that 
direction are being made. Most obviously, reduction of metal surface roughness achieved with 
epitaxial growth have yielded reduced loss in Ag [6], while using Al in place of Ag [7] reduced 
parasitic interband absorption in the blue part of spectrum. The phonon-assisted absorption can 
be reduced, but not eliminated by going to cryogenic temperatures because the spontaneous 
phonon emission is possible even at absolute zero, while the temperature-independent Umklapp 
scattering may be somewhat mitigated in the materials with different (less spherical) shapes of 
Brillouin zone, although, once again, the numerous efforts with materials as diverse as ITO and 
TiN [8] so far have not shown substantial improvement over ubiquitous noble metals.  

Nevertheless, the hope is alive, that sooner or later, a novel material with negative ε and 
substantially lower losses in the optical range will emerge, and in anticipation of these 
developments, it is worthwhile to estimate their practical impact, i.e. what would be the 
maximum attainable degree of field concentration if all scattering-related loss in the metal in the 
optical range were essentially eliminated. Obviously, this question has been raised before. For 
instance, it has been long known that since SPP is a combination of field and electronics 
oscillation, maximum SPP wave vector Kmax cannot possibly exceed Fermi wave vector 
kF~1.2x108 cm-1 for noble metals, i.e. restricting the degree of field concentration to about 5 A. 
This is also the scale at which electron tunneling in the nanogap in the plasmonic dimers 
commences [9] that further assures that electric field cannot be confined to sub-nanometer 
dimensions. Yet this limit, usually referred to as “quantum limit” has not been achieved 
experimentally, and more recently a different explanation which has put the limit of file 
concentration in the range of a few nanometers has been put forward. The explanation was based 
on the non-locality phenomenon [10], or, in simpler terms on special dispersion of dielectric 
constant ε(k). Using hydrodynamic model of nonlocality Mortensen et al [11] have shown that 
when characteristic dimensions of the system become comparable with characteristic length 
lc=vF/ω, where vF is a Fermi velocity and ω is a frequency, the nonlocal effects prevent the light 
from tight confinement and broaden resonances, particularly for the dimer structures. Larkin and 
Stockman [12] pointed that spatial dispersion effects limit the resolution of the plasmonic 
superlens to about 5nm in the visible range, i.e. comparable to a few lc. They also pointed out 
that spatial dispersion is intimately related to Landau damping –i.e. direct absorption of 
electromagnetic waves by electrons below the Fermi level. Landau damping in the nanoscale 
metallic objects can also be interpreted as quantum confinement effect or as absorption assisted 
by surface collisions as explained by Kreibig and Volmer [13], who introduced the 
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phenomenological expression for this process as a “surface collision scattering rate” ~ /s Fv aγ  
where vF is  Fermi velocity a is the characteristic dimension of the metallic object. According to 
this phenomenological treatment the additional damping is caused by the limited physical 
dimension of the system and is the result of restriction of mean free path of electrons. 

However, to the best of our knowledge [14-15], there is no unified treatment of nonlocality (i.e. 
spatial dispersion of real part of ε) and Landau damping (i.e. spatial dependence of the imaginary 
part of ε) which would allow one to provide an unambiguous answer on which of two 
phenomena exerts stronger influence on SPP properties. In this work we develop this unified 
treatment and show that it is Landau damping, i.e. loss induced by the field confinement 
itself that is responsible for most dramatic limitations in plasmonics. We show that in case 
of propagating SPP on single metal-dielectric interface, the limitations arise due to the field 
(and not electron) confinement and thus are not influenced by the metal dimensions. 
Landau damping is shown to become important when characteristic dimensions are on the scale 
of 10nm which is at least an order of magnitude larger than lc, and, finally, and to some degree 
surprisingly, it is shown that total elimination of all other loss mechanisms in metals will not 
yield noticeable improvement in field confinement and power dissipation compared to the best 
plasmonic materials of today. 

