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X-ray absorption spectromicroscopy provides rich information on the chemical

organization of materials down to the nanoscale. However, interpretation of this

information in studies of “natural” materials such as biological or environmen-

tal science specimens can be complicated by the complex mixtures of spectro-

scopically complicated materials present. We describe here the shortcomings

that sometimes arise in previously-employed approaches such as cluster analy-

sis, and we present a new approach based on non-negative matrix approximation

(NNMA) analysis with both sparseness and cluster-similarity regularizations. In

a preliminary study of the large-scale biochemical organization of human sper-

matozoa, NNMA analysis delivers results that nicely show the major features of

spermatozoa with no physically erroneous negative weightings or thicknesses in

the calculated image.

1 Introduction

Images let us see what is present in a material, while spectra let us understand

what we see. Combining the two in spectromicroscopy (also known as spec-

trum imaging, or hyperspectral imaging) provides rich data on the composition

of complex materials, whether applied to electron energy loss in electron mi-

croscopy1,2, x-ray emission spectroscopy with x-ray excitation3, or electron ex-
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citation4, infrared microscopy5,6, or x-ray absorption microscopy7,8. The chal-

lenge we address here involves the interpretation of these data, which is required

in order to go from observation to understanding. With spectroscopy of pure,

uniform substances there exists a long and rich tradition of understanding ob-

served spectra based on calculations of various electron or phonon interactions in

the substance (see, for example, Stöhr9). However, microscopy is used to study

materials including heterogeneous mixtures and reactive phases on fine spatial

scales, and in images of 105–107 pixels. It is clearly impractical to carry out

a painstaking investigation of the spectrum of each pixel on its own. Instead,

one can hope to find a reduced set S of spectra that, when combined, can repro-

duce the spectrum observed in any one pixel. One can then carry out analysis on

this smaller set of spectra or compare them to spectral “standards” of materials

expected to be present in the specimen. We describe here an approach to car-

rying out this analysis based on a non-negative matrix approximation (NNMA,

also referred to in the literature as NMF)10, comparing it with previous methods

we have developed (e.g., cluster analysis), and showing its utility for imaging

chemical states in complex materials such as human sperm.

In x-ray spectromicroscopy, one obtains transmission images I(x, y, E) at

a series of positions (x, y) and N different photon energies E. By knowing

the incident flux I0(E), one can determine an optical density D(x, y, E) =
− ln[I(x, y, E)/I0(E)], which is linear in the thickness t of the absorbing mate-

rial in the beam direction because of the Lambert-Beer law of I = I0 exp[−μ(E)t].
In this expression, μ(E) is a photon-energy-dependent linear absorption coeffi-

cient, which in principle can be calculated from quantum mechanics, and which

in practice is often obtained from tabulations of absorption per element and per

energy11. Missing from these tabulations are the details of μ(E) in the vicinity

of an x-ray absorption edge: rather than reaching the threshold energy to excite

and remove a core-level electron from an isolated atom, one instead reaches an

energy where an atom’s electron can be promoted into a state with an energy

only a few electron volts away from the Fermi energy. Since these near-vacuum

energy states are strongly affected by the nature of the atom’s chemical bonds9,

spectromicroscopy using near-edge x-ray absorption fine structure (NEXAFS)

or x-ray absorption near-edge structure (XANES) provides a way to image the

element-specific chemical bond distributions in a complex material.

