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Abstract 

A theoretical framework is presented to describe and to understand the observed relationship 

between molecular conductances and charge transfer rates across molecular bridges as a function 

of length, structure, and charge-transfer mechanism. The approach uses a reduced density matrix 

formulation with a phenomenological treatment of system-bath couplings to describe charge-

transfer kinetics and a Green’s function based Landauer-Buttiker method to describe steady-state 

currents. Application of the framework is independent of the transport regime and includes bath-

induced decoherence effects. This model shows that the relationship between molecular 

conductances and charge transfer rates follows a power-law. The nonlinear rate-conductance 

relationship is shown to arise from differences in the charge transport barrier heights and from 

differences in environmental decoherence rates for the two experiments. This model explains 

otherwise puzzling correlations between molecular conductances and electrochemical kinetics. 

 

 

 

 

Keywords: charge transport, molecular junction, electrochemical rate constant, molecular 

bridge, decoherence, superexchange, thermal hopping  
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 The last decade has witnessed a growing interest in understanding the relationship between 

charge transfer (CT) kinetics and molecular conductance.1-4 A substantial literature exists for 

unimolecular CT rates in donor-bridge-acceptor (D-B-A) structures comprised of charge donor 

(D) and acceptor (A) moieties that are connected by a bridging molecular unit (B).5-9 In addition, 

the chemical donor and acceptor groups may be replaced with electrodes (M) to measure 

unimolecular electrochemical CT rates10-13 and molecular conductances. 14-19  One expects 

unimolecular CT rates, molecular conductances, and electrochemical rates to be linked because 

the conduit (bridge) for charge transmission can be made chemically identical in the different 

experiments. Yet, recent experimental studies find fundamental differences among the transport 

characteristics in these experiments, and these differences may lead to nonlinear relationships 

among the measured quantities.20 

 Nitzan highlighted the fundamental connection between steady-state CT rates in D-B-A 

systems and their molecular conductances over a decade ago.21, 22 He proposed a linear 

relationship between the nonadiabatic, unimolecular CT rate constant in D-B-A structures and 

the zero bias molecular conductance in M-B-M junctions, assuming identical molecular bridges 

and a superexchange CT mechanism.1 Subsequently, he described hopping CT through structures 

with identical repeating bridging units, and found a similar linear correlation between CT rates 

and molecular conductances for long bridges with high tunneling barriers.2 Berlin and Ratner 

extended that treatment to the hopping CT regime with more general molecular bridge models, 

while retaining the large-barrier assumption.3 In an alternative approach, Lewis and coworkers 

used Fermi’s golden rule to relate unimolecular CT rates (in D-B-A molecules), electrochemical 

rate constants (in M-B-A assemblies), and molecular conductances (in M-B-M junctions),4 

treating the donor-acceptor electronic coupling as a parameter.  For D-B-A systems, the CT was 

assumed to occur between a single electronic state of the donor and a single electronic state on 

the acceptor; for M-B-A and M-B-M systems, the CT was allowed to occur between multiple 

electronic states on the electrode and a molecular acceptor (M-B-A), or with multiple electronic 

states on a second electrode (M-B-M). If each electronic state on an electrode is considered 

analogous to the single state on the donor/acceptor molecule, then CT across M-B-A/M-B-M 

junctions can be described by an effective electronic coupling per electronic state times a 

density-of-states factor for the electrodes. Assuming that the D-B-A electronic coupling is equal 

to the M-B-A/M-B-M electronic coupling per charge carrying state of the electrode, Traub et al. 
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predicted the resistances of M-B-M structures based on available CT rate data for alkanethiolate, 

oligophenylene, and DNA bridges in D-B-A or M-B-A experiments.4 Each of these earlier 

studies1-4 predicted a linear correlation between the tunneling or hopping CT rate and the 

conductance for a high barrier molecular bridge. Yet experiments indicate that molecular 

conductances and CT rates do not satisfy simple linear correlations (vide infra, ref. 20). 

 Fig. 1 plots experimental conductances (obtained from scanning tunneling microscope-

controlled break junction (STM-BJ) experiments) versus electrochemical CT rates for the same 

molecular bridges.20 In all cases, molecules were attached (at both ends in the conductance 

experiments and at one end in the electrochemical experiments) to the gold electrode through 

thiol linkers. In the electrochemical experiments, ferrocene tethered to the molecule’s free 

 

 
Figure 1. Dependence of the single molecule conductance   on the electrochemical charge transfer 

rate constant k0 for alkanes (red symbols), ss PNA constructed of thymine nucleotides (ss PNA-Tn; n = 

3 – 6) (green symbols), and ds PNAs (blue symbols). Lines represent the least squares fits in the form 

=A×(k0)m. Electrochemical rate constant values are adapted from Ref. 10  for alkanethiols, and Refs. 

11 and 12 for ss PNAs. Conductance values for alkanedithiols are adapted from Ref. 19. Note that the 

same type of linker was used to attach the ss- and ds PNA molecules to the gold surface (Cys), whereas 

the alkyl chains are directly coupled to gold with thiol groups, rather than cysteines. In conductance 

measurements, several values of single-molecule conductance were determined for each molecule, 

dependent on details of the Au-S covalent bond geometry. H, M, and L represent respectively high, 

medium, and low families of reported conductances. Figure adapted from Ref. 20. 
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terminus was used as a redox reporter for rate measurements. Data are presented for three 

families of bridges: i) alkanes, ii) single stranded peptide nucleic acids (ss PNA), and iii) double 

stranded peptide nucleic acids (ds PNA). For each of the three families of bridges, the 

conductance and rate data are plotted as a function of bridge lengths. These data reveal two 

dramatic features that are at odds with previous theoretical predictions.1-4 First, the conductance-

rate data for each type of bridge is best fit by a power law relationship of the form:   (k0)m. 

Assuming that each measurement decays exponentially with distance (k0  exp(-β𝑘0 ×L)  and  

 exp(-×L)), the exponent is m=/β𝑘0.20 Thus, a linear correlation between rates and 

conductances is recovered only when  = k0.  However, m values that are extracted from the 

data in Fig 1 range between  0.6 – 0.9 for alkanethiols and between 0.6-0.7 for the nucleic acid 

bridges.20 Second, the value of m is not transferrable for rate-conductance relationships among 

different molecular bridges. For example, 7-10 base pair  ds PNA (~25-35 Å length) shows both 

lower CT rates and higher molecular conductances than 10-18 Å ss PNA sequences and 10-14 Å 

alkane chains. In this manuscript we develop a theoretical framework to identify the physical 

parameters governing the complex rate-conductance relationship shown in Fig. 1.  

 Because previous theoretical models1-4 predict a linear correlation between CT rate and 

molecular conductance, assumptions inherent to the models must be violated for the data in Fig. 