 

 

Fig.1 (a) Sketch of the fields in the propagating SPP (b) Phonon or impurity assisted absorption of  a photon with a 
wavevector K~0 and a direct absorption of SPP with large wavevector K (Landau Damping) (c) wavefunctions 
involved in the absorption of SPP  

 

Damping rate of SPP due to surface collisions 

We start with the case of SPP propagating at the interface of metal 0mε <  and dielectric 0dε >  as 
shown in Fig1.a with propagating constant β and two components of electric field, normal 
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that is subjected to damping by surface collisions, and also the tangential one  
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which is not damped by surface collisions.  For the absorption in the metal to take place, the 
electron with energy 1E  and wavevector 1k   below the Fermi level make a transition to a state 
above it with energy 2 1E E ω= +   and wavevector 2k resulting in a wavevector mismatch ∆k that 
makes transition forbidden (Fig.1b) The value of mismatch is on the scale of 1~ / ~c F ck v lω −∆  
where Fermi velocity Fv  is about 81.4 10 /cm s×  for noble metals, i.e. for the 1eV photon energy 
the wave-vector mismatch is about 1nm=1 and is thus much larger than wavevector of 
electromagnetic wave. As a result, absorption usually involves additional act of scattering, due to 
phonons, electron-electron scattering, or imperfections that occur at the rate 0γ which occurs on 
the scale of a few tens of femtoseconds in most plasmonic metals.  At first glance, in the SPP 
both β  and q  are much less than 1nm-1 one should not expect `much absorption. But if one takes 
a look at the normal direction, one can see that electric field contains all kind of wavevectors – 
indeed by taking the one dimensional Fourier transform of (1) we obtain the power spectrum of it  

 2 2
0 2 2

/( ) qE K E
K q

π
=

+
  (3) 

Thus the fraction of power of the wave with wavevectors exceeding ck∆ is on the order of 
( ) (2 / )( / )c cF K k q kπ> ∆ ≈ ∆ . The penetration depth 1~ (2 )pL q −  of the SPP is typically on the scale of 

a few tens of nanometers, hence a few percent of the SPP energy does wavevector sufficient for 
Landau damping to take place. Landau damping is shown schematically in Fig1.b as direct 
“diagonal” transition between the states 1k and 2k caused by the electromagnetic wave with wave-
vector cK = Δk .  As a result of Landau damping imaginary part of the dielectric constant of the 
metal, describing the energy loss by electromagnetic wave (and hence by SPP) to the individual 
electronic excitations will increase. The phenomenological “surface collision rate” sγ  introduced 
by Kreibig modifies the expression for the effective dielectric constant of the metal as  

 ( )2
0"

3( ) p s
eff

ω γ γ
ε ω

ω
+

=   (4) 

where 0γ is the momentum relaxation rate due to phonons, electron-electron scattering and 
defects, usually referred to as bulk scattering rat., The surface collision rate may be introduced 
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phenomenologically [10,13 ], or quantum-mechanically [16], but it is simply added to the 
expression for dielectric constant using Matthiessen rule, and is not directly connected to 
nonlocality.  

We now evaluate the energy damping rate of SPP polaritons that is due to localization of the 
field in the vicinity of the metal interface with dielectric. As one can see from the Fig1.c the two 
free electron wavefunctions || 1( 2 )1/2

1(2)
xi ikL e eψ ⋅−= ||k r  (L being the normalization length) are orthogonal 

and optical transition between them is not allowed. But since the electric field is localized 
according to (1), the square of the interaction Hamiltonian between two states can be found as  

 

22 2 2 2
2 1 2 0

12 2 2 2 2 2 2

1 2
4 ( )

x x
e e k k EH

m m L k qω

⋅
= =

∆ +

p A


  (5) 

Note that the fact that electrons get reflected by the surface is not reflected in (5) – the existence 
of transition is strictly due to the confinement of the field. Since both states are close to Fermi 
energy, i.e. EFω <<  , we can make two important approximations Fxv kω ≈ ∆  where Fxv is 
the transverse component of velocity on the Fermi surface, and, furthermore

2 2
1 2 / 2 / 2x x Fxk k m mv m≈ , which upon substitution into (5) yields  

 ( )
2 4 2

2 0
12 4 2 2 2 24 1 /

Fx

Fx

e v EH
L q vω ω

=
+

  (6) 