Our challenge is that what has been measured is simply the optical density

D(x, y, E), but we would like to interpret it as a product of absorption spectra

μ(E,S) from a set S with S spectroscopically distinguishable components and

a set of thickness maps or weighting images t(S, x, y) that show how much of

each spectrum is present at each pixel. If we do not seek to find any spatial

correlation of spectral responses (i.e., we do not assume the spectral response of

any given pixel to be correlated with that of its neighbors), we can flatten the

two-dimensional (x, y) coordinates and use a one-dimensional coordinate p to

represent the position of each pixel. This is also generalizable to 3D tomographic

spectromicroscopy data12. We are therefore left with a matrix equation for our

desired analysis of

DN×P = μN×S tS×P , (1)

where N denotes the number of photon energy indices and P the number of

pixels13. Our goal is to find the set of spectra μN×S that describes all the signifi-
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cant variations in the data. The absorption spectra μN×S should be non-negative

(since negative absorption would imply that the material is adding energy to the

transmitted beam instead of absorbing energy from it); the thickness or weight-

ing maps tS×P should likewise be non-negative because of the additive nature of

the densities of the materials in the sample. Because DN×P measures the opti-

cal density − ln(I/I0), which is always non-negative (barring errors in the inci-

dent flux I0 normalization), it should be possible, in theory, to find non-negative

μN×S and tS×P such that Eq. 1 is satisfied.

The problem of analyzing the measured data DN×P in terms of a set of

spectra μN×S has been the subject of numerous multivariate statistical analysis

approaches in energy loss electron microscopy14,15 and in infrared spectromi-

croscopy5,16. In x-ray spectromicroscopy, approaches using spectral standards

or hand-defined regions assumed to be of uniform, pure composition have al-

lowed one to obtain a set of S spectra μ̃N×S from which thickness maps tN×P

can be obtained17,18 by using the singular value decomposition (SVD) for matrix

inversion, yielding

tS×P = μ̃†
S×N DN×P , (2)

where μ̃†
S×N is the pseudo-inverse of μ̃S×N .

Approaches for understanding more complex samples in x-ray microscopy

have included the use of principal component analysis (PCA)19,20 to identify a

limited or significant basis set S̄ of orthonormal spectral signatures. However,

SVD inversion does not guarantee a non-negative thickness map tN×P , and PCA

can produce a basis set μ̃N×S that includes both positive and negative spectral

values. Therefore, these approaches do not satisfy the non-negative condition of

our desired solution described in Eq. 1.

2 Cluster analysis and negative values

Although PCA does not provide a set of spectra that are individually interpretable

as positive absorption spectra of separate materials present in the specimen, it

does provide a well-organized and reduced-dimensionality search space for clus-

ter analysis13,21 as a way of finding pixels with similar spectra. Once the clusters
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Fig. 1 Two-material test specimen to illustrate compositional mapping approaches. We

assume that the specimen is a three-dimensional block comprises two separate materials

A and B with a continuous variation between the two. The compositional variation is

shown at left: the view is along the x direction (into the page), while the x-ray beam is

traveling along the z direction. The thickness maps associated with each of the separate

materials are shown at right.
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     vectors

C: Vector combination needed for
      an example pixel

Fig. 2 Illustration of how cluster analysis can give rise to negative (and thus unphysical)

values of DN×P = μN×S tS×P . The figure at the left (A) shows a scatterplot of pixels

from a continuously varying material combination as shown in Fig. 1, assuming that the

two materials have opposing responses at energies E1 and E2. The middle figure (B)

illustrates how these pixels will be grouped into two clusters; without other information,

it would be natural to describe each cluster by the spectrum corresponding to the cluster

center (marked with the red and green +). The figure at the right (C) shows how

recreation of the spectrum of a pixel near one of the axes in this illustration would require

a combination of positive weighting of one cluster spectrum (green in this case) but a

negative weighting of the other cluster spectrum (red in this case); this would give rise to

negative values in the thickness or weighting matrix tS×P , implying negative absorption

of the x-ray beam, which is unphysical.

are found, the spectra calculated from each cluster center provide a set μ̃N×S̄ for

calculation of thickness weightings tS×P according to Eq. 2. Cluster analysis

has proven useful for a variety of applications including soil and environmental

analysis22,23; however, it is also observed to yield some regions with slightly neg-

ative values in the thickness maps tS×P , which are unphysical and thus represent

limitations in the analysis.