1. First, the expressions in Ref. 1-4 were derived for specific mechanisms of charge transport, 

i.e., superexchange 1, 4 or incoherent hopping with large donor/electrode-to-bridge energy gaps.2, 

3 In general, CT may include admixtures from different coherent mechanisms as well as from 

incoherent variable-range hopping and nearest neighbor hopping.23-25 Indeed, recent studies with 

nucleic acids (PNA, DNA) found that a mixture of charge-transport mechanisms operate as a 

consequence of thermal fluctuations of the structures.25 Another simplifying assumption used in 

deriving the expressions in Ref. 1-4 is that the CT energy barriers are equal (i.e., the energy gaps 

between charge carrying states on the bridge and those on the donor/acceptor/electrode are 

equal) for D-B-A/M-B-A structures and for M-B-M junctions. Because the CT energy barrier is 

a crucial determinant of CT mechanism(s), different CT barriers in conductance and rate 

measurements can lead to different CT mechanisms, or their admixtures. Third, the 

measurements are performed under different environmental conditions.  That is, D-B-A rates are 

measured in solution, M-B-A rates are measured at electrochemical interfaces, and M-B-M 

conductances are measured in molecular junctions. These different environments can lead to 
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differences in the relaxation rates for populations and coherences of the bridge states. Thus, even 

if the molecular bridge retains the same conformation and electronic structure in the different 

settings, differences in the molecule-bath interactions and differences in the energies of 

donor/electrode charge states could cause deviations from a linear conductance-rate relationship. 

These effects are examined in the models developed here. 

 Describing mixed mechanism charge-transport is challenging, and general theoretical 

expressions that link unimolecular charge-transfer rates with steady state molecular conductances 

arising from mixed mechanisms do not yet exist. Reduced density matrix approaches to calculate 

charge-transfer rates, including bath-induced decoherence, were formulated by several groups.21, 

26, 27  The theoretical rates  may be linked to unimolecular CT rates measured in experiments27 

when excess charge population on the bridge is negligible (i.e., for large tunneling barriers). A 

recent study by Yeganeh et al. describes an approach to calculate steady-state non-adiabatic CT 

rates  in the framework of non-equilibrium Green’s functions, which are typically used to 

calculate molecular conductances.28 This approach is appealing, as it enables the description of 

steady-state non-adiabatic CT rates and conductances in one formalism; however, the bridge is 

not explicitly treated in the prescription and the approach cannot be used to describe transient CT 

kinetics in D-B-A or M-B-A structures. In the present study, the molecular conductance through 

a bridge is modeled in a Green`s function based Landauer-Buttiker framework, and the transient 

unimolecular CT rate (and the electrochemical rate constant) is treated with an initial value 

formulation of the density matrix. The framework presented here allows the computation of rate-

conductance relationships for molecular bridges of different lengths, for different chemical 

species, and for mixed CT mechanisms. Our model calculations find that different CT energy 

barriers and different bath-induced decoherence effects (for molecular conductance versus CT 

rates) can produce nonlinearities in the rate-conductance relationships. These effects are not 

included in earlier theoretical studies of the link between rate and conductance,1-4 which 

therefore predict linear correlations. The theoretical framework developed here helps to 

rationalize the complex relationship between the experimental rate and conductance data shown 

in Fig. 1.  

 

Theoretical Models 
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(A)                                                                           (B) 

Figure 2: Schemes depicting models used for calculating CT rates (left) and conductance (right). In 

both models, the bridge is defined by tight binding couplings tij and equal site energies EB. The bridge 

is coupled (couplings tD1 / tNA) to donor/acceptor sites (energies ED = EA) in the CT rate model and to 

electrodes (couplings L1 / NR) of Fermi energy EF in the conductance model. The CT energy barriers 

are given by EDB = EB – ED and EFB = EB – EF in the CT rate and conductance models respectively. 

Bath effects are included in the CT rate model through donor/acceptor population relaxation terms 

D/A and through pure dephasing terms mn (not shown) of the system-bath Liouvillian (eqn. 4), which 

damp the coherences involving bridge states. Bath effects are included in the conductance model by 

coupling each bridge site to Buttiker probe electrodes (P=1… N) with couplings given by P.  

We aim to establish a framework for calculating CT rates and molecular conductance with a 

minimum number of transferable parameters. The computational approach is structured to be 

independent of the charge-transfer mechanism and can incorporate bath-induced decoherence. 

For both rate and conductance calculations, the bridge is represented with a tight-binding 

Hamiltonian (HBR). There are N identical repeat units in the bridge with equal site energies (EB) 

and equal nearest-neighbor couplings (tB): 

�̂�𝐵 = ∑|𝑚 > 𝐸𝐵 < 𝑚|

𝑁

𝑚=1

 + ∑|𝑚 > 𝑡𝐵 < 𝑚 + 1|

𝑁−1

𝑚=1

+ |𝑚 + 1 > 𝑡𝐵 < 𝑚|                                (1)    

As shown in Fig. 2, the tight binding bridge (green lines) is then either coupled to molecular 

donor-acceptor sites with nearest neighbor couplings (tD1 / tNA terms in Fig. 2A) for CT rate 

calculations, or to donor-acceptor electrodes represented through renormalized complex 

broadening matrices (L1 / NR ). We next describe how the schemes in Fig. 2 can be used to 

describe unimolecular charge transfer rates, electrochemical rate constants, and molecular 

conductances. The theoretical approach presented here can be extended to more elaborate model 

structures and Hamiltonians. 

 

Expression for the Charge Transfer Rate:  
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The CT rate is computed from the reduced density matrix of a donor-bridge-acceptor system 

coupled to a bath, which is obtained by solving the quantum Liouville equation. In our simple 

model, the molecular bridge is connected to the donor (D) and acceptor (A).  The donor with 

energy ED is coupled to the first bridge site with interaction tD1.  An acceptor site (energy EA) is 

connected to the Nth bridge site with coupling tNA. The system Hamiltonian, �̂�𝑆, is: 

�̂�𝑠 = �̂�𝐵𝑅 + ∑ |𝑚 > 𝜀𝑚 < 𝑚|

𝑚=𝐷,𝐴

+  |𝐷 > 𝑡𝐷1 < 1| + |1 > 𝑡𝐷1 < 𝐷| + |𝐴 > 𝑡𝑁𝐴 < 𝑁|

+ |𝑁 > 𝑡𝑁𝐴 < 𝐴|                                                                                                               (2) 

and the quantum Liouville equation is 

                                         
𝑑𝜌

𝑑𝑡
= −

𝑖

ℏ
�̂�𝜌 = −

𝑖

ℏ
(�̂�𝑆 + �̂�𝑆𝐵)𝜌                                                                    (3) 

Here, the density matrix dynamics is determined by the Liouvillian �̂� = �̂�𝑆 + �̂�𝑆𝐵, which is a sum 

of the real system Liouvillian �̂�𝑆 = [�̂�𝑆, 𝜌]  and the complex system-bath interaction Liouvillian, 

�̂�𝑆𝐵, that accounts for the decay of the density matrix elements. Coupling of the D-B-A system 

electronic states to a bath introduces dissipative energy exchange between the system and the 

bath leading to population relaxation. Further, interaction with the bath creates a distribution of 

electronic transition energies leading to a decay of electronic coherences (dephasing). The bath is 

not described explicitly (through a microscopic model), and its influence on the system density 

matrix (population relaxation and dephasing) are included phenomenologically in the system-

bath Liouvillian, �̂�𝑆𝐵: 

                          [�̂�𝑆𝐵]𝑚𝑛,𝑚𝑛 = −𝑖 (
𝛾𝑚

2
+

𝛾𝑛

2
+ 𝛾𝑚𝑛[1 − 𝛿𝑚𝑛])                                                            (4) 

Here, 
𝛾𝑚

ℏ⁄  is the population relaxation rate from site m (inducing relaxation of the diagonal 

density matrix element mm), and 
𝛾𝑚𝑛

ℏ⁄  is the pure dephasing rate that accounts for coherence 

loss between sites m and n (mn). With this formulation, population relaxation on sites m and n 

(𝛾𝑚/𝛾𝑛) produces dephasing that causes coherences mn(mn) to decay, even if 𝛾𝑚𝑛(mn) is set 

to zero in eqn. 4. The time-dependent density matrix of eqn. 3 describes charge flow in the 

system. 

