

Bioavailability, distribution and clearance of tracheally instilled, gavaged or injected cerium dioxide nanoparticles and ionic cerium

Journal:	Environmental Science: Nano
Manuscript ID:	EN-ART-02-2014-000034.R1
Article Type:	Paper
Date Submitted by the Author:	08-Sep-2014
Complete List of Authors:	Molina, Ramon; Harvard School of Public Health, Environmental Health Konduru, Nagarjun; Harvard School of Public Health, Environmental Health Jimenez, Renato; Harvard School of Public Health, Environmental Health Pyrgriotakis, Georgios; Harvard School of Public Health, Environmental Health Demokritou, Philip; Harvard School of Public Health, Environmental Health Wohlleben, Wendel; BASF SE, Materials Physics Brain, Joseph; Harvard School of Public Health, Environmental Health

SCHOLARONE[™] Manuscripts Nano Impact Statement

After extensive physical and chemical characterization of cerium oxide nanoparticles, the pharmacokinetics of neutron-activated ¹⁴¹CeO₂ NPs and ionic ¹⁴¹Ce were studied in Wistar rats. Three routes of administration were used: intratracheal instillation, gavage, or intravenous injection. The lung clearance of 141-Ce had a half-life of about 140 days, while that of ionic cerium was 55 days. Both half-lives are far slower than seen in more familiar metal oxides and their ionic species. Importantly, bioavailability from the gut was orders of magnitude less than that via the lungs. We saw minimal Ce accumulation in other tissues, showing that translocation from the lungs was minimal. The mechanisms for prolonged retention of Ce need to be characterized so that risks can be better estimated.

Cerium in both nanoparticulate and ionic form is cleared slowly from the lungs resulting in minimal tissue accumulation. Importantly, bioavailability from the gut is much less than via the lungs. 35x15mm (300 x 300 DPI)

1	Bioavailability, distribution and clearance of tracheally instilled, gavaged or injected
2	cerium dioxide nanoparticles and ionic cerium
3	
4	Ramon M. Molina, ^a Nagarjun V. Konduru, ^a Renato J. Jimenez, ^a Georgios Pyrgiotakis, ^a
5	Philip Demokritou, ^a Wendel Wohlleben, ^b Joseph D. Brain * ^a
6	
7	
8	^a Center for Nanotechnology and Nanotoxicology, Molecular and Integrative Physiological
9	Sciences Program, Department of Environmental Health, Harvard School of Public Health,
10	665 Huntington Avenue, Boston, MA 02115, USA. ^b BASF SE, Material Physics, Carl-
11	Bosch-Str. 38 67056 Ludwigshafen, Germany.
12	
13	Corresponding Author: * Joseph D. Brain, Harvard School of Public Health, Molecular and
14	Integrative Physiological Sciences Program, Department of Environmental Health, 665
15	Huntington Avenue, Boston, MA 02115, USA.
16	Phone: 1-617-432-1272Fax: 1-617-432-4710
17	Email: brain@hsph.harvard.edu
18	
19	Running title: Biokinetics of nanoceria versus ionic cerium
20	
21	
22	Key words: nanoceria, bioavailability, nanoparticles, pharmacokinetics, translocation,
23	particle dissolution.

24 Abstract

26	Cerium oxide nanoparticles (NPs) have wide commercial applications. Understanding their
27	fate in the body is fundamental to toxicological evaluations. We compared bioavailability,
28	tissue distribution and clearance and excretion of radioactive ¹⁴¹ Ce after intratracheal
29	instillation (IT), gavage, or intravenous (IV) injection of neutron-activated ¹⁴¹ CeO ₂ NPs and
30	¹⁴¹ CeCl ₃ (ionic ¹⁴¹ Ce) in Wistar Han rats. First, we evaluated pulmonary responses to IT-
31	instilled CeO ₂ NPs and CeCl ₃ and observed dose-dependent inflammatory effects. Then,
32	groups of rats were IT-instilled with 1 mg/kg of ¹⁴¹ CeO ₂ NPs or 0.1 mg/kg ¹⁴¹ CeCl ₃ .
33	Sequential analyses of lungs over 28 days showed slow lung clearance of ¹⁴¹ CeO ₂ NPs (half-
34	life = \sim 140 days) and of ionic ¹⁴¹ Ce (half-life = \sim 55 days). However, less than 1% and 6% of
35	instilled ¹⁴¹ Ce was measured in selected extrapulmonary organs in ¹⁴¹ CeO ₂ NPs and ionic
36	¹⁴¹ Ce groups, respectively. Following gavage (5 mg/kg), nearly 100% of both test materials
37	was excreted in the feces. Since detected ¹⁴¹ Ce activity in tissues could be in nanoparticulate
38	or dissolved form, we also compared the ¹⁴¹ Ce tissue distribution post-IV injection with the
39	IT and gavage data. Both IV-injected ionic ¹⁴¹ CeCl ₃ and ¹⁴¹ CeO ₂ NPs were predominantly
40	retained in the liver, bone and spleen, all organs that typically remove circulating particles.
41	We conclude that nanoceria is slowly cleared from the lungs but has minimal extrapulmonary
42	accumulation. Potential risks from prolonged pulmonary retention need further investigation.
43	Risk from ingested nanoceria is likely far lower due to very low absorption and rapid
44	elimination of ceria not absorbed from the gastrointestinal tract.
45	

46 Introduction

47

Cerium oxide nanoparticles (NPs) are widely used in various nanotechnology applications such as polishing ¹, solid oxide fuel cells ^{2, 3}, and as fuel additive ^{4, 5}. Owing to its inherent ability to switch oxidation states from Ce⁴⁺ to Ce³⁺, cerium has particular effectiveness in driving redox catalysis based applications ⁶⁻⁸. One biomedical application of this property is its use as an antioxidant ^{9, 10}. Cerium oxide is also a promising sunscreen component due to its ability to block broad-spectrum UV radiation ¹¹. Because of its wide and diverse use, it is important to characterize its potential adverse health effects.