To understand the way in which non-negative errors can arise in cluster anal-

ysis, we consider a simple example of a specimen with uniform thickness and a

continuum of composition starting with 100% of material A, which is strongly

absorptive at energy E1, and ending with 100% of material B, which is strongly

absorptive at energy E2 (see Fig. 1). A scatterplot of the location of individual

pixels based on their responses at the energies {E1, E2} is shown schematically

in Fig. 2A. If these pixels are organized into two clusters, the groupings shown

in Fig. 2B will be the result, where the vectors shown point to the center of

the respective cluster centers; this will give rise to a set of spectra μ̃N×S (with

S = 2 in this example) from which one can calculate thickness maps according

to Eq. 2. However, consider the case of a pixel that is far from the median in

composition, such as the upper left one in Fig. 2C. The only possible thickness

map tS×P or weighting map of the cluster spectra μN×S able to reach that point

is one that involves a negative weighting of one of the cluster spectra; that is, one

that produces negative values in the thickness map tS×P , which are unphysical

in our desired interpretation of the measured positive optical densities of Eq. 1.

Of course, if the variation among spectral response of the pixels assigned to a

cluster is small, these errors can be negligibly small; however, as Fig. 2 shows,

there is no guarantee that cluster analysis will produce a thickness map with few

negative pixels. Indeed, this negative thickness error is exactly what is observed
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Fig. 3 Cluster analysis applied to the DN×P simulated data of Fig. 1 using two

different spectra. The “Cluster segmentation”’ image at left shows how the simulated

specimen is correctly classified as being made up of S = 2 distinct spectra μS×N , while

the “Cluster thickness maps” in the center show the weightings or thickness maps tS×P

that result. Careful examination of these cluster thickness maps reveals that they include

(unphysical) negative values, and the “Cluster error map” at right (which represents the

error |DN×P − μN×S tS×P | as a grey-scale image) shows that both the extrema and

midpoint mixtures are not reconstructed with full accuracy using cluster analysis.

in an actual cluster analysis of data of the form of Fig. 1, as shown in Fig. 3.

A better solution to the simple example shown in Fig. 2 would locate the

component vectors not in the center of clusters, but closer to extrema points so

that the full range of spectroscopic variations can be represented; that is, in this

example, the component vectors would point along (or close to) the respective

axes rather than at the cluster centers. This is simple to arrive at for the delib-

erately constructed example of Fig. 2; but with nontrivial data distributions in

multiple dimensions and in the presence of noise, the problem becomes much

more challenging. We therefore present an alternative spectromicroscopy analy-

sis approach in Sec. 4.

3 Application: biochemical analysis of spermatozoa

As an example application of x-ray spectromicroscopy analysis to a complicated,

real-world specimen, we consider the case of human spermatozoa. Sperm are

compact cells with tightly-packed and well-segregated materials in their head and

a long flagellum that allows them to move through fluid (Fig. 4). Their density

and total thickness make them difficult to study in electron microscopy without

sectioning, and their small size means that the sub-50 nm spatial resolution of

x-ray spectromicroscopy is helpful for resolving compositional details24.

One in four couples experiences difficulties in conceiving25, with a male fac-

tor contributing in more than 50% of these cases26. The assessment of male

infertility relies mostly on conventional criteria of sperm quality, such as concen-

tration, motility, and morphology. While threshold values of these metrics can

be used to classify men as subfertile, of indeterminate fertility, or fertile, none of

the measures are reliable diagnostics of infertility27. This fact indicates that the

sperm of infertile men may have hidden abnormalities in the composition of their

nuclei. DNA damage above a certain threshold appears to impair fertilization and

embryo development28,29, but little is known about the etiologies of sperm DNA

damage and its full impact on human reproduction. Light microscopy does not

deliver valuable information on sperm DNA or chromatin abnormalities, while
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Fig. 4 Diagram of a human spermatozoa. The enzymes involved in penetrating the egg

are in the acrosomal cap, while the nucleus contains the DNA tightly packed with histone

proteins. The flagellar motor is within the posterior ring.

bulk chemical measurements average over many morphologies and are not sensi-

tive to individual spermatozoa. Flow cytometry can correlate sperm morphology

with total DNA content30, but it is still useful to visualize overall biochemical

organization at higher resolution and without relying on a single biochemical

marker. X-ray spectromicroscopy insights into the correlation between sperm

morphology and abnormal DNA or protein distributions could lead to a better

understanding of the basis for light microscopy selection of one abnormality over

another for in vitro fertilization in cases where no sperm are present with normal

morphology.