 At time t = 0, the charge is localized on the donor (DD=1 and all other diagonal/off-diagonal 

density matrix elements are zero). Eqn. 3 is then solved to determine the charge population on 

the acceptor as a function of time, AA(t). This computation is accessible in the eigenstate basis 
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that diagonalizes the Liouvillian. Because the Liouvillian is complex, it has two sets of 

eigenvectors that connect the site basis to its eigenstates.29, 30 The right (ket) eigenvectors XR are 

defined by: 

                                                                   �̂�𝑋𝑅 = 𝜀𝑅𝑋𝑅                                                                      (5) 

and the left (bra) eigenvectors XL are defined by: 

                                                                              𝑋𝐿�̂� = 𝜀𝐿𝑋𝐿                                                                     (6) 

In practice, we compute the left eigenvector from 𝑋𝐿 = (𝑋′)† where 𝑋′ is the eigenvector of �̂�†. 

Both left and right eigenvectors correspond to the same set of complex eigenvalues,  = R = L, 

and are normalized as: 

�̃�𝐿 =
𝑋𝐿

√𝑋𝐿𝑋𝑅
       ;       �̃�𝑅 =

𝑋𝑅

√𝑋𝐿𝑋𝑅
                                                  (7) 

These eigenvectors link the density matrix elements in the site basis to the density matrix 

elements in the eigenstate basis.  

𝜌𝑚𝑛(𝑡) = ∑ 𝜌𝑎𝑏(𝑡)

𝑁+2

𝑎,𝑏=1

�̃�𝑚𝑛𝑎𝑏
𝑅                                                                    (8) 

The pairs of indices m,n and a,b enumerate density matrix elements in the site basis (m, n = D,A, 

1…N) and in the eigenstate basis (a,b=1…N+2), respectively. The time evolution of the density 

matrix elements in the site basis may be written in terms of the complex eigenvalues of the 

Liouvillian ab= [�̂�]abab: 

𝜌𝑚𝑛(𝑡) = ∑ 𝜌𝑘𝑙(0)

𝑁+2

𝑎,𝑏,𝑘,𝑙=1

�̃�𝑎𝑏𝑘𝑙
𝐿 �̃�𝑚𝑛𝑎𝑏

𝑅 𝑒−
𝑖
ℏ
ε𝑎𝑏𝑡                                                    (9) 

The donor to acceptor CT rate constant 𝑘𝐶𝑇 is computed from the probability of charge (all on 

the donor site at time t=0) being transferred to the acceptor site at time t. Eqn. 10 defines the CT 

rate constant,𝑘𝐶𝑇, as the inverse of the average time, <AA>, to populate the acceptor; namely31  

𝑘𝐶𝑇 =
1

< τ𝐴𝐴 >; 
=

∫ 𝜌𝐴𝐴(𝑡)
∞

0
d𝑡

∫ 𝑡𝜌𝐴𝐴(𝑡)d𝑡
∞

0

                                                                   (10) 

  The rate in eqn. 10 is an activated rate, i.e charge transfer occurs when the donor and 

acceptor are resonant. Therefore, eqn. 10 does not include a description of nuclear relaxation 

following electron transfer.  However, we now show that the rate constant kCT in eqn. 10 is 

proportional to the non-adiabatic charge transfer rate constant kDA between donor and acceptor 
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when the bridge is energetically well separated from the donor and acceptor.32 For large energy 

separations between the donor and bridge states, the Hamiltonian in eqn. 2 may be transformed 

into an effective two-state Hamiltonian by a Löwdin partitioning scheme33-35:  

                �̂�𝑠 = ∑ |𝑖 > 𝜀𝑖 < 𝑖|

𝑖=𝐷,𝐴

+  |𝐷 > 𝑡𝐷𝐴 < 𝐴| + |𝐴 > 𝑡𝐷𝐴 < 𝐷|                                           (11) 

where tDA is the effective electronic coupling between donor and acceptor. In the case of 

population relaxation only on the acceptor (i.e., D =0) and tDA << A, eqn. 10 gives the analytical 

result kCT ~ 2|tDA|2 /ħA. Comparison of this result with the high-temperature non-adiabatic CT 

rate, given by 

                                            𝑘𝐷𝐴 =
2𝜋

ℏ
|𝑡𝐷𝐴|2

1

√4𝜋𝜆𝑘𝐵𝑇
  exp (−

(Δ𝐺0+𝜆)
2

4𝜆𝑘𝐵𝑇
)                        (12)  

where  is the reorganization energy and G0 is the Gibbs free energy of reaction,32 indicates that 

                                            𝑘𝐷𝐴 =
𝜋

𝐴

√4𝜋𝜆𝑘𝐵𝑇
 𝑘𝐶𝑇 exp(−

(Δ𝐺0 + 𝜆)2

4𝜆𝑘𝐵𝑇
)                                           (13) 

Thus, when the electronic states of the bridge are energetically distant from the donor/acceptor 

energies, the non-adiabatic charge transfer rate is given by kCT in eqn. 10, evaluated for resonant 

donor-acceptor states and weighted by the Marcus activation factor. Both the prefactor and the 

Marcus activation factor in eqn. 13 depend only on properties of the donor/acceptor and are 

independent of the bridge (although and G0 are weakly distance dependent). Thus, the non-

adiabatic charge transfer rate, kDA, for donor-bridge-acceptor systems is linearly related to the 

rate constant kCT that is defined by eqn. 10, when the donor and acceptor are the same. 

 

Expression for the Electrochemical Rate Constant 

In electrochemical experiments, the charge transfer occurs from an electrode surface to a 

molecular species (redox couple) such as ferrocene. The Gibbs free energy for the charge 

transfer reaction from an electrode state of energy  is: 

                                             ∆𝐺0 = 𝜀𝐹 − 𝜀 + 𝑒𝜂                                                                                      (14) 

where  is the electrochemical overpotential and F is the Fermi function of the electrode. In a 

density of states picture,36 the electrochemical charge transfer rate from the donor electrode to 

the redox couple may be written by generalizing eqn. 13 as:  
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                     𝑘𝐸𝐿 =
𝜋

𝐴

√4𝜋𝜆𝑘𝐵𝑇
 ∫ 𝑘𝐶𝑇(𝜀) exp(−

(𝜀𝐹 − 𝜖 + 𝑒𝜂 + 𝜆)2

4𝜆𝑘𝐵𝑇
) 𝜌𝐸𝐿

∞

0

𝑓𝐸𝐿(𝜀)𝑑𝜀                 (15) 

where EL is the density of states and  𝑓𝐸𝐿(𝜀) = [1 + exp((𝜀 − 𝜀𝐹)/𝑘𝐵𝑇)]−1    is the Fermi 

distribution function. The standard heterogeneous rate constant is then given by the 

electrochemical rate at =0 

                                        𝑘0 =
𝜋

𝐴
𝜌𝐸𝐿

√4𝜋𝜆𝑘𝐵𝑇
 ∫ 𝑘𝐶𝑇(𝜀) exp (−

(𝜀𝐹 − 𝜖 + 𝜆)2

4𝜆𝑘𝐵𝑇
) 