55

Studies on nanoceria toxicity undertaken during the last decade show conflicting data on 56 57 biological effects. A number of *in vivo* and *in vitro* studies evaluating their biological effects have reported toxicity and oxidative stress ¹²⁻¹⁴. However, recent reports highlight the 58 59 potential antioxidant activity of nanoceria in protection against a variety of oxidative stressrelated disorders ¹⁵⁻¹⁸. Few studies have shown the influence of particle size, synthesis 60 protocols, and particle aging on the biological effects of nanoceria^{7, 19}. It is possible that 61 62 nanoceria particle aggregation in air and aqueous media are among the factors contributing to 63 the discrepancies among inhalation studies versus intratracheal instillation and in vitro 64 experiments. Nanoparticle aggregation is influenced by surface charge, material type, size, 65 and other factors, such as the protein corona. Nanoparticle recognition and uptake by alveolar 66 macrophages is an important mechanism of effective nanoparticle clearance and subsequent 67 dissolution or translocation. It has been shown that particle aggregation, forming clusters of 68 >100 nm, promotes effective phagocytosis by alveolar macrophages. Smaller (especially <20) 69 nm) nanoparticle aggregates are more likely to evade macrophage-mediated "surveillance" and translocate across barriers. ²⁰⁻²². 70

71

72	A few studies have examined pulmonary clearance of nanoceria in animal models. A recent
73	study by He et al. investigated the fate of radiolabeled nanoceria after intratracheal
74	instillation or gavage in rats 23 . They showed that only ~35% of instilled dose was cleared
75	from the rat lung over 28 days. The radioactive nanoceria used were 6.6 nm, synthesized by
76	the precipitation method using ¹⁴¹ Ce(NO ₃) ₃ as precursor. Several studies have described the
77	long-term biopersistence of cerium oxide and its dissolution kinetics <i>in vivo</i> and <i>in vitro</i> ²³⁻²⁹ .
78	A recent study by Dan et al. compared the vascular clearance of different sized nanoceria (5,
79	15, 30 and 55 nm primary particle sizes) and cerium chloride after intravenous infusion 30 .
80	The study employed very high doses (50 and 250 mg/kg body weight) and focused on the
81	systemic clearance of nanoceria. The results showed that nanoceria pharmacokinetic behavior
82	differs from ionic cerium. As nanoparticle clearance is also significantly influenced by
83	administered dose, studies using a range of doses are needed. More recently, Geraets et al.
84	described the pulmonary and extrapulmonary distribution of aerosolized nanoceria in rats ³¹ .
85	Animals were repeatedly exposed to nanoceria for several hours on multiple days. Although
86	the study showed the extent of cerium accumulation in various tissues, the lung clearance
87	was not determined.

88

In this study, we sought to determine whether the route of exposure (intratracheal instillation, gavage, intravenous injection) influences the distribution and clearance of cerium oxide nanoparticles. We compared the pharmacokinetics of ¹⁴¹Ce in rats instilled with neutronactivated ¹⁴¹CeO₂ NPs versus ¹⁴¹CeCl₃ to differentiate the kinetics of nanoparticle-associated cerium versus free ionic cerium. These comparisons provide a better understanding of how much cerium from nanoceria are absorbed from the lungs versus the gut. To what extent does cerium translocate, and does it translocate as intact particles or as dissolved ionic cerium?

~~

97 Materials and Methods

98

99	Characterization of CeO ₂ nanoparticles. The cerium oxide used in this study was obtained
100	from Mercator GmbH, Berlin, Germany. It is a test material assigned the specific code NM-
101	212 by the OECD sponsored program for safety testing of manufactured nanomaterials.
102	Extensive characterization of CeO ₂ NM-212 has been previously reported by the European
103	Commission's Joint Research Centre ³² . The sample used in this study was characterized
104	based on Nano specific guidelines by the European Chemicals Agency (ECHA) ³³ . The
105	methods employed have been published elsewhere ³⁴ and are summarized in Supplemental
106	Materials. Anhydrous beads of cerium (III) chloride were obtained from Sigma-Aldrich (St.
107	Louis, MO).
108	
109	Neutron activation of CeO ₂ nanoparticles and CeCl ₃ . Cerium oxide nanoparticles and
110	CeCl ₃ powder were neutron activated at the MIT Nuclear Reactor Laboratory (Cambridge,
111	MA) with a thermal neutron flux of 5 x 10^{13} n/cm ² /s for 24 hours. The process generated the
112	radioisotope ¹⁴¹ Ce, which decays with a half-life of 32.5 days and emits gamma energy of
113	145.4 KeV. The specific activity was 4.7 μ Ci ¹⁴¹ Ce per mg CeO ₂ and 4.3 μ Ci ¹⁴¹ Ce per mg
114	CeCl ₃ .
115	
116	In vitro bioaccessibility tests. Cerium oxide nanoparticles were incubated under varying pH
117	and chemical conditions to measure bioaccessibility, which is the fraction of cerium that
118	dissolves. The nanoparticles were incubated in different fluids at 37°C: phosphate-buffered
119	saline (PBS) for 28 days to simulate surface deposition in the lungs, synthetic

120 phagolysosomal simulant fluid (PSF) for 28 days to simulate uptake and digestion in

121	macrophages ³⁵ , 0.1N HCl for 1 day to simulate oral ingestion and stomach transit time, and
122	fasted state simulant intestinal fluid (FaSSIF) for 7 days to simulate gastrointestinal
123	intraluminal conditions. All incubation times were chosen at or above the maximum realistic
124	residence time of nanoceria in specific body compartments, since we expected low
125	dissolution in these simulant fluids. We determined nanoparticle agglomeration (size and
126	charge), release of ions in supernatant by inductively coupled mass spectroscopy (ICP-MS),
127	structural changes of particles by scanning and transmission electron microscopy
128	(SEM/TEM) on sediment and nanoparticle durability by selected area electron diffraction
129	(SAD).
130	
131	Animals. The protocols used in this study were approved by the Harvard Medical Area
132	Animal Care and Use Committee. Male Wistar Han rats (8 weeks old) were obtained from
133	Charles River Laboratories (Wilmington, MA) and were housed in standard microisolator
134	cages under controlled conditions of temperature, humidity, and light at the Harvard Center
135	for Comparative Medicine. They were fed commercial chow (PicoLab Rodent Diet 5053,
136	Framingham, MA) and were provided with reverse-osmosis purified water ad libitum. The
137	animals were acclimatized in the facility for at least 7 days before the start of experiments.
138	
139	Preparation of CeO ₂ nanoparticle suspension for animal dosing. Particle suspensions at
140	specified concentrations were prepared in sterile distilled water in conical polyethylene tubes.
141	A critical dispersion sonication energy (DSE_{cr}) to achieve the smallest particle agglomerate
142	size was used, as previously reported 36 . The suspensions were sonicated at 242 J/ml (20
143	min/ml at 0.2 watt power output) in a cup sonicator fitted on Sonifier S-450A (Branson
144	Ultrasonics, Danbury, CT, USA). The sample tubes were immersed in running cold water to
145	minimize heating of the particles during sonication. The hydrodynamic diameter (H _D),