We now invoke Fermi Golden rule to evaluate the total rate of the field induced upward 

transitions from the state 1, 2
1 122 (E )x FR H Lπ ρ= , where ( ) 1

(E ) 2x F Fxvρ π
=

=    is one-

dimensional density of the final states, evaluated under consideration that neither spin nor 
direction of propagation change as the transition takes place . We thus obtain  

 
( )

2 3 2
0

1 2 4 2 2 24 1 /
Fx

Fx

e v E
R

L q vω ω
=

+

  (7) 

Next we perform summation over all the states 1 inside Fermi sphere from which transitions into 
unoccupied states can take place. That involves integration over the Fermi surface and then 
multiplying by ω  as well as the normalization length L to obtain the surface rate of excitation 
of hot electrons per unit of area. Integration over the Fermi surface is simply multiplication by 
the three-dimensional density of sates 2 2 3

3 /D Fm vρ π=   and averaging over the angles which 

yields 3 3 / 4Fx xv v= , so we obtain  
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2 2 4 2

2 0
2 4 3 2 216 (1 / )

D F

c

dN e m v E
dt q kπ ω

=
+ ∆

  (8) 

Since cq k<< ∆  we can write the expression for the energy loss at surface  

 
2 2 4 2

2 0
2 3 216

D FdU e m v E
dt π ω

− =


  (9) 

where  2DU is the time-averaged two-dimensional density of kinetic energy of electrons in the 
SPP which can be found as the integral of three-dimensional density of energy  

 
2 2

2 0
2 2

0

1 ( )( ) ( )
4 8

m e
D b x

N e EU x E x dx
q m

ωε ε
ω ω

∞ ∂ = − = ∂ ∫  (10) 

where bε is the part of dielectric constant due to bound electrons, and the electron density in a 

parabolic band is 3 2 3 3 2 3/ 3 / 3e F FN k m vπ π= =  , hence   

 
2 2 3 2

0
2 2 3 2

1
24

F
D

e m v EU
qπ ω

=


  (11) 

Comparison of (9) and (11) immediately results in the energy relaxation rate  

 2

2

1 3 2
2

D
F s

D

dU qv
U dt

γ= − = −  (12) 

where sγ is the momentum scattering rate due to surface collisions  

 3
4s Fqvγ =  (13) 

that enters into expression (4) for the dielectric constant. This expression is not much different 
from the one in previous works, where the scattering rate for a nanoparticle with radius R is 

/s FAv Rγ = but in this work we have obtained this expression using full quantum mechanical 
derivation. The fact that our coefficient A is less than values for nanoparticles is easy to explain 
by the fact that our problem is one dimensional, hence not every electron contributes to the 
surface absorption.  

It is very important to stress that the “surface collision damping rate” obtained by us does 
not require the electrons to be confined, or even reflected– simple confinement of light on 
the scale of penetration length  1/ 2penL q=    is sufficient to overcome momentum 
conservation rules and cause substantial absorption even if the electrons are considered to 
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be free. In other words the confinement of light is what causes the damping, hence the proper 
name for sγ should be “Landau damping rate”, or, better, “time-of-flight” broadening. 
Nevertheless, we shall use “surface collisions damping” term to conform to the existing 
literature. 

Surface collision damping as a non-local effect 

Next we demonstrate that result (13) can also be obtained by using a simple, phenomenological 
picture of simply “shifting” the resonance frequency in Drude formula to account for the 
possibility of “diagonal in k-space” transition as shown Fig 1b. In the classical Drude formula, 
obtained in the long wavelength limit of Lindhard approximation the energy difference between 
two states involved in the optical transition is zero, but for the electromagnetic wave with the 
finite wavevector K the resonance is shifted by roughly Fv Kω α∆ =  where α  is on a scale of 
unity. Using Klimontovich-Silin-Lindhard approximate formula [17] for the dielectric constant 
of the metal one can obtain 3 / 5α =  