∞

0

𝑓𝐸𝐿(𝜀)𝑑𝜀                 (16) 

In our rate calculations, we assumed T = 300 K, and  = 0.8 eV, representative of the 

reorganization energy for the ferrocene redox couple that was used in the electrochemical 

measurements to determine the rates shown in Fig 1.37  

 

Expression for the Molecular Conductance 

 The steady-state current in molecular conductance measurements is often modeled using a 

Landauer-Buttiker formulation in terms of non-equilibrium Green’s functions.38, 39  The 

conductance is modeled using the molecular bridge Hamiltonian of eqn. 1 with site 1 connected 

to a source electrode (L) and site N connected to a drain electrode (R). In addition, a Buttiker 

probe (P) electrode is located on each of the N bridge sites (see Fig. 2B). The Buttiker probe 

electrodes absorb current from the bridge sites and re-inject it into the bridge with a random 

phase. This ‘scattered’ current can travel to the acceptor electrode or to other Buttiker probe 

electrodes, and it can also be reflected back to the source through independent coherent channels. 

Thus, the Buttiker probes simulate phase breaking and backscattering events on the bridge. The 

bridge Green’s function, including the influence of electrode contacts, is: 

                                                       𝑮(𝐸) =
1

(𝐸𝑰 − 𝑯) − 𝜮𝐿 − 𝜮𝑅 − ∑ 𝜮𝑃
N
𝑃=1

                                     (17) 

Here, H is the molecular bridge Hamiltonian of eqn. 1, and I is the identity matrix. The influence 

of electrodes L and R and of the Buttiker probes on the bridge are included in the bridge Green’s 

function through the complex self-energy matrices L, R, and P, respectively.  The real 

(imaginary) parts of the self-energy matrix elements add to the corresponding elements of the 

bridge Hamiltonian and manifest themselves through shifts (broadenings) of the molecular 

orbital energies in the local density of states (LDOS):38, 39 
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                                                𝐿𝐷𝑂𝑆(𝐸) =
𝑖

2𝜋
𝑇𝑟[𝑮(𝐸) − 𝑮†(𝐸) ]                                                      (18) 

where 𝑮† is the Hermitian adjoint of 𝑮. Applying a potential bias across electrodes L and R 

causes a current to flow between the electrodes. This current 𝐼(𝐿 → 𝑅) is 

   𝐼(𝐿 → 𝑅) =
2𝑒

ℎ
∫ [𝑇𝐿𝑅(𝐸)[𝑓𝐿(𝐸) − 𝑓𝑅(𝐸)] + ∑ 𝑇𝑃𝑅(𝐸)[𝑓𝑃(𝐸) − 𝑓𝑅(𝐸)]

𝑁

𝑃=1

] 𝑑𝐸                     (19) 

where T(E) is the transmission function and f(E) is the Fermi function. T(E) between a pair of 

electrodes m and n (m,n=L,R,P) is  

                                                           𝑇𝑚𝑛(𝐸) = 𝑇𝑟[𝜞𝑚𝑮𝜞𝑛𝑮†]                                                             (20) 

The  (broadening) matrices for each electrode m are defined as: m = [m - (m)†]. The Fermi 

functions fm(E) describe the electron occupancy of the states in the m=L, R, P electrodes at 

energy E: 

                                                    𝑓𝑚(𝐸) = [1 + exp((𝐸 − 𝜇𝑚)/𝑘𝐵𝑇)]−1                                             (21) 

The Fermi functions for the source (L) and drain (R) electrodes are defined by their chemical 

potentials: 𝜇𝐿 = 𝐸𝐹 − 𝑒𝑉/2 and 𝜇𝑅 = 𝐸𝐹 + 𝑒𝑉/2. Here, EF (the Fermi energy of the electrodes) 

and V (the potential bias) are parameters. The chemical potential 𝜇𝑃 of a Buttiker probe at site P 

is unknown, but it can be determined from the constraint on each Buttiker probe P to absorb no 

net current:40 

𝐼𝑃 = 0 =
2𝑒

ℎ
∫

[
 
 
 
𝑇𝐿𝑃(𝐸)[𝑓𝐿(𝐸) − 𝑓𝑃(𝐸)] + 𝑇𝑅𝑃(𝐸)[𝑓𝑅(𝐸) − 𝑓𝑃(𝐸)]

+ ∑ 𝑇𝑃′ 𝑃(𝐸)[𝑓𝑃′(𝐸) − 𝑓𝑃(𝐸)]

𝑁

𝑃′=1
𝑃′≠𝑃 ]

 
 
 
𝑑𝐸                                                                    (22) 

By making the further simplifying assumption that the net current absorbed by each Buttiker 

probe at energy E is zero, the integrand in eqn. 22 may be set to zero for each probe. This 

condition means that the scattering by each probe is elastic. The unknown Fermi functions fP are 

obtained by solving the resulting N coupled differential equations on a discrete energy grid.  In 

the Landauer-Buttiker approach described here, charges are exchanged with the system only at 

electrodes L and R. The Buttiker probe electrodes are elastic scattering centers for resonant 
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current. Scattering of the current at the Buttiker probes leads to phase relaxation of the carriers 

without any momentum or energy relaxation.  

 

In our numerical simulations, the steady-state current between electrodes was calculated using 

eqns. 19 through 22 for a potential bias V=0.1 V and T=300 K.  In this model, both thermally 

activated, and tunneling currents can be computed, including bath-induced decoherence. 

However, inelastic current contributions arising from interactions of the charge with molecular 

vibrational modes 41-43 are not considered within the approximations of the model. The 

conductance () is calculated as:  

                                          = I(LR)/V                                                                         (13) 

 We end this section with a discussion of how population relaxation and decoherence 

effects are incorporated in the rate and conductance models, and of the assumptions that we 

make to enable a comparison of charge transport among the models. Both rate and conductance 

models include bath-induced relaxation of diagonal (populations) and off-diagonal (coherences) 

elements of the system density matrix. In the rate model, the bridge is coupled to the donor and 

acceptor (Fig 2A) that are, in turn, connected to the bath continuum through the lifetime 

parameters D and A.  As given by eqn. 4, these lifetime contributions (imaginary terms in the 

diagonal elements of the Hamiltonian) also contribute to the relaxation of coherences between 

bridge and donor/acceptor states. In the conductance model, the bridge is directly coupled (at 

sites 1 and N in Fig 2B) to a continuum of electrode states through the broadening matrices L 

and R. Analogous to the rate model, the broadening matrices add imaginary terms to the 

diagonal elements of the Hamiltonian (see eqn. 17) and hence contribute towards both population 

as well as coherence relaxation. Further, in the conductance model, the Buttiker probe couplings 

P also add imaginary terms to the Hamiltonian which might appear to be equivalent to adding 

lifetime broadening terms to the bridge (m,, where m=bridge sites) in the CT rate model. 