Several investigators have carried out high-resolution soft x-ray microscopy

studies of sperm31–34. Zhang et al. have used carbon near-absorption-edge x-ray

spectromicroscopy for compositional mapping of hamster, rat, and bull sperm17.

They acquired spectra of thin film standards of proteins protamine 1 and 2 and

of calf thymus DNA; a species-weighted ratio of the protamine spectra was used

along with the DNA spectrum to form a two-spectrum matrix μ, which was then

inverted by using the SVD in order to yield thickness maps (Eq. 2) and estimate

protein-to-DNA ratios. The results suggested that protamine content is indepen-

dent of protamine 2 gene expression, but they did not allow one to discover other

variations in biochemical organization because the analysis assumed a compo-

sition consisting of just the three targeted biochemicals. We therefore wish to

consider analysis methods that are not based on such limiting assumptions.

We have used ejaculated sperm obtained via masturbation from randomly

selected unidentified donors at the Andrology Lab at Stony Brook University

Hospital. Fresh ejaculate was washed in phosphate-buffered saline to dilute the

optically thick semen and then was imaged wet in a special sample holder35, air

dried, or freeze dried. Wet sperm suffered some degradation during x-ray mi-

croscopy measurements, so an air-dried sperm was selected for the data shown

here24 since in images of dozens of sperm this preparation method seemed to

preserve sperm morphology better than what we observed when plunge-freezing

in liquid ethane followed by freeze drying (perhaps because of ice crystal forma-

tion in the dense sperm head during plunge-freezing). Images were taken with

a scanning transmission x-ray microscope developed by us at Stony Brook Uni-

versity36 and formerly operated on an undulator beamline X1A1 at the National
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Synchrotron Light Source at Brookhaven National Laboratory (the version of

microscope used in these studies was upgraded to include laser interferometer

control of the scanning stage24,37,38). Images were acquired with 100 nm pixel

size and at 133 photon energies across the carbon x-ray absorption near-edge

spectroscopy region from 283.8 to 291.6 eV.

4 Non-negative matrix approximation methods

Cluster analysis based on data orthogonalized and reduced by using PCA is rapid

and useful for analyzing complex data13,21–23, although it can return negative val-

ues as described above. There is also a wide range of other productive approaches

for spectromicroscopy analysis4,5,14,15,39. However, we restate our fundamental

requirement, which is to find an approach that is constrained by the physics of

x-ray absorption to yield only non-negative values for the matrices in the expres-

sion of Eq. 1 of DN×P = μN×S tS×P . This is precisely the requirement satis-

fied by non-negative matrix factorization, an analysis approach first explored by

Paatero and Tapper40 and later implemented with considerable notice by Lee and

Seung10. We describe our implementation of NNMA analysis for x-ray absorp-

tion spectromicroscopy, realizing that the same approaches can be used for other

types of spectral analysis41,42, spectrum imaging43, and hyperspectral imaging

methods44,45.

The approach of Lee and Seung10 for face recognition was to use a mul-

tiplicative update algorithm for non-negative matrix factorization of data in the

form of Eq. 1, with minimization of the basic data-matching cost function F0(μ, t)
of (dropping matrix subscripts for simplicity):

F0(μ, t) = ||D− μt||22. (3)

The Lee and Seung algorithm in our notation initializes with random non-negative

values for the matrices μ and t and then applies iterative updates46 using multi-

plicative rules of the form

μ ← μ

(
μTD

)

(μTμt)
(4)

t ← t

(
DtT

)

(μttT)
, (5)

where the multiplications and divisions not in parentheses are taken component-

wise, until a minimum of the data-matching cost function F0 of Eq. 3 is reached

(or, in practice, until F0 falls below some predetermined threshold).