 
2

2 2
2 2 2

0

3( , ) 1 ln 32
5

pF
b b

F F F
F

KvK
K v Kv Kv K v i

ωωωε ω ε ε
ω ω ωγ

 +
= + − ≈ − −  − +

  (14) 

where 0γ is the “intrinsic” scattering due to phonons, defects and electron-electron scattering, and 

bε is the interband contribution to dielectric constant ( 4.1bε ≈ for Ag)  Equation (14) is easy to 
interpret as modification of Drude formula. For negligibly small wave vectors the resonant 
energy of the transition between two free electron states is zero, but as wave-vector increases the 
resonance shifts upward, by roughly 3 / 5 FKvω ω∆ ≈ <<  where Landau Damping takes place (the 
factor of 3/5 can be traced to the averaging over the Fermi surface). As shown in Fig2a the whole 
dispersion curve shifts towards higher frequencies resulting in small change of the dielectric 
constant. Separating dielectric constant into the real and imaginary parts one can write  

 

( )
( )

2 2 22
0 0

22 2 2 4 2 2
0 0 0

2 4
0 0

22 2 2 4 2 2
0 0 0

( , )
/

/( , )
/

p
r b

p
i

K K K
K

K K K

KK
K K K

ω
ε ω ε

ω γ ω

ω γ ωε ω
ω γ ω

−
= −

− +

=
 − + 

  (15) 

where 0 5 / 3 cK k= ∆  is roughly the wave-vector at which “diagonal” absorption of light (Landau 
Damping) commences.   
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Fig.2 (a) Sketch of the resonance shift due to non-locality (Eq (14). (b) Effective dielectric constant of SPP can be 
obtained by overlapping  spatial power spectrum of SPP |E(k)|2 with wave-vector dependent dielectric constant (real 
and imaginary parts)  

The plot of wavevector-dielectric constant is shown in Fig.2b  for 0/ 20ω γ =  and for the 
imaginary part of dielectric constant it consists of essentially flat response for 0K K<<  followed 
by the sharp delta-function like Lorentzian peaks near 0K K= ±  

 

2
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2 22
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p

i
p p

K K
K K K K K K K

K K K

ω γ
ω
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
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≈ 
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



  (16) 

The effective dielectric constant can be obtained by integrating (16) over the normalized power 
density spectrum of the electric field inside the metal 2 2 2( ) / ( )E K q K qπ= + , also of Lorentzan 
shape as plotted in Fig 2b for 0 /10q K= , which immediately gives us  

 ( )2 2 2 2 2
0 0 00

, 3 2 2 2 3 3 3
0

3 / 5
( , ) p p p p F p s

i eff

qvqKq
K q

ω γ ω ω γ ω ω γ γ
ε ω

ω ω ω ω ω
+

= + ≈ + =
+

  (17) 

where the surface collision broadening is 3 / 5 0.77s F Fqv qvγ = ≈  i.e. result that is very close to 
quantum mechanical derivation (13). Besides providing simple physical interpretation,   equation 
(21) also confirms the Matthiessen’s rule of the strength of absorption induced by surface 
reflection sγ being added to the strength of absorption induced by all other means 0γ .  

If we now turn our attention to the real part of the dielectric constant, then one can see that over 
the region where the 0K K<< , the power density spectrum 2( )E K looks like a delta function, 
while the integrating over the real part of Lorentzian leads to cancellation, and, as a result 

, ( ) ( ,0)r eff rε ω ε ω≈ . In other words, the nonlocality effects are dominated by the change in 
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imaginary part of the dielectric constant, i.e. surface collision damping (a.k.a. time-of-flight 
broadening) 

Ultimate limit of field confinement imposed by surface collision damping 

We now what to see how the increased damping due to field confinement manifests itself for the 
propagating SPP’s of Fig1.a.   The propagation constant of SPP can be found as  

 ( )( ) ( )
( )

m
D

d m

k ε ωβ ω ω
ε ε ω

=
+

  (18) 

where 1/2( ) 2 /D dk cω πε ω= is the  wavevector of the free propagating electromagnetic wave in the 
dielectric with frequency-independent dielectric constant dε  and the metal dielectric constant, 
according to (14)and  (17) given by  