146	polydispersity index (PdI), and zeta potential (ζ) of each suspension were measured by
147	dynamic light scattering using a Zetasizer Nano-ZS (Malvern Instruments, Worcestershire,
148	UK).
149	
150	Assessment of pulmonary effects of CeO ₂ nanoparticles and CeCl ₃ – Bronchoalveolar
151	lavage and analyses. This experiment was performed to determine the safe dose for
152	intratracheal instillation of CeO ₂ NP or CeCl ₃ where inflammation or injury was minimal.
153	Twenty-four rats (wt. = 249 ± 4 g) were instilled intratracheally with CeO ₂ suspension at 0.2,
154	or 1.0 mg/kg and 0.1 mg/kg $CeCl_3$ (n = 6 rats/group). Another group of rats instilled with an
155	equivalent volume of distilled water served as controls. The particle suspensions were
156	delivered to the lungs through the trachea, as described earlier ³⁷ . Twenty-four hours later,
157	rats were anesthetized and then euthanized via exsanguination, with a cut in the abdominal
158	aorta. The trachea was exposed and cannulated. The lungs were then lavaged 12 times with 3
159	mL of Ca^{++} - and Mg^{++} -free 0.9% sterile PBS. The cells from all washes were separated from
160	the supernatant by centrifugation (350 x g at 4°C for 10 min). Total cell count and
161	hemoglobin measurements were made from the cell pellets. A dilute cell suspension was
162	cytocentrifuged, the cytospin was stained and differential cell counting was performed. The
163	supernatant from the first two washes was clarified via centrifugation (14,500 x g at 4°C for
164	30 min), and used for standard spectrophotometric assays for lactate dehydrogenase (LDH),
165	myeloperoxidase (MPO) and albumin ³⁸ .
166	

Pharmacokinetics of intratracheally-instilled, gavaged and intravenously injected 167

¹⁴¹CeO₂ nanoparticles and ¹⁴¹CeCl₃. The nanoparticle doses used were 0.1 mg/kg (¹⁴¹CeCl₃) 168

and 1 mg/kg (¹⁴¹CeO₂ NPs) for IT instillation, 1 mg/kg for IV injection, and 5 mg/kg for 169

gavage administration. Neutron-activated ¹⁴¹CeO₂ NPs were suspended in sterile distilled 170

water at 0.67 mg/ml for IT instillation (1.5 ml/kg body weight) or at 5 mg/ml for gavage

171

172 administration (1 ml/kg) and sonicated as described above. Another group of rats was IT-173 instilled with 0.067 mg/ml of neutron-activated CeCl₃ at the same volume dose (1.5 ml/kg). 174 The radioactivity in multiple aliquots of each suspension or solution was measured in a 175 WIZARD Gamma Counter (PerkinElmer, Inc., Waltham, MA). 176 Each rat was anesthetized with isoflurane (Piramal Healthcare, Bethlehem, PA). The ¹⁴¹CeO₂ 177 178 NP suspension or ¹⁴¹CeCl₃ solution was delivered to the lungs through the trachea, into the 179 bloodstream via the penile vein, or into the stomach via the esophagus. Each rat was then 180 placed in a metabolic cage with food and water *ad libitum* for fecal and urine sample 181 collection. Five rats from the IT group were humanely killed at 5 m, 2 d, 7 d and 28 d post-182 dosing. The same number of rats was analyzed at 5 m and 7 d post-gavage, and at 2 h and 2 d 183 post-IV injection. Analysis of rats at 5 minutes post-IT instillation and post-gavage was 184 performed to obtain an accurate measure of the initial deposited dose. Since we anticipated 185 that clearance from the gastrointestinal tract would be faster, the gavage experiment spanned 186 only 7 days. Since it has been shown that a small fraction of inhaled nanoparticles may translocate into the systemic circulation ^{39, 40}, we evaluated the tissue distribution of 187 intravenously injected ¹⁴¹CeO₂ NPs to elucidate their fate in the circulation. Twenty four-188 189 hour samples of feces and urine were collected at selected time points (0–24 hours, 2–3 days, 190 6-7 days, 9-10 days, 13-14 days, 20-21 days, and 27-28 days post-IT instillation; 0-24191 hours, 2-3 days, and 6-7 days post-gavage; and 0-24 hours post-IV injection). 192 193 At each time point, rats were anesthetized and as much blood was collected from the 194 abdominal aorta. Plasma and red blood cells were separated by centrifugation at 3000 x g for

195 10 minutes at 4°C. After euthanasia, the whole lungs, brain, heart, spleen, kidney,