Minimizing the cost function to make the NNMA factorization of μt as

close as possible to the optical density data D is necessary but not sufficient

for achieving a clear, easy-to-interpret analysis of x-ray spectromicroscopy data.

With this basic cost function as the only consideration, one can miss several de-

sired features of a useful solution; furthermore, the minimizer will not be unique

(since any positive scaling between μ and t would achieve the same cost func-

tion value). One approach is to introduce other considerations such as spectral

smoothness as constraints, but this mixed strategy of optimization for some cri-

teria, and constraints for others, can lead to very slow convergence24.
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Spectra Data-matching
NNMA: 

Data-matching + sparseness

Data-matching
Data-matching 
+ sparseness

Fig. 5 Comparison between NNMA without and with sparseness regularization. The

first column compares the reconstructed spectra μ. The second column shows the

NNMA reconstructed thickness maps t of the sperm dataset without any sparseness

regularization, while the third column shows NNMA reconstructed maps with sparseness

regularization (λt = 0.7). In the last column, the components appear better separated

than without sparseness regularization. However, some of the reconstructed spectra do

not resemble observed x-ray absorption spectra; approaches to address this are illustrated

in Figs. 6 and 7.

4.1 NNMA regularization

One method to narrow and refine the search space for NNMA is to introduce reg-

ularizations in addition to the basic cost function minimization. Regularization is

one way to incorporate additional information we might have about the data into

the overall cost function to be minimized. In this way, we find a balance between

the error minimization from data-matching, and a good fit to data-modeling. Each

regularization is controlled by a continuous regularization parameter λ in the cost

function

F (μ, t) = F0(μ, t) + λμ Jμ(μ) + λt Jt(t), (6)

where Jμ, Jt are the regularizers and λμ, λt are the regularization parameters

applied to the spectral μ and thickness or weighting t matrices, respectively.

From a machine-learning perspective, λ represents the trade-off between er-

rors in data-matching and the complexity of the model47. For small λ, the errors

become smaller at the cost of not accurately modeling the data. For larger λ,

the data-matching errors become reduced in importance relative to other desired
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characteristics of the data model. We consider here two regularization schemes

for desired characteristics of our solution (our model): sparseness and similarity

to cluster spectra.

Spectra       Cluster analysis
Cluster analysis
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0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

283
0.5

1.0

1.5

2.0

2.5

Ab
so

rp
tio

n 
co

ef
fic

ie
nt

(a
rb

. u
ni

t)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

284285286287288289290291292
Energy (eV)

1.2

0.9

0.6

0.3

0.0

0.3

0.6

0.9

1.2

40

30

20

10

0

10

20

30

40

8

6

4

2

0

2

4

6

8

4.5

3.0

1.5

0.0

1.5

3.0

4.5

1.2

0.8

0.4

0.0

0.4

0.8

1.2

0.00

0.15

0.30

0.45

0.60

0.75

0.90

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

0.0
1.5
3.0
4.5
6.0
7.5
9.0
10.5
12.0
13.5

NNMA: Data-matching
+ cluster spectra similarity

Ab
so

rp
tio

n 
co

ef
fic

ie
nt

(a
rb

. u
ni

t)
Ab

so
rp

tio
n 

co
ef

fic
ie

nt
(a

rb
. u

ni
t)

Ab
so

rp
tio

n 
co

ef
fic

ie
nt

(a
rb

. u
ni

t)
Ab

so
rp

tio
n 

co
ef

fic
ie

nt
(a

rb
. u

ni
t)

Cluster

+ cluster

Fig. 6 Comparison between cluster analysis and NNMA with a cluster spectra similarity

regularization scheme as described in Section 4.1. By tuning the regularization parameter

λμsim
to be high (in this case, λμsim

= 100), we can obtain NNMA reconstructed

spectra that are similar to those from cluster analysis (first column). At the same time, the

negative regions from the cluster thickness maps (second column) are eliminated, as seen

in the NNMA reconstructed maps (fourth column). To highlight the negative regions in

the cluster analysis thickness maps, only these regions are shown in the third column.