 
2

2
0

( , )
[ ( )]

p
eff b

s

q
i q

ω
ε ω ε

ω ω γ γ
≈ −

+ +
  (19) 

and the collision-induced damping rate being  

 3 ( ) ( )
4s F xq v fγ ω ω=   (20) 

where  

 2 2( ) ( ) m Dq kω β ω ε= −   (21) 

and  

 
2 2

2 2 2 2
x

x
z x

E
f

qE E
β

β
= =

++
  (22) 

is a fraction of the energy contained in the normal component of electric field. If we now 
introduce the frequency of SP resonance, / ( )SP p b dω ω ε ε= +   and normalize the frequencies to it, 

/ SPω ω ω= , and introduce effective index of SPP as / Dkβ β=  and normalized decay constant 
/ Dq q k=  we obtain from (18) and (19)  

 
( )

2 1 2 1
0

2 1 2 1
0

( 1)( )
( 1 )

b d b b s

b d s

i Q i Q
i Q i Q

ε ω ε ε ω ε ωβ ω
ε ε ω ω ω

− −

− −

− − + +
=

+ − + +
  





  

  (23) 
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where 0 0/SPQ ω γ= and 1/2( ) 4 / 3s d F x rQ c v f qω ε=   and ( )rq ω  is the real part of normalized decay 
constant. Since ( )sQ ω itself is a function of ( )β ω  equation (23) can be solved self-consistently, by 
iterations, but prior to that a few important observations can be made. 

First, the impact of surface damping would become noticeable when 0~sγ γ , which will 
happen not far from the SP resonance, hence when 0~sQ Q , and since in the vicinity of SPP 
resonance q β≈ 

  and 1/ 2xf ≈  we obtain the value of effective index at which the surface dumping 
mast be taken into account,  

 1/2
0

8
3s

d F

c
v Q

β
ε

≈   (24) 

If we consider the combination of Ag and GaN (
1/2 13 1 15 1

0 02.3,  3.2 10 ,  4.5 10 ;  140;d SPs s Qε γ ω− −= = × = × ≈ [18] ) we obtain 1.6sβ ≈ while for GaN –Au 
combination ( 14 1

0 01.2 10 ;  43;s Qγ −= × ≈ [18]) we obtain 5sβ ≈  . As expected, it is for good metal, 
like silver that surface collision role becomes important early on, while for the less perfect metal, 
like gold the influence of surface collision does not become important until much later. 

Second, one can use (23) to find the ultimate value of the effective index, and hence 
confinement, of SPP which could have been obtained in the hypothetical “ideal” metal with 

0 0γ = , i.e. free of defects, phonon scattering, electron-electron interaction, and residual interband 
absorption. Obviously, such metal does not exist, however it is useful to see what kind of 
improvement can be achieved by reducing the loss in the metal.  By inserting 1ω =  and 1

0 0;Q− =  
into (23) we obtain  

 
( ) ( )

1/2

max
max,r

8
3

d s d

b d b d F

iQ ci
v

ε εβ
ε ε ε ε β

= ≈
+ +





  (25) 

Therefore we obtain a rather simple expression for the maximum effective index (real part) 
attainable with the “ideal” metal  

 
1/31/2

max,r
4
3

d

b d F

c
v

εβ
ε ε

 
≈  + 

   (26) 

Then for a wide variety of dielectrics transparent in the visible and near IR with refractive 
indices between 1.5 and 3, max,r4 4.5β< < , so one arrives at a rather surprising result – one can 
reduce the wavelength of the SPP propagating on the metal-dielectric interface by no more than a 
factor of 4.5 relative to the plane wave propagating in dielectric, no matter how low is the loss in 
the bulk metal. 
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Numerical Results 

We now calculate the dispersion curves   (23) for the SPP propagating on the boundary between 
the metal with silver-like dispersion ( 4.1,  9.3 ;b SP eVε ω= = )  and GaN 1/2 2.3dε =  resulting in SPP 
resonance near 415nm. When it comes to the scattering constant in the metal we shall consider 5 
different cases: 

A. The best bulk silver with bulk damping constant 13 1
0 3.2 10 sγ −= × and no surface collision 

damping taken into account 0sγ =  
B. The best bulk silver with bulk damping constant 13 1

0 3.2 10 sγ −= × with  surface collision 
damping taken into account 
 

C.  “Dirty silver” with bulk damping constant 14 1
0 1.2 10 sγ −= × similar to that of gold and no 

surface collision damping taken into account 0sγ = .  The reason for using “dirty silver” 
instead of gold is that one cannot observe interface SP resonance in gold in combination 
with any dielectric due to high interband absorption, but to see how the surface collision 
damping affects metals with reasonably high bulk loss is important.  