196	gastrointestinal tract, testes, liver, and multiple samples of skeletal muscle and bone marrow,
197	skin, and the two femoral bones were collected and placed in pre-weighed tubes. Each
198	sample weight was recorded. Radioactivity was measured in a WIZARD Gamma Counter
199	(PerkinElmer, Inc., Waltham, MA). Disintegrations per minute were calculated from the
200	measured counts per minute (minus background) and the counter efficiency. Data were
201	expressed as $\mu\text{Ci/g}$ and as a percentage of the administered dose retained in each organ. All
202	radioactivity data were adjusted for physical decay over the entire observation period. The
203	radioactivity in organs and tissues not measured in their entirety was estimated from
204	measured aliquots as a percentage of total body weight as follows: skeletal muscle, 40%;
205	bone marrow, 3.2%; and peripheral blood, 7%; skin, 19%; bone, 6% ^{41,42} .
206	
207	Pulmonary distribution of ¹⁴¹ CeO ₂ nanoparticles and ¹⁴¹ CeCl ₃ . To determine the
208	pulmonary distribution of instilled ¹⁴¹ CeO ₂ NPs and ¹⁴¹ CeCl ₃ within the lungs at 1 d post-
209	instillation, a separate cohort of rats were IT-instilled with 1 mg/kg 141 CeO ₂ and 0.1 mg/kg
210	¹⁴¹ CeCl ₃ . Twenty-four hours later, the lungs were lavaged as described above. The BAL fluid
211	was centrifuged at 350 x g for 10 m at 4°C to separate lavaged cells from the supernatant.
212	The cell pellets were resuspended in 0.5 ml PBS. The lavaged lungs, BAL supernatants and
213	cell pellets were analyzed for ¹⁴¹ Ce. The total radioactivity in each of the three lung
214	compartments was expressed as a percentage of the total radioactivity recovered in the whole
215	lungs.
216	
217	Statistical analyses. All data were analyzed using multivariate analysis of variance
218	(MANOVA) followed by Bonferroni (Dunn) post hoc tests using SAS Statistical Analysis
219	Software (SAS Institute, Cary, NC).

221 Results

222

223	Particle characterization. Table 1 summarizes the results of CeO ₂ NP characterization. We
224	found that the average primary particle diameter was approximately 40 nm based on
225	transmission and scanning electron microscopy (Fig. 1A, 1B), on crystallite size derived from
226	diffraction peak width on X-ray diffraction (Fig. 1D), and on sphere-equivalent diameter
227	derived from the specific surface area of 27 m ² /g. The width of the peak of inter-particle pore
228	sizes in Hg intrusion porosimetry indicated a polydispersity in primary particle diameters
229	from 15 nm to 70 nm consistent with electron microscopy observations. The material was
230	crystalline with a cubic lattice characteristic for cerianite, had irregular but roughly globular
231	shapes. In the as-produced powder, these single particles were agglomerated to sizes that
232	ranged from a few hundred nanometers to tens of microns.
233	
234	The surface of the CeO ₂ NPs contained organic contaminants (Fig. 1C). As determined by
235	thermogravimetry (TGA), the total organic content was below 0.7%. The photoelectron
236	signal of XPS which has an information depth of up to 10 nm was dominated by these
237	organics. Hence, the organic contamination was a very thin and homogeneous layer around
238	the pure inorganic particles. According to the fit of photoelectron energies from C(1s) atoms
239	and O(1s) atoms, the contamination could be an ester with a long alkyl chain (Fig. S2,
240	Supplementary Information). The Ce atoms at crystalline edges are known to be redox-active,
241	which was confirmed by the detection of a majority of it as Ce (IV) and 14% as Ce (III)
242	within the XPS-accessible surface depth (Fig. 1C).
243	
244	When dispersed in water, the nanoparticle surface was positively charged across the entire

245 physiological pH range with a zeta-potential of +42 mV at pH 7. Despite the organic

246	contaminants, the surface was reactive in a photocatalytic assay with a photon efficiency of
247	0.013 ± 0.005 (Fig. S3, Supplementary Information). Dynamic light scattering analysis of
248	CeO ₂ NP suspension in distilled water showed a hydrodynamic diameter of 207 ± 3.95 nm,
249	polydispersity index of 0.196 ± 0.018 , zeta potential of $+37.8 \pm 1.85$ and a pH of 7.85 (Fig.
250	S4, Supplementary Information). Hence, the instilled NPs after optimal sonication had a
251	significant but controllable agglomeration far below the micron range.
252	
253	Bioaccessibility. The solubility in simulated physiological fluids was measured by analyzing
254	both the remaining nanoparticulate fraction by SEM, analytical ultracentrifugation (AUC),
255	laser diffraction (LD) and zeta-potential, and the released metal ions in the supernatant by
256	ICP-MS. We found that the CeO ₂ NPs were virtually insoluble under all conditions tested
257	(Fig. 2A). Cerium oxide NPs formed agglomerates in most physiological simulant fluids. The
258	fine fraction (defined as particle or agglomerate with diameter below 1 μ m, determined by
259	AUC) decreased significantly (Fig. 2B). Under all conditions, the primary particles remained
260	recognizable in SEM scans, but in buffers with organic constituents (PSF, FaSSIF) the
261	surface charge reversed to negative zeta-potentials which indicates adsorption of buffer
262	constituents to the NPs. The CeO ₂ NPs showed structural changes in the acidic PSF medium.
263	The SEM scan after 28-d incubation in PSF showed micron-sized spheres and greater than
264	100 nm rhombohedron crystallites (Fig. 2C) that were absent in the as-produced powder (Fig.
265	1B). We found by SAD analysis that these structures retained the same cubic cerianite
266	crystalline phase of the as-produced powder (Fig. S1).
267	
268	Pulmonary response to intratracheally-instilled CeO ₂ nanoparticles and CeCl ₃ . Prior to

269 pharmacokinetic experiments, we determined a dose for IT instillation that would not cause

significant pulmonary injury and inflammation. We focused on evaluation of acute effects

271 measured at 24 h post-instillation. We found no significant increase in several endpoints 272 measured in bronchoalveolar lavage (BAL) at 0.2 and 1 mg/kg of CeO_2 NPs compared with 273 vehicle control (Fig. 3A, 3B and 3C). The only parameter that significantly decreased was the 274 macrophage number (Fig. 3A). The significant decrease in macrophages retrieved in BAL 275 from CeO₂ NP-instilled animals could have been due to macrophage toxicity or enhanced 276 macrophage adhesion on the epithelial surface and thus reduced recovery by lavage. No 277 significant changes in lavaged neutrophil, lymphocyte, eosinophil numbers, and LDH, 278 myeloperoxidase, albumin and hemoglobin levels were observed following instillation of 279 CeO_2 NPs. However, pulmonary responses to instilled CeCl₃ were observed at the lower 0.1 280 mg/kg dose. There were significant increases in neutrophils (Fig. 3D), myeloperoxidase and 281 lactate dehydrogenase and significant decrease in albumin (Fig. 3D). 282 Lung clearance of ¹⁴¹CeO₂ nanoparticles and ¹⁴¹CeCl₃ Clearance of instilled ¹⁴¹CeO₂ NPs 283 from the lungs is shown in Fig 4A. Radioactive ¹⁴¹CeO₂ was cleared slowly from the lungs 284 285 with a half-life longer than 28 days, the last time point in the study. To estimate the clearance

half-life, linear regression of the average lung ¹⁴¹Ce levels over time was performed.