Sparseness: In many x-ray spectromicroscopic datasets, the t matrix is ex-

pected to be sparse—each pixel would contain at most a few components (column

sparseness), and each component would be favored to show up in only a small

subset of pixels (row sparseness)—so that many entries in t would be zero or

close to zero. The typical regularizer to model the sparseness of t is the one-

norm48: ||t||1 =
∑

k,p tk,p . The cost function to be minimized becomes

F (μ, t) = ||D− μ t||22 + λt ||t||1, (7)

and the addition to the update rule for t is

λt
∂Jt
∂t

= λt onesS×P , (8)

so that Eq. 5 becomes

t ← t

(
DtT

)

(μttT + λt)
. (9)
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With spectral imaging, one of the consequences of incorporating sparseness

into the model would be to create more clearly separable components, as seen

in the reconstructed thickness maps t. Figure 5 compares the results of apply-

ing NNMA without any regularization and one with sparseness regularization

(λt = 0.7). Although we now have more distinguishable thickness maps, the

reconstructed spectra μ do not resemble observed x-ray absorption spectra. This

result is not surprising given that NNMA has no expectation of what the recon-

structions should look like as long as the cost function is minimized.

Cluster similarity: Based on the above, we wish to also include a regulariza-

tion to increase the similarity of solutions to observed x-ray absorption spectra.

Since cluster analysis yields a set of spectra μcluster averaged from spectroscopi-

cally similar pixels, its spectra provide a good basis both for the starting solution

of an optimization procedure and for a “similarity regularizer” Jμsim
to penalize

reconstructions that deviate far from the input cluster spectra:

λμsim
Jμsim

= λμsim
||μ− μcluster||22 (10)

= λμsim

S∑

k=1

N∑

n=1

(μn,k − μclustern,k)
2. (11)

The addition to the update rule for μ is

λμsim

∂Jμsim

∂μ
= λμsim

2(μ− μcluster), (12)

so that Eq. 4 becomes

μ ← μ

(
μTD

)
(
μTμt+ 2λμsim

(μ− μcluster)
) . (13)

Figure 6 compares reconstructions from cluster analysis against NNMA with

cluster spectra similarity regularization. By tuning the regularization parameter

λμsim
to be high, we can obtain reconstructed spectra that match closely with

those from cluster analysis, while eliminating the negative regions in the thick-

ness maps.

While cluster similarity adds an important bias toward the properties of ac-

tual observed x-ray absorption spectra, sparseness is still a desirable property for

our solutions since it maximizes chemical separability in the weighting or thick-

ness maps. Fortunately, one can seek a simultaneous minimum of the three cost

components together: the data-matching cost of Eq. 3, the sparseness regularizer

of Eq. 7, and the cluster similarity regularizer of Eq. 10 by using the combined

updates of Eqs. 9 and 13. As shown in Fig. 7, this at last gives solutions that sat-

isfy our desired properties simultaneously, both for the sperm spectromicroscopy

data shown here and in other studies to be described elsewhere.

4.2 Selection of the number of spectroscopically distinguishable compo-
nents S

An important parameter in NNMA analysis (as well as in cluster analysis) is the

selection of the number of spectroscopically distinguishable components S to
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seek. If S is too small, we will arrive at a basis set that is not able to reproduce

all the important variations in the data; if S is too large, we may have simply

analyzed variations due to noise from photon statistics or other sources. In PCA,

the eigenvalues of the covariance matrix Z = DDT can provide a good estimate,

since they often drop sharply from the first eigenvalue down to a point where

subsequent eigenvalues decrease only slightly, indicating a transition from vari-

ations in significant signals to small variations due to different measures of the

same noise factors49. In cluster analysis, we have used this “knee” in the eigen-

value curve to estimate the number of significant components S̄ in the sample21,

although in practice it has been found to be important to manually examine the

analysis result. The number of clusters to seek would then be S̄.