D. “Dirty silver” with bulk damping constant 14 1
0 1.2 10 sγ −= × similar to that of gold with 

surface collision damping taken into account. 
E. “Ideal metal” with no bulk damping 0 0γ = , with surface collision damping taken into 

account. 

 

Fig.3 (a) dispersion curves (b) Figure of Merit vs wavevector (c) Propagation length vs. Confinement width of SPP 
on the interface between Ga-N and Ag-like metal for the following cases: (A) The best bulk silver with bulk 
damping constant 13 1

0 3.2 10 sγ −= × and no surface collision damping taken into account 0sγ =  (B) Same with  
surface collision damping taken into account (C)  “Dirty silver” with bulk damping constant 14 1

0 1.2 10 sγ −= × similar 
to that of gold and no surface collision damping taken into account 0sγ = .  (D) Same with bulk damping constant

14 1
0 1.2 10 sγ −= × similar to that of gold with surface collision damping taken into account. (E) “Ideal metal” with no 

bulk damping 0 0γ = , with surface collision damping taken into account. 

The results are shown in Fig. 3a, as well as the light line representing propagation of 
plane electromagnetic wave in GaN. As expected, not taking into account surface damping for 
the best silver (curve A) leads to very large propagation constant, with effective index exceeding 
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7, but once surface collisions damping have been included (curve B) the propagation constant is 
reduced almost two-fold. If we now consider the more realistic silver, full of defects due to 
surface deposition process, whose damping rate is comparable to gold, the curves without (C) 
and with (D) surface collision damping, the latter’s impact is less significant, although still 
prominent. But it is the curve (E) which is most telling – if one starts with the best available 
silver and then hypothetically gets rid of all damping processes, being it defects, phonons or 
electron-electron interaction, then, even if the surface is atomically smooth the increase of the 
attainable propagation constant max,rβ  (and hence the degree of confinement q) will be only about 
12%, and the maximum effective index will not exceed roughly 4.4, just as predicted by (26). 
That means the minimum confinement depth in the normal direction 1 1

min, ( ) / 2x dd q q− −= +  will not 
be less then roughly  / 25D dnλ  where, 1/2

d dn ε= . Furthermore, if we now consider the imaging 
using SPP’s, the superlens [19,20] and apply the analysis of [21], the minimum spot size 
(confinement in lateral direction) achievable in this configuration would be 

min,x max,2 / / 4.4rd nπ β λ≈ ≈ , i.e, close to the result obtained in [12].  

To show how surface collision damping affects losses we also plot in Fig.3b the figure of 
merit, defined as the ratio Re( ) / 2 Im( )FOM β β= , or as one can say, the phase shift accumulated 
over one absorption length. Once again we can see that for the high quality silver (curves A and 
B)  the impact of surface collisions becomes important at large wavevectors with almost an order 
of magnitude difference, achieved at 1150r mβ µ −=  while for the higher loss metal (curves C and 
D) the difference is somewhat less. But the most important is the fact that for the “ideal” metal 
FOM improves by only a factor of two relative to the “best silver” 

Yet another way to show the effect of surface collision damping is to plot the propagation 
length 1/ 2 Im( )propL β=  vs. the field penetration width in dielectric 1/ 2 Re( )con dL q= as demonstrated 
in Fig.3c.  Reducing the bulk losses 0γ   helps to increase propagation length by about an order of 
magnitude for the confinement of wider than 50nm, but for tighter confinement, as surface 
collision damping becomes dominant, and curves B,D, and E get close to each other, getting rid 
of all bulk losses results in only marginal increase of the propagation length 
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Fig.3 (a) sketch of gap SPP (b) Propagation length vs. Confinement width of gap SPP with Ga-N core and metal 
cladding (A) The best bulk silver with bulk damping constant 13 1

0 3.2 10 sγ −= × and no surface collision damping 
taken into account 0sγ =  (B) Same with  surface collision damping taken into account (C)  Gold with bulk damping 
constant 14 1

0 1.2 10 sγ −= × similar to that of gold and no surface collision damping taken into account 0sγ = .  (D) 
Same with bulk damping constant 14 1

0 1.2 10 sγ −= × similar to that of gold with surface collision damping taken into 
account. (E) “Ideal metal” with no bulk damping 0 0γ = , with surface collision damping taken into account. 