However, there is a critical difference. In the conductance model, the conductance is computed 

with zero current absorption at each Buttiker probe. This is equivalent to eliminating the 

population relaxation contributions provided by P, while retaining its dephasing contributions.  

On the other hand, adding lifetime broadening couplings (m) to the bridge in the CT rate model 

leads to irreversible population relaxation from the bridge. To avoid population loss from the 

bridge to the bath, we set all lifetime broadening terms m,= 0 (m = bridge sites) in the rate 
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model. We then control the decoherence in the CT rate model through the pure dephasing term 

mn of the system bath Liouvillian (see eqn. 4) which does not have an analog in the conductance 

model. Thus, while the decoherence in the conductance model arises from lifetime broadening 

(P) of bridge-state energies (see eqn. 17) because of its coupling to Buttiker probes (a variable 

parameter in our calculations), the decoherence in the CT rate model arises from lifetime 

broadening of the donor and acceptor state energies (fixed for a given donor-acceptor pair) and 

through mn (variable parameter in our calculations). While this approach allows comparison of 

the decoherence effects in the CT rate and conductance models on a similar footing, it is based 

on phenomenological descriptions of decoherence in the rate and the conductance models which 

are not entirely equivalent. The extent of decoherence in the rate and conductance models can 

thus only be compared qualitatively, e.g., how the decoherence influences the distance 

dependence of CT in the two models. In our numerical simulations, we demonstrate that using 

different models to describe rates and conductance does not limit our conclusions regarding the 

influence of dephasing rates and CT energy barriers on the rate-conductance correlation. 

 

Numerical Results and Discussion 

     The theoretical framework developed above is now used to calculate the CT rate and the 

molecular conductance as a function of the bridge length N. The change in CT rate and 

molecular conductance as a function of bridge length provides information on the underlying 

charge-transport mechanism. When the donor is energetically well separated from the bridge, 

charge transport occurs predominantly via superexchange for short bridge lengths, and the 

molecular conductance or CT rate drops approximately exponentially with the bridge length. 

Beyond a certain bridge length, determined by the donor-bridge energy gap and the temperature, 

thermal activation of the charge to populate bridge states becomes competitive with tunneling, 

and the distance dependence softens -- approaching an ohmic (1/N) dependence for long bridges. 

Previous theoretical analysis29, 44 has found that the transition to a 1/N distance dependence is 

gradual, and that the fall off in CT rate may even appear distance independent, for intermediate 

bridge lengths. 

 

1.  Distance Dependence of Charge Transport with Decoherence 
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       (A)           (B) 

Figure 3: (A) This plot shows the distance dependence of the electrochemical rate constant (solid 

line) and molecular conductance (dashed lines) normalized with respect to their values at 1 BU. Rate 

constants were calculated using eqn. 10 (EDB = 1.45 eV; VBB= 0.3 eV; VD1= 0.1 eV; VNA= 0.1 eV;  D 

= 110-16 eV;  A = 0.1 eV; m = 0 eV m=bridge sites). Molecular conductances were calculated using 

eqn. 13 (EFB = 1.45 eV; VBB =0.3 eV;   L1= 0.1 eV; NR = 0.1 eV). The model system parameters for 

the bridge most closely resemble alkanethiol chains, however the CT energy gap and dephasing 

parameters were chosen to facilitate the discussion and may not reflect values present in actual 

experiments. The colored lines show the effect of pure dephasing (included by varying mn and P) on 

the distance dependence of the CT rate/molecular conductance. To minimize the number of 

parameters only mn terms controlling the decay of coherences between donor/acceptor and bridge 

states were set to the values shown in the figure (i.e DA = 0, mn =0 when both m and n are bridge 

sites; trial calculations showed that non-zero values of these terms do not alter the general trends in 

distance dependence of rates considered here or our final conclusions). (B) The distance decay 

constants 𝛽𝑘0  for CT rates (solid lines) and  for molecular conductance (dashed lines) are plotted 

versus the number of bridge units for the different dephasing rates. The  values for bridge unit N 

was calculated by fitting the N dependence of ln(k0) or ln() for three values from N-1 to N+1.  

Fig. 3 compares the calculated distance dependence for the CT rate and the molecular 

conductance in a model system with identical CT energy barriers, EDB = EFB, but with variable 

bath-induced decoherence. The CT rates and conductances show an exponential distance 

dependence at short bridge lengths with a crossover to a softer distance dependence at longer 

bridge lengths.  Interestingly, the distance dependences of the CT rate and the molecular 

conductances are not identical (note that in Fig. 3A both rates and conductance are normalized 

with respect to their values at 1 BU which allows us to compare their distance dependence). The 

distance dependence of CT rate and conductance coincide only at short bridge lengths with 

deviations appearing near the crossover region from exponential to soft distance dependence. 

Because thermally-activated transport competes with tunneling transport near the cross-over 

region, the differences in distance dependence of the CT rates and conductances are associated 

with model parameters that control resonant CT processes. Specifically, the difference occurs 
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because of differences in the treatment of bath-induced decoherence in the rate and conductance 

models.  

 In the conductance analysis, dephasing contributions arise from the coupling (P) of the bridge 

to the Buttiker probes (imaginary part of the self-energy P in eqn. 17).  For CT, dephasing is 

introduced via two parameters in the system bath Liouvillian (eqn. 4):  (1) the population 

relaxation terms (m) and (2) the pure dephasing mn (mn) terms. This feature results in CT rate 

models that contain non-zero dephasing contributions from the donor/acceptor population 

relaxation (D/A), even after zeroing the mn and m (mD, A) contributions for the bridge states. 

In contrast, the conductance model with P =0 includes no dephasing contributions and leads to a 

distance dependence of conductance which differs from that of the CT rates. The conductance 

computed for a Buttiker probe coupling value of 10-6 eV (dashed blue line) produces a distance 

dependence that closely matches the computed CT rate with mn = 0 (solid black line). Because 

the bridge parameters and the CT energy gaps are constrained to be the same for 

rate/conductance calculations, we infer qualitatively that dephasing(k0)  dephasing() for the 

rate model with mn = 0 (solid black line) and the conductance model with P =10-6 eV (dashed 

blue line). This qualitative comparison between different phenomenological models for 

incorporating bath-induced decoherence in the CT rate and conductance is justified because both 

models of decoherence produce the same effect on the distance dependence of CT transport (see 

Fig. 3A and discussion below).       