Since NNMA analysis involves the cost function F0(μ, t) of Eq. 3 that mea-

sures how well the solution μt matches the data D, we have a good basis for

evaluating the effect of decreasing or increasing the number S of spectroscopi-

cally distinguishable components. By carrying out NNMA analysis with a range

of values for S, we can see when the error F0(μ, t) no longer decreases as a

function of S; we can similarly examine when decreases to S are insufficient to

capture all the important spectroscopic variations in the sample. This topic will

be explored further in future work.

5 Discussion

Our goal in x-ray spectromicroscopy analysis is to find a “basis set” of spectra

that allow us to describe the intrinsic distribution (thickness or weighting maps)

of spectroscopically resolvable components in the specimen. While cluster anal-

ysis does this rapidly and delivers spectra that closely resemble those observed

from individual pixels in the spectral image set (because they simply average

a subset of observed spectra together), we have shown that the resulting basis

set can lead to negative values in the thickness maps, which are unphysical.

Non-negative matrix approximation analysis techniques provide a path out of

this dilemma and also allow us to incorporate other characteristics desired from

the data in a combined cost function approach for optimization. For our ex-

ample x-ray spectromicroscopy data, NNMA delivers results consistent with the

known large-scale biochemical organization of human spermatozoa when we si-

multaneously add two regularizers to the basic data-matching condition of Eq. 3:

sparseness (Eq. 7), and cluster similarity (Eq. 10). With this combined regu-

larizer approach, we are able to obtain thickness maps and spectra (Fig. 7) that

highlight the expected large-scale biochemical organization of spermatozoa as

shown schematically in Fig. 4: image t3 highlights the acrosomal cap, flagellar

motor, and mitochondrion; image t4 highlights the nucleus where histones are

bound to DNA; image t2 highlights the lipid membrane and flagellum; and image

t1 isolates a high-density area in the flagellar motor with some combination of

chemical sensitivity and experimental absorption saturation limits. The spectro-

scopic peaks observed in Fig. 7 can be interpreted by careful comparison between

theoretical calculations and experimental measurements of organic molecular as-

semblies such as amino acids50 and manufactured polymers51, although detailed

discussion is beyond the scope of the present work.

An exploratory version of the NNMA analysis approach described here is
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implemented in a Python open source code∗ called MANTiS52 developed by

2nd Look Consulting; a more refined interface to NNMA analysis is planned

for an upcoming release of MANTiS. For the data shown here, the combined

cost function converged to a minimum over about 10,000 iterations taking about

10 minutes on a laptop computer. These results show the potential of NNMA

analysis on complicated data.
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Fig. 7 X-ray spectromicroscopy analysis results obtained by the cluster analysis

approach 21 and NNMA with data-matching (Eq. 3), sparseness (Eq. 7), and cluster

similarity (Eq. 10) regularizers used in combination. As suggested in Fig. 2 and shown

for this data set in Fig. 6, cluster analysis produces maps with negative weightings for

some regions, which are not allowed by the physics of x-ray absorption, whereas the

NNMA solution using data-matching, sparseness, and cluster similarity delivers an

analysis result with recognizable x-ray absorption spectra and positive weightings or

thickness maps, which nicely illustrate the large-scale biochemical organization of

sperm. Image t3 highlights the acrosomal cap, flagellar motor, and mitochondrion; image

t4 highlights the nucleus where histones are bound to DNA; image t2 highlights the lipid

membrane and flagellum; and image t1 isolates a high-density area in the flagellar motor

with some combination of chemical sensitivity and experimental absorption saturation

limits. The regularization weightings used for the NNMA analysis were λμsim
= 10 and

λt = 0.5.
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