287 Correlation coefficients (R^2) were 0.78 (y=-0.003x+0.96) and 0.98 (y=-0.009x+0.99) for

288 ¹⁴¹CeO₂ and ¹⁴¹CeCl₃, respectively. Extrapolated half-lives were 55 days (CeCl₃) and 140

days (CeO₂). Clearance of 141 CeO₂ NPs was biphasic with a fast component during the first 2

days, followed by a slower phase seen through 28 days when 87.5% of the ¹⁴¹Ce remained in

291 the lungs. Lung clearance of ionic 141 CeCl₃ was more linear and was relatively faster with a

clearance half-life of approximately 55 days. Still only 26% of the dose was cleared at the

end of observation period.

We examined the distribution of ¹⁴¹Ce within the lungs at 24 hours post-instillation of CeO₂ NPs (Fig. 4B). The majority (68.6%) was detected in the lavaged lungs representing adhered and tissue-associated ¹⁴¹Ce. Approximately 26% was measured in the cell pellet, presumably mostly in macrophages. Only 5.7% of recovered ¹⁴¹Ce was found in the supernatant. The lung distribution of ionic ¹⁴¹Ce was similar, except a larger fraction was recovered in the supernatant and to a lesser extent in the cell pellet.

301

Extrapulmonary retention of ¹⁴¹Ce post-instillation of ¹⁴¹CeO₂ nanoparticles and 302 ¹⁴¹CeCl₃ The total amount of ¹⁴¹Ce from ¹⁴¹CeO₂ NPs and from ionic ¹⁴¹Ce retained in 303 304 extrapulmonary tissues at 28 days were 0.9% and 6.0% of the total instilled dose, 305 respectively (Fig. 5A). These were primarily detected in the liver and bone (Table 3). The higher translocation of ionic ¹⁴¹Ce is consistent with relatively faster lung clearance. The 306 elimination of ¹⁴¹Ce from either ¹⁴¹CeO₂ NPs or ¹⁴¹CeCl₃ was mostly via the feces (Fig. 5B) 307 and to a much lesser extent via the urine (Fig 5C). The fecal and urinary elimination of 141 Ce 308 in rats instilled with ¹⁴¹CeCl₃ was significantly higher than in the ¹⁴¹CeO₂ NP group. 309 310 Fate of ¹⁴¹Ce after gavage of ¹⁴¹CeO₂ nanoparticles and ¹⁴¹CeCl₃. Absorption of ¹⁴¹Ce 311 312 from the gut was studied at 5 m and 7 d post-gavage. Nearly 100% of the dose was recovered at 5 m in the stomach in both groups after gavage (Fig. 6A). Very low levels of ¹⁴¹Ce from 313 314 NPs $(0.003 \pm 0.0004\%)$ and from CeCl₃ $(0.009 \pm 0.001\%)$ were measured in all organs examined at 7 days (Fig. 6B). Nearly the entire ¹⁴¹Ce dose from both forms of cerium was 315 316 excreted in the feces and urine over 7 days (Fig 7). 317

318 Tissue distribution of ¹⁴¹Ce after intravenous injection of ¹⁴¹CeO₂ nanoparticles and

319 ¹⁴¹CeCl₃. The distribution of ¹⁴¹Ce at 2 h and 2 d post-injection are shown in Fig. 8A and 8B,

320

340

respectively. Both ionic and nanoparticulate ¹⁴¹Ce were retained in the liver, spleen, and bone at 2 h (Fig 8A). Ionic ¹⁴¹Ce remained in the plasma longer than the nanoparticulate ¹⁴¹Ce and 321 322 the bone levels increased as the liver decreased (Fig. 8B). No such redistribution was observed the ¹⁴¹CeO₂ nanoparticle group. The fecal excretion of ¹⁴¹Ce in the NP group during 323 324 the first 24 hours was far lower than in the ionic cerium group (0.08% v. 0.9%) (Fig. 8C). 325 326 **Cerium tissue concentration – influence of route of exposure.** We examined whether route 327 of exposure influences tissue retention of cerium over time. Using the measured specific activities of ¹⁴¹CeO₂ NPs and each tissue ¹⁴¹Ce concentration, we estimated Ce concentration 328 329 as ng Ce/g tissue. The Ce concentrations at 7 d post-IT and post-gavage are shown in Table 2. Our data showed that IT instillation of ¹⁴¹CeO₂ NPs resulted in significantly higher Ce 330 331 tissue concentrations despite the fact that we administered 5-fold lower dose than gavage (1 332 v. 5 mg/kg). Significantly higher Ce concentration was measured in bone marrow, bone, skin, 333 testes, kidneys, spleen, heart, liver, and gastrointestinal tract. The difference between IT (0.1 mg/kg) and gavage (5 mg/kg) was also observed with 141 CeCl₃ despite the dose difference. 334 Cerium concentrations post-IT instillation of ¹⁴¹CeCl₃ were also significantly higher than 335 336 post-gavage in bone (4.29 vs. 0.39 ng/g) and liver (8.97 vs. 0.84 ng/g). 337

Cerium tissue distribution – influence of form of cerium (nanoparticulate ¹⁴¹CeO₂ 338

versus ionic ¹⁴¹CeCl₃). We examined whether the form of cerium (nanoparticulate versus 339

IT dose for ionic ¹⁴¹Ce was ten-fold lower than for ¹⁴¹CeO₂ NPs, tissue Ce concentration in 341

ionic cerium) affects tissue concentrations of cerium over time. As expected, given that the

342 most organs (bone, bone marrow, skin, kidneys heart, liver, and GIT) were significantly