Earlier studies26,6 found that bridge decoherence can significantly influence the distance 

dependence of CT rates/molecular conductances.  Fig. 3 shows that, for large CT energy barriers, 

dephasing changes the distance dependence of both the CT rate and the molecular conductance 

in similar ways. For both rates and conductances, the crossover from an exponential distance 

dependence to a nearly distance-independent regime shifts to shorter bridge lengths for larger 

bridge decoherence (larger values of mn and P). Bath-induced decoherence broadens the bridge 

state energies, effectively reducing the tunneling barrier and boosting both the superexchange 

and thermally activated transport rates.45 Decoherence also introduces backscattering, which 

reduces ballistic (activated but coherent) CT.45 Fig. 3A shows that increasing the decoherence 

makes the thermally activated transport mechanisms more competitive with the superexchange 

for shorter bridges, leading to the observed shift in the crossover region.  
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To draw a link between the data in Fig. 3A and the experimental observations in Fig. 1, we fit a 

decay length  to the distance dependence of rates/conductances. In experiments,  and 𝛽𝑘0 are 

often extracted from linear fits to experimentally measured ln(k0/s-1) or ln(/-1) (typically 3-10 

BU).10, 11, 19, 20 Accordingly,  and 𝛽𝑘0  values were calculated as a function of the number of 

bridge units (N) by linearly fitting three data points for ln(k0/s-1) or ln(/-1) computed for  N-1, 

N, and N+1 bridge units. The variation in  and 𝛽𝑘0  as a function of N and with different levels 

of bath induced decoherence is shown in Fig. 3B. With increasing bridge length, both  and 𝛽𝑘0  

switch over from a value of 3 BU-1 to  0 BU-1 signifying a change from superexchange to 

hopping CT. The increase in dephasing contributions tends to lower both  and 𝛽𝑘0 at all bridge 

lengths (compare red dashed line with black dashed line or green solid line with black solid line), 

although at intermediate dephasing values the effects are more complex and exhibit a bridge 

length dependence (compare blue dashed line with black dashed line). Notably, the ratio  /𝛽𝑘0 

which dictates the power law in Fig. 1, approaches unity only when the dephasing(k0)  

dephasing(). 

 To summarize, Fig. 3 indicates that bath-induced decoherence can significantly change the 

distance dependence of both the CT rate and the molecular conductance, even if the electronic 

structure of the bridge is only weakly perturbed. Thus, different distance dependences could be 

produced by experiments that measure molecular conductances (e.g., STM-BJ) and CT rates 

(e.g., measured with electrochemistry) for identical molecular bridges, because of different 

medium interactions. While the crossover from an exponential to a soft distance dependence has 

been observed in experiments for a number of CT rate studies, the molecular conductance 

measurements for the same set of molecules are often exponential within the same bridge-length 

range, exhibiting no crossover.  

 

2. Distance Dependence of Charge Transport with Varying CT Energy Barriers 

We now explore how the magnitude of the CT energy barriers (parameters EDB and EFB, from 

Fig. 2) influence  and k.  For superexchange, should decrease as the barrier decreases;34, 46-

48,9 and the crossover point from exponential to 1/N behavior should shift to shorter chain lengths 

for lower barriers.49 The distance dependence of the CT rate and the molecular conductance were 

calculated for: 1) EDB= EFB=1.45 eV, 2) EDB= EFB=1.15 eV, and 3) EDB= EFB=0.75 eV.  The 
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values of the parameters p and mn were chosen such that dephasing(k0)  dephasing() based on 

the comparison of distance dependence of rates and conductances at EDB= EFB=1.45 eV. Fig. 4A 

shows that for this minimal dephasing model (mn =0 eV; P =10-6 eV), decreasing the CT energy 

barrier shifts the crossover region (from an exponential to a soft distance dependence) to shorter 

bridge lengths for both CT and molecular conductance. Decreasing the barrier also decreases  

(Fig. 4B) and is attributed to: (1) an increase in tunneling probability and (2) an increase in the 

probability of thermally activated CT. The slight dip in the conductance curves (dashed green) 

around 6 BU in Fig. 4A is not a crossover point (from exponential to soft distance dependence); 

rather the CT energy barrier (EFB=0.75 eV) is small enough that the conductance has thermally-

activated contributions for all bridge lengths (showing soft distance dependence). In summary, 

the relative values of  and 𝛽𝑘0 are significantly modulated by the CT energy barrier in 

conductance and rate measurements. The data in Fig. 4B show that   𝛽𝑘0  when EDB  EFB 

(compare values given by the solid and dashed lines of different colors). Thus, EDB= EFB 

(compare values given by the solid and dashed lines of the same color) is a necessary 

condition (along with dephasing(k0)  dephasing()) for the power law exponent  /𝛽𝑘0 in Fig. 1  

to be unity.   

 
     (A)                                                                   (B) 

Figure 4: (A) Dependence of CT rates (solid lines) and molecular conductance (dashed lines) on 

bridge length for different energy barrier heights (colored lines) and dephasing(k0)  dephasing() in 

the rate/conductance models. Rate/conductance values are normalized with respect to their values at 1 

BU (B) Variation of the distance decay constants β𝑘0 for CT rates (solid lines) and  for molecular 

conductance (dashed lines) with the number of bridge units. The calculations were performed for two 

different values of the CT barriers; all other parameters are the same as the model system described in 

Fig. 3.  

Page 17 of 27 Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



18 

 

   

3. Relationship between Molecular Conductance and the Electrochemical Rate Constant 

 The results in the previous sections (Figs. 3B and 4B) indicate that the CT energy barrier and 

bath induced decoherence strongly influence the distance dependence of rates and conductances. 

Previous theoretical studies for high barriers1, 2 found that the CT rates in both the superexchange 

and the hopping regimes are proportional to the conductances. In contrast, experiments (Fig. 1) 

find that the rate-conductance relationship follows a power law:20 

                                                          = (𝐿=0) × (
𝑘0

𝑘(𝐿=0)
0 )

(𝛽𝜎 𝛽
𝑘0⁄ )

                                          (14)  

Because the observables are measured under different experimental conditions, the bridge 

decoherence and the CT energy barriers are likely to be different, leading to  ≠ 𝛽𝑘0.  

 Fig. 5 shows how decoherence rate differences between the measurements influence the 

correlation between  and kCT (for the data from Fig. 4A). We consider three cases of relative 

decoherence (as determined from the distance dependence data in Fig. 4A) in rate and 

conductance models: 1) dephasing(k0) < dephasing() (red symbols; mn =0 eV; P =10-2 eV), 2) 

dephasing(k0) ~ dephasing() (blue symbols; mn =0 eV; P =10-6 eV ), and 3) dephasing(k0) > 

 
                                         (A)                                                                            (B)   

Figure 5: (A) Correlation between the CT rate and the molecular conductance for the three cases of 

relative dephasing rates on the bridge. The black line indicates a linear correlation between 

conductance and rate: =A×(k0)m (where m=  /𝛽𝑘0=1). (B) The exponent m=  /𝛽𝑘0 calculated for 

the data in panel (A) as a function of bridge length. Red blue and green lines/symbols correspond to 

the exponents obtained from fits to the red blue and green symbols in panel (A) respectively. Inset 

shows the full range of exponents on a logscale ( /𝛽𝑘0 for the green line reaches very large values as 

𝛽𝑘0 ~ 0) obtained at all bridge lengths. Data in panel (B) is restricted to exponent values between 0-2 

and shows that m=1 is obtained over a large range of rates/conductances only when the dephasing 

rates in the rate and conductance models are similar.  The rate-conductance is non-linear (m  1) over 

the whole data range, when the dephasing rates in the rate and conductance models are different. 
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dephasing()  (green symbols; mn =10-4 eV; P =10-6 eV)  where the CT energy barriers in the 

CT rate and the molecular conductance models are the same (EDB = EFB = 1.45 eV).  The 

correlation between rates and conductance is plotted on a log-log scale, so that the slope of the 

correlation is the ratio  /𝛽𝑘0. The black line represents a linear correlation (unit slope) between 

rate and conductance. The rate constant and the conductance are only linearly correlated for 

bridge lengths where their distance dependence is identical, i.e.  = 𝛽𝑘0. Fig. 5 shows that for 

fixed barrier heights, the correlation is linear (m=  /𝛽𝑘0=1) over a large range (over 10 orders of 

magnitude) of conductances and rates when dephasing(k0) ~ dephasing() (blue symbols in Fig. 