 

To further emphasize this point we consider the case of gap plasmon [22], Fig.4a with 
GaAs core and metal cladding, made either of Ag or Au.  Once again we consider the same 5 
cases as above, except cases C and D now refer to gold, as well as to “dirty silver”. The 
dispersion curves for all 5 cases, shown in Fig.4b are essentially, identical, but the amount of loss 
differ dramatically, as shown in Fig. 4c where the propagation length is plotted versus the gap 
width.  As one can see inclusion of surface collision damping greatly reduces propagation length 
for silver (curves A and B) and somewhat less than that for gold. The most significant 
observation to be made from this figure is that hypothetically avoiding all bulk loss in the “ideal” 
metal (curve E) does increase propagation length for the weakly confined gap plasmons with gap 
size over 100nm, but for the tightly confined ones, with gap size less than 50nm the effect is 
marginal. It appears that surface collision damping alone makes propagation length shorter than 
1µm, which makes gap plasmon impractical for application as, say, interconnect.  

Conclusions 

In this work we have considered the impact of non-local effects on the properties of 
propagating SPP’s. We have shown that the increase in loss is due to the final extent of the 
optical field, rather than due to collisions with the surface. In other words, surface collision 
damping/broadening is better described as time-of-flight broadening. We have obtained full 
quantum-mechanical expression for the damping rate and corresponding change in the imaginary 
part of dielectric constant. We have confirmed that the increased damping is a non-local effect 
that follows naturally from the Lindhard theory of the wavevector-dependent dielectric constant 
and does not have to be introduced phenomenologically. We have shown that nonlocality – 
engendered change in the imaginary part of dielectric constant exerts much stronger influence on 
properties of plasmonic structures than the dispersion of the real part.  

We then applied the theory to the case of propagating SPP’s and have shown that not 
only surface collision damping increases loss, but it actually prevents the field from being 
concentrated into the tight regions. As a result, even if the bulk scattering of the metal had been 
completely eliminated, one would have not be able to concentrate the field into the regions that 
are substantially tighter than roughly / 4.5 dnλ  i.e exceeding the diffraction limit only by a factor 
of few. One can show that similarly, in case of dimers, not only the line width will broaden as 
two nanoparticles will get closer [14], but the  mode itself will expand. This can be simply 
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understood using coupled mode analysis [23] in which the gap mode in dimer consist of 
superposition of multipole modes. Since higher order modes are strongly confined near surface, 
they are damped relative to lower order modes, and as a result they do not get excited as easily as 
lower order modes. 

These results raise a very important question about the impact of the efforts to reduce 
bulk loss in metals. It appears that eliminating the defects and imperfections of fabrication 
process, and, hypothetically, reducing phonon and electron-electron scattering will not reduce 
loss significantly relative to today’s best silver for the substantially (factor of few) sub-
wavelength structures. There are of course other compelling reasons for looking at different 
materials, such as cost and compatibility with CMOS processes for integration of Plasmonics 
with electronics. Furthermore, when it comes to the structures that are not tightly confined such 
as long range SPP’s [Bern] the already relatively low loss can be further reducing using material 
with a smaller bulk loss. But once the confinement gets really tight surface collision damping 
makes losses high and nearly independent of bulk losses. It seems that as long as there exist two 
electronic states separated by photon energy, one occupied and one empty,  there will always be 
a transition between two of them, and hence absorption. The only way to avoid all losses, 
including Landau damping is to develop materials with narrow conduction bands, such that there 
is no empty state within ω  from the bottom of the band [24], so that transition cannot take place 
by any means. Perhaps that is where the effort to develop low loss materials should be directed.  

 

The author acknowledges fruitful discussions with A. V. Uskov  
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