343 lower. However, the absorption percentages (Fig. 5A) and extrapulmonary uptake of ionic

¹⁴¹Ce was still significantly higher than those of ¹⁴¹CeO₂ NPs (Table 3). When administered 344

345	by gavage at the same dose of 5 mg/kg, significantly higher Ce concentration from ionic
346	¹⁴¹ CeCl ₃ was observed in skeletal muscle (0.001% vs. 0.0002%), liver (0.001% vs. 0.0002%),
347	and stomach (0.003% vs. 0.0005%).
348	
349	Discussion
350	
351	Our study describes the pharmacokinetics of radiolabeled ¹⁴¹ CeO ₂ NPs versus ionic ¹⁴¹ CeCl ₃
352	over time after a single IT instillation, gavage or IV injection. The use of radioactive ¹⁴¹ Ce as
353	tracer allows for a very sensitive method of measuring uptake and clearance of cerium in
354	almost all organs, without the need for high doses that may alter cerium homeostasis or
355	saturate transport mechanisms. Although IT instillation is not the natural route of lung
356	exposure in humans, the technique enables us to administer the radiolabeled material
357	precisely at a specific time point. Our instillation data show that the selected IT instillation
358	dose of 1 mg/kg CeO ₂ NPs for PK studies did not cause injury and inflammation that might
359	compromise our data. Similar low toxicity has been reported in previously reported

360 inhalation studies $^{43, 44}$. However, the same dose of CeCl₃ elicited higher inflammatory

361 response. Therefore, we used 0.1 mg/kg for CeCl₃ in the PK study.

362

Retention and clearance of particles in the lungs have been extensively studied in the past. Pulmonary clearance of deposited particles is achieved by either physical translocation or chemical dissolution. Dissolution of particles in intracellular or extracellular fluids usually leads to a fast lung clearance of the resulting ions. In this study, we found that pulmonary clearance of instilled nanoceria is slow, with an estimated half-life of approximately 140 days, consistent with published data on insoluble or poorly soluble particles ^{22, 39, 44, 45}. In a short-term inhalation study, it was reported that approximately 5% of initial lung burden of

nanoceria was cleared by 28 days after the first exposure ^{44, 45}. Since our observation period 370 371 was only 28 days, the clearance half-life estimation must be viewed with caution. The slow 372 lung clearance correlates with very low dissolution of CeO₂ NPs in simulated 373 phagolysosomal fluid in vitro (Fig. 2A). The low in vitro dissolution was also consistent with previous data in similar simulant fluid ^{23, 25}. Our results show that 88.3% of the instilled dose 374 375 remained in the lungs after 28 days. This fraction was higher than that reported previously on 376 neutron-activated nanoceria in rats. He, et al. reported that 63.9% of the nanoceria remained 377 in the lungs at 28 days with an estimated half-life of 103 days²³. The faster clearance might 378 be due to smaller primary NP size (6.6 nm) and to methodological differences. 379 Surprisingly, the clearance of soluble ionic ¹⁴¹CeCl₃ was not much faster than that of ¹⁴¹CeO₂ 380 381 NPs. This suggests that cerium transport through the lungs may be tightly regulated or that 382 ionic Ce may form insoluble aggregates or may bind to lung proteins as has been shown in case of nanoceria ^{46, 47}. It also suggests that even if deposited CeO₂ NPs were dissolved, 383 384 cerium would still be cleared slowly. Alternatively, both nanoparticulate and ionic Ce may be 385 phagocytized by cells in the lower airways and in alveoli which then might influence their 386 clearance ³⁹. Indeed, the difference between ionic and nanoparticulate Ce lung clearance 387 correlates with the difference in the fractions recovered in alveolar cells and in lavaged lung 388 tissues (See Fig. 4B). Finally, perhaps the greater lung inflammation induced by ionic cerium 389 (Fig. 3B, 3C) may have enhanced absorption of Ce through a compromised air-blood barrier. 390 Further studies with lower doses of CeCl₃ are necessary to explore this possibility. 391 392 Consistent with the lung clearance kinetics, the translocation and subsequent extra-393 pulmonary retention of ionic Ce is significantly higher than Ce retention from the

394 nanoparticulate Ce. As previously reported, the primary extrapulmonary site of retention is

395	the liver 48 . Even though the translocated Ce from CeO ₂ NPs at 28 days is very low (0.86% of
396	dose), nearly half of that (0.26%) ends up in the liver. Retention of ionic Ce is significantly
397	higher; it is also mostly taken up in the liver. Excretion of ¹⁴¹ Ce is predominantly in the feces.
398	
399	We also investigated the translocation and subsequent distribution of the same two forms of
400	cerium after gavage. A previous study by Park, et al. showed that absorbed cerium was
401	retained in few tissues especially the lungs after gavage of 30 nm CeO ₂ NPs at 100 mg/kg.
402	But by day 7, the tissue ceria levels returned to control values ²⁷ . Since we anticipated that
403	clearance from the gastrointestinal tract would be faster, the experiment spanned only 7 days.
404	Consistent with several studies on ingested nanoparticles, both ionic and nanoparticulate Ce
405	are eliminated rapidly. A very low fraction (< 0.009%) of the gavaged dose is detectable in
406	all organs combined. Nearly 100% of the ¹⁴¹ Ce dose is excreted in the feces and less than
407	0.02% in the urine. This means that in inhalation studies on CeO_2 NPs where fur
408	contamination and grooming is likely, the cerium detected in extrapulmonary tissues would
409	be predominantly from lung exposure.
410	
411	There are multiple factors that may promote rapid elimination of ingested Ce. It may be due
412	to the rapid transit time of ingested nanomaterials through the gastrointestinal tract, and the
413	rapid turnover rate of the intestinal epithelium ⁴⁹ . However, other metals are absorbed
414	efficiently in the gut such as the essential elements iron and zinc ^{50, 51} . Another possible
415	reason may be the slow rate of dissolution of cerium oxide particles in the gastrointestinal
416	environment, in contrast to some Zn minerals, which are more soluble ⁵² . The influence of
417	gastrointestinal dissolution of nanoceria does not seem to play a role in Ce absorption, since

418 both ionic Ce and nanoceria have negligible bioavailability. Thus, a final explanation for the

419 very low bioavailability of both soluble and particulate cerium is that transport mechanisms420 for cerium ions are lacking.