5).  Deviation from linearity occurs near the crossover point (above 8 BU in fig 5 B) from 

exponential to soft distance dependence. Because the dephasing rates in the two models are 

similar but not identical, the distance dependence for rates and conductances near the cross-over 

point differs (compare solid black and dashed blue lines in Fig. 4) leading to non-linearity in the 

rate-conductance relation at long bridge lengths. In contrast, when the dephasing rates in the two 

models differ significantly, the non-linearity in the rate-conductance relation is evident over the 

entire range of data at all bridge lengths. When dephasing(k0) < dephasing() (red symbols in 

Fig. 5), the crossover from exponential to soft distance decay occurs much earlier for the 

conductance (compare solid black and dashed red lines in Fig. 4). As a result, the rate 

conductance correlation is close to linear only at short bridge lengths where superexchange CT 

dominates. Fig 5B shows m1 even for rates/conductances across 1 BU. At longer bridge 

lengths,  drops much more rapidly than 𝛽𝑘0 because of stronger dephasing in the conductance 

model to give a ratio  /𝛽𝑘0 < 1. A complementary decoupling of the rate and conductance is 

evident in the other limit:  dephasing(k0) > dephasing() (dark green symbols in Fig. 5) where 

the crossover from an exponential to a softer distance decay occurs earlier for the rates (compare 

solid green and dashed blue lines in Fig 4). As before, a near-linear correlation appears for short 

bridges where superexchange CT dominates. For longer bridges, 𝛽𝑘0 drops much faster than  

because of stronger dephasing in the rate model to give a ratio  /𝛽𝑘0 > 1. This analysis suggests 

that the power law exponent (m= /𝛽𝑘0 ~ 0.6 – 0.9 < 1) obtained from fits to the experimental 

rate versus conductance data in Fig. 1 may arise from larger dephasing rates in conductance 

measurements than in the rate measurements (see red symbols in Fig 5B). Note that the 

numerical values of  /𝛽𝑘0 from Fig 5B were obtained for a model system (caption of Fig 3). 
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Thus, while the analysis in Fig 5 provides general insights to understand the trends in the rate-

conductance scaling exponents ( /𝛽𝑘0) as a function of dephasing, the numerical values in Fig 

5B do not correspond to exponents of the experimental data in Fig 1. The extent to which 

dephasing influences the non-linearity shown in Fig 1 can be determined only through 

quantitative fits of the framework developed here to the experimental data, a task which we will 

undertake in a separate study. An important point is that the decay constants ( and 𝛽𝑘0) for 

pure superexchange transport are not influenced by changes in the dephasing rates (slopes of the 

exponential decay of rates/conductances with bridge length in Fig 3 do not change with 

dephasing rates). This means that it is possible to find linear correlations (m= /𝛽𝑘0 ~ 1) 

between rates and conductances at short bridge lengths, despite the significant differences in 

dephasing rates in the two models. The near linear correlation at short bridge lengths in Fig 5A is 

a manifestation of this effect.      

 The magnitude of the CT barrier also affects the correlation between the CT rate and the 

molecular conductance. Fig. 6 shows a log-log plot of the rate-conductance correlation (as in Fig. 

5), but for the three cases of relative CT energy barriers (see Fig. 6 caption) in the rate and the 

conductance models. Both models have similar dephasing rates (mn = 0 eV; P = 10-6 eV) as in 

 
                                         (A)                                                                            (B)   

Figure 6: (A) Correlation between the CT rate and the molecular conductance for three different CT 

energy barrier conditions: (i) EDB (1.45 eV) > EFB (1.15 eV), EDB=EFB (1.45 eV), and (iii) EDB (1.15 

eV) < EFB (1.45 eV). The black line indicates a linear correlation (m =  /𝛽𝑘0=1). (B) The exponent 

m=  /𝛽𝑘0 calculated for the data in panel (A) as a function of bridge length. Red blue and green 

lines/symbols correspond to the exponents obtained from fits to the red blue and green symbols in 

panel (A) respectively. Inset shows full range of exponents obtained at all bridge lengths. Data in 

panel (B) is restricted to exponent values between 0-2 and shows that m=1 is obtained over a large 

range of rates/conductances only when the energy barriers in the rate and conductance models are 

same.  The rate-conductance is non-linear (m  1) over the whole data range, when the energy barriers 

in the rate and conductance models are different. 
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case 2 of Fig. 5.  The rate-conductance correlation for EDB = EFB (blue symbols in Fig. 6) is the 

same as case 2 of Fig. 5, indicating a near linear correlation for a wide range of bridge lengths. 

As discussed above, the non-linearity for long bridge lengths arises because the dephasing in the 

rate and conductance models are not identical. In contrast, when the CT energy barriers in the 

two models are different, the rate-conductance correlation is non-linear at all bridge lengths. 

When EDB > EFB (red symbols), the superexchange CT rate drops more rapidly and the crossover 

of the rate to a softer distance dependence occurs at longer bridge lengths than for the 

conductance. Consequently, 𝛽𝑘0 is larger than , and  /𝛽𝑘0 < 1 for all bridge lengths. The 

situation is reversed when EDB < EFB (green symbols), as the conductance drops more rapidly 

than the rate in the superexchange regime with crossover to a weaker distance dependence 

occurring at longer bridge lengths than that for the rate. Consequently,   is larger than 𝛽𝑘0  and 

the ratio  /𝛽𝑘0 > 1 for all bridge lengths. This analysis on our model system (parameters given 

in caption of Fig 3B) indicates that the exponent in the power law fits ( /𝛽𝑘0 ~0.6 - 0.9 < 1) of 

Fig. 1 may arise from smaller CT barriers in the conductance measurements than in the rate 

measurements (red symbols in Fig 6B). Note that decay constants ( and 𝛽𝑘0) for pure 

superexchange transport are strongly dependent on the energy barriers for charge transport 

(slopes of the exponential decays of rates/conductances with distance in Fig 4A change with the 

CT energy barrier). Thus, when energy barriers for charge transport are significantly different, 

the rate/conductance correlation can never be linear (m= /𝛽𝑘0  1) as seen in Fig 6A and 6B. 