421

422 Finally, we also compared the tissue distributions of IV-injected nanoparticulate and ionic 423 Ce. We hypothesized that the distribution would be markedly different between nanoparticulate and ionic Ce, as is true for iron and some other metals ^{53, 54}. We expected that 424 425 these data would provide information on whether CeO₂ NPs translocate as dissolved ions or 426 as intact nanoparticulates. As anticipated for IV-injected particles, CeO₂ NPs are immediately 427 taken up in organs rich in mononuclear phagocytes with direct access to the circulating blood such as those in the liver, spleen, and bone ⁵⁵. Nanoceria uptake and biopersistence in 428 reticuloendothelial organs post-IV injection ^{28, 29} and in retinal cells post-intravitreal injection 429 ²⁴ have been reported previously. Vascular clearance of IV-injected nanoceria was influenced 430 by NP size; the smaller NPs persisted longer in the circulation ²⁹. Surprisingly, we found that 431 432 ionic Ce follows almost the same tissue distribution as the nanoceria. This may be due to the 433 plasma protein interaction with ionic Ce forming aggregates, which may be recognized by 434 phagocytes in reticuloendothelial organs. Alternatively, in the liver this may be due to the 435 possibility that the site of Ce accumulation is the hepatocytes rather than Kupffer cells. That 436 hepatocytes can be the target for retained cerium is consistent with a previous study showing that a high dose of instilled nanoceria causes hepatocyte toxicity ⁴⁸. However, confirmation 437 438 of hepatocyte localization of cerium requires ultrastructural elemental analysis.

439

In toto, we showed that the risk of extrapulmonary cerium tissue accumulation and potential
toxicity is low when nanoceria are inhaled. The risk is even lower and probably insignificant
when cerium is ingested since it is not absorbed and is rapidly excreted in the feces.

443 However, the prolonged biopersistence of nanoceria and ionic cerium in the lungs is a444 concern that needs further investigation.

445

446 Conclusions

447

448 We conclude that inhaled cerium oxide nanoparticles are cleared slowly from the lungs with 449 an estimated clearance half-life of 140 days. Additionally, we found that even ionic cerium is 450 slowly cleared from the lungs, unlike most other soluble metals. This suggests that the 451 translocation of cerium is restricted in the lungs. The slow clearance of nanoceria may be due 452 to poor solubility of cerium oxide, as shown by the absence of dissolution in simulant 453 phagolysosomal fluid. The significant association of nanoceria and cerium ions with alveolar 454 cells and lung interstitial tissues may promote its biopersistence. Further studies should be 455 done to examine the extent to which clearance mechanisms are influenced by particle load 456 and dose rate. Our data clearly show that ingested nanoceria poses almost no risk of 457 absorption. Ingested nanoceria are almost entirely excreted in the feces. Importantly, low 458 fractions of inhaled nanoceria translocate to extrapulmonary tissues. The long-term effects of 459 biopersistent inhaled nanoceria and cerium ions warrant further investigations. 460 461 Acknowledgements

462

This study was funded by support from BASF SE (Ludwigshafen, Germany) and by the

464 National Science Foundation (1235806) and National Institute of Environmental Health

465 Sciences (ES000002). We thank Thomas Bork for technical assistance with neutron

466 activation and Thomas Donaghey for statistical analyses and editorial assistance.

467

468 Figure Legends

469

470	Fig. 1 Physicochemica	l characterization of CeO ₂ NM-212	2. (A) TEM of primary
-----	-----------------------	---	-----------------------

- 471 nanoparticles. (B) SEM micrograph of dry powder. (C) XPS results of Oxygen that identify
- 472 organic impurities and the Ce redox state on the particle surface, in accordance with the
- 473 spectra of C and Ce in Fig. S2 (Supplementary Information). See Table 1 for size
- 474 characterization by other complementary methods. (D) XRD spectrum of CeO₂ NM-212. All
- 475 major peaks correspond to the expected diffraction angles and intensity of cubic cerianite.
- 476 The minor peaks are attributed to diffraction angles of cubic cerianite from Tungsten Lα-
- 477 radiation, excited as low background in the X-ray source.
- 478

479 Fig. 2 In vitro dissolution of CeO₂ NPs in physiological simulant fluids. (A) Dissolution

- 480 detected by cerium measurement in the supernatant by ICP-MS. (B) Percentage of fine
- 481 particles with diameters below 1 μ m (detected by AUC). (C) SEM of CeO₂ NPs after 28 d in
- 482 PSF; arrows indicate rhombohedral crystallites.
- 483
- 484 Fig. 3 Cellular and biochemical parameters of lung injury and inflammation in

485 bronchoalveolar lavage (BAL). IT-instilled CeO₂ NPs did not induce lung injury and

- 486 inflammation up to 1 mg/kg. (A) Only the decrease in BAL macrophages was significant. (B
- 487 and C) No significant changes in neutrophils, lymphocytes, eosinophils, LDH,
- 488 myeloperoxidase, albumin and hemoglobin were observed with instilled CeO₂ NPs. (D and
- E) Ionic cerium induced significant increases in neutrophils, lactate dehydrogenase and
- 490 myeloperoxidase, but a decrease in albumin. Data are mean \pm SEM, n=6/group.