 

4. General role for dephasing and CT energy barriers in shaping the non-linear 

relationship between charge transport measurements 

In this section, we show that our findings regarding the origin of the rate-conductance non-

linearity are in fact generally applicable to the study of correlations between any two charge 

transport measures (rates or conductances). In other words, the same property (for example, two 

CT rates or two conductances) when measured subject to conditions where the environmental 

decoherence contributions and/or CT energy barriers are different, will exhibit a non-linear 

correlation. Fig. 7 shows the correlation between two CT rates (k01 and k02 in Fig 7A) and two 

conductances (1 and 2 in Fig 7B) computed for identical charge transfer barriers (EDB (k
01) = 

EDB (k
02) and EFB (1) = EFB (2)), but with three choices of the relative dephasing rates (mn 
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(k01) < mn (k
02), mn (k

01) = mn (k
02), mn (k

01) < mn (k
02) and P (1) < P (2), P (1) < P 

(2), P (1) < P (2)). The data in Fig 7 can be directly compared with that in Fig 5 and show 

a non-linear rate-rate and conductance-conductance correlation dependent on the relative 

dephasing rates, similar to the behavior exhibited by the rate-conductance correlation. The non-

linear rate-conductance trends seen in Fig 1 may also be seen for two series of CT rate 

measurements (or two conductance measurements) when environment-induced decoherence 

contributions in the two experimental setups are different. The calculations shown in Fig 7 also  

help validate the robustness of our conclusions on how dephasing influences the rate-

conductance correlation. The trends in the rate-conductance correlation shown in Fig 5 were 

obtained by comparing two different model calculations (the CT rate model based on the reduced 

density matrix framework and the conductance model based on the Landauer-Buttiker 

framework). A concern arises that the non-linear rate-conductance correlation obtained in Fig 5 

may arise from differences in model assumptions and parameters. For instance, there is no 

theoretical expression to directly link the numerical values of dephasing in the CT rate models to 

those of the conductance models (see discussion following eqn. 13 in the “Theoretical Models” 

section). The strong agreement among the trends in the data of Fig 7, where comparisons are 

within the same model framework (between CT rate models or between conductance models), 

 
                                         (A)                                                                            (B)   

Figure 7: (A) Correlation between two CT rates k01 and k02 computed as a function of bridge length 

with identical CT energy barriers (EDB (k01) = EDB (k02) = 1.45 eV)) but for three different conditions 

of relative dephasing: (i) mn (k
01) = 0 eV < mn (k

02)= 10-4 eV, (ii)  mn (k
01) = 0 eV = mn (k

02) and (iii) 

mn (k
01) = 10-4 eV > mn (k

02)= 0 eV. (B) Correlation between two conductances 1 and 2 computed 

as a function of bridge length with identical CT energy barriers (EFB (1) = EFB (2) = 1.45 eV)) but 

for three different conditions of relative dephasing: (i) P (1) = 10-6 eV < P (2)= 10-2 eV, (ii)  P 

(1) = 10-6 eV = P (2) and (iii) P (1) = 10-2 eV > P (2)= 10-6 eV. The black lines in both panels 

indicate a linear correlation (m = 𝛽𝑘01 /𝛽𝑘02=1) in (A) and (m = 1 /𝛽2=1) in (B). 
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and the data of Fig 5, justifies our assumptions for comparing dephasing rates between rate and 

conductance models to extract the factors behind the rate-conductance non-linearity.       

   Our conclusions regarding the influence of the CT energy barrier on the rate-conductance 

correlation can also be extended to rate-rate and conductance-conductance correlations. Fig. 8 

shows the correlation between two CT rates (k01 and k02 in Fig 8A) and two conductances (1 

and 2 in Fig 8B) computed for identical dephasing rates (mn (k
01) = mn (k

02) and P (1) = P 

(2)) but with three cases of relative CT energy barriers (EDB (k
01) < EDB (k

02), EDB (k
01) = EDB 

(k02), EDB (k
01) > EDB (k

02) and EFB (1) < EFB (2), EFB (1) = EFB (2), EFB (1) > EFB (2)). 

The data in Fig 8 show that the rate-rate and conductance-conductance correlations are non-

linear, influenced by relative CT energy barriers similar to that seen for the rate-conductance 

correlation in Fig 6. Thus, the non-linear rate-conductance trends observed in Fig 1 are also 

observed for two series of CT rate measurements (or two conductance measurements) when the 

CT energy barriers in the two experimental setups are different (e.g., obtained using different 

electrode binding linkers/redox reporters molecular designs or different electrode materials).  

 

Conclusions 

 
                                         (A)                                                                            (B)   

Figure 8: (A) Correlation between two CT rates k01 and k02 computed as a function of bridge length 

with identical dephasing rates (mn (k01) = 0 eV = mn (k02) ) but for three different conditions of 

relative CT energy barriers: (i) EDB (k01) = 1.15 eV < EDB (k02) = 1.45 eV, (ii)  EDB (k01) = EDB (k02) = 

1.45 eV and (iii) EDB (k01) = 1.45 eV > EDB (k02) = 1.15 eV. (B) Correlation between two 

conductances 1 and 2 computed as a function of bridge length with identical dephasing rates (P 

(1) = 10-6 eV = P (2)) but for three different conditions of relative CT energy barriers: (i) EFB (1) 

= 1.15 eV < EFB (2)= 1.45 eV, (ii)  EFB (1) = 1.45 eV = EFB (2) and (iii) EFB (1) = 1.45 eV > EFB 

(2) = 1.15 eV. The black lines in both panels indicate a linear correlation (m = 𝛽𝑘01 /𝛽𝑘02=1) in (A) 

and (m = 1 /𝛽2=1) in (B). 
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The analysis in this paper indicates that the CT energy barrier and decoherence on the bridge 

can independently, or in combination, influence the predicted rate-conductance relationship, 

producing a non-linearity in the power law seen in Fig. 1. Specifically, our numerical simulations 

show that the scaling exponent (m= /𝛽𝑘0 ~ 0.6 – 0.9 < 1) in the rate-conductance correlation of 

Fig 1, may arise under conditions where dephasing (conductance) > dephasing (rate) and/or from 

EDB > EFB. Replacing a molecular donor/acceptor with an electrode introduces a continuum of 

electrode states, which provides an additional source of broadening for the bridge states. Because 

an electrode provides irreversible decay channels for charge population on the bridge, population 

relaxation and dephasing rates on the bridge are expected to be greater when coupled to 

electrodes rather than to molecular donors and acceptors. Overall, decoherence effects are 

expected to increase with the number of electrodes connected to the bridge. Thus, we expect 

decoherence (D-B-A) < decoherence (M-B-A/D-B-M) < decoherence (M-B-M). However, other 

medium effects may vary among experimental schemes as well. Molecular bridges coupled to 

electrodes will experience stabilization of electronic states from electrode polarization in 

response to injection of charge on the bridge.50, 51  Image charge effects of this kind can lead to 

modified charge transfer barriers in the different experiments, even when the molecular bridges 

are identical. Finally, donor electronic state energies may differ from the work functions of metal 

electrodes. As such, different CT energy barriers appear likely in D-B-A, M-B-A/D-B-M, and 

M-B-M structures. A quantitative fit of the framework developed here to the experimental data 

in Fig. 1 is expected to constrain the CT barriers and decoherence values, and analysis of such 

fits will be presented elsewhere.       

In summary, we have developed a theoretical framework to compute CT rates and molecular 

conductances without assuming a transport mechanism a priori. This approach reveals that a 

non-linear correlation exists between rates and conductances. The non-linearity arises from CT 

energy barrier and decoherence differences in the experiments. A decrease in the CT energy 

barrier and/or an increase in the decoherence rate shifts the position of the crossover from 

exponential to a weaker distance dependence of rates and conductances. In fact, by manipulating 

the CT energy barriers and bridge decoherence, a wide range of power law correlations can be 

accessed among CT rates and molecular conductances. This theoretical framework explains the 

observed non-linear rate-conductance relationships evident in experimental data. 
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