492	Fig. 4 Lung clearance of ¹⁴¹ CeO ₂ and ¹⁴¹ CeCl ₃ post-IT instillation. (A) Lung clearance of
493	both materials was slow. There was still 88% of 141 CeO ₂ NPs and 74% of ionic 141 CeCl ₃
494	remaining in the lungs at 28 days post-instillation. (B) Distribution ¹⁴¹ CeO ₂ NPs and of ionic
495	¹⁴¹ CeCl ₃ within the lungs at 24 h post-instillation. Significantly more ionic ¹⁴¹ Ce was
496	recovered free in the supernatant (SN) and less in the cells and lung tissues than $^{141}CeO_2$
497	nanoparticles. Data are mean \pm SEM, n=5/group.
498	
499	Fig. 5 (A) Translocated ¹⁴¹ Ce from the lungs gradually accumulated in extrapulmonary
500	organs. By 28 days, only 0.9% of instilled ¹⁴¹ Ce dose from ¹⁴¹ CeO ₂ nanoparticles and 6.0%
501	of ionic ¹⁴¹ Ce were retained in all extrapulmonary organs. (B) Elimination of ¹⁴¹ Ce post-IT
502	instillation was mainly via the feces. By 28 days post-dosing, 8% of 141 Ce from 141 CeO ₂
503	nanoparticle dose and 24% of ionic ¹⁴¹ Ce was excreted in the feces. (C) Only 0.02% and
504	0.13% was excreted in the urine, respectively. Data are mean \pm SEM, n=5/group.
505	
506	Fig. 6 Tissue distribution of ¹⁴¹ Ce post-gavage. (A) Immediately post-gavage, nearly 100%
507	of ¹⁴¹ CeO ₂ and ionic ¹⁴¹ CeCl ₃ were recovered in the stomach. (B) At 7 days post-gavage, the
508	total tissue ¹⁴¹ Ce detected in all organs examined was negligible ($0.003 \pm 0.0004\%$).
509	Recovered ¹⁴¹ Ce in the brain, skeletal muscle and stomach was significantly higher in rats
510	gavaged with ¹⁴¹ CeCl ₃ than with ¹⁴¹ CeO ₂ NP. Data are mean \pm SEM, n=5/group.
511	
512	Fig. 7 Cumulative fecal and urinary excretion of ¹⁴¹ Ce post-gavage. (A) Elimination of ¹⁴¹ Ce
513	from both 141 CeO ₂ NPs and ionic 141 CeCl ₃ was nearly 100% via the feces. By 7 days post-
514	gavage, less than 0.01% of dose was excreted in the urine (B). Data are mean \pm SEM,
515	n=5/group.

517	Fig. 8 . Tissue distribution of ¹⁴¹ Ce post-IV injection of ¹⁴¹ CeO ₂ NPs and ionic ¹⁴¹ CeCl ₃ . (A)
518	At 2 hours post-injection, 79% (141 CeO ₂ NPs) and 82% (141 CeCl ₃) of 141 Ce dose was
519	recovered in the liver, and lower percentages in blood, spleen, bone, and bone marrow. The
520	recovered ¹⁴¹ Ce in all tissues was significantly higher in ¹⁴¹ CeCl ₃ versus ¹⁴¹ CeO ₂ NP group
521	except in RBC (P<0.05). (B) Over a period of 2 days, ¹⁴¹ Ce levels in the liver decreased from
522	82% to 74% in the 141 CeCl ₃ group with an accompanying increase in bone. Similarly, the
523	recovered ¹⁴¹ Ce in all tissues was significantly higher in ¹⁴¹ CeCl ₃ versus ¹⁴¹ CeO ₂ NP except
524	in the brain and skeletal muscle (P<0.05). (C) Very low level of 141 Ce was excreted in feces
525	and urine in both groups. Fecal and urinary excretion of ¹⁴¹ Ce was significantly higher in
526	¹⁴¹ CeCl ₃ versus ¹⁴¹ CeO ₂ NP groups. * P <0.05, Student t test. Data are mean \pm SEM,

527 n=5/group.

RESULTS
40 nm
Hg - pore sizes: 35 nm, around 7µm
40 nm
Cerianite - (Ce), syn - CeO ₂ - Cubic
$30 \text{ m}^2/\text{g}$ (Hg), 27 m ² /g (BET)
C 79.9 (C-C 62.6; C-O 7.0; C=O 3.5; COOH 6.9) O 17.7 (CeO ₂ 4.3; Ce ₂ O ₃ 0.5; C=*O-OH 6.2 C=O-O*H 6.2; H ₂ O 0.7) Ce 2.4 (CeO ₂ 2 1: Ce ₂ O ₃ 0 3)
IEP: > pH 10 (always cationic) 3.1 μ m/s / V/cm
+ 42 mV
0.013 ± 0.005
D50 = 432 nm / AAN = 11(in water)
Crystalline phase is >99% pure cerianite.
Total content of 0.7% organic contaminations, identified as ester+alkyl groups, found on the particle surface.

 Table 1. Physicochemical characteristics of cerium dioxide (NM-212)

TEM - Transmission electron microscopy

XRD - X-ray diffraction

Hg - Mercury porosimetry

BET - Brunauer–Emmett–Teller

TGA - Thermogravimetric

XPS - X-ray photoelectron spectroscopy

AAN - Average agglomeration number

528

Table 2. Tissue concentration (ng/g) of Ce at 7 days post-administration of 530

¹⁴¹CeO₂ NPs 531

532		IT	Gavage
	Tissue	(1 mg/kg)	(5 mg/kg)
533	Lungs	$127858 \pm 4427 *$	0.16 ± 0.05
	Blood	0.25 ± 0.18	0.04 ± 0.01
534	Plasma	0.04 ± 0.03	0.01 ± 0.01
	RBC	0.06 ± 0.04	0.07 ± 0.02
535	Bone Marrow	$6.61 \pm 0.41 *$	0.12 ± 0.08
526	Bone	$16.86 \pm 0.89 *$	0.11 ± 0.09
550	Skin	$0.18 \pm 0.01 *$	0.02 ± 0.01
537	Brain	0.01 ± 0.01	0.05 ± 0.03
	Skeletal Muscle	1.32 ± 1.05	0.01 ± 0.01
538	Testes	$0.11 \pm 0.03 *$	0.07 ± 0.02
	Kidneys	5.45 ± 0.77 *	0.07 ± 0.02
539	Spleen	$1.69 \pm 0.71 *$	0.17 ± 0.08
540	Heart	$1.07 \pm 0.18 *$	0.12 ± 0.06
540	Liver	28.06 ± 2.77 *	0.14 ± 0.11
541	Stomach	9.18 ± 1.20 *	$0.00 \pm 0.00 $
041	Small intestine	4.70 ± 0.44 *	0.78 ± 0.54
542	Large intestine	12.04 ± 2.28 *	0.12 ± 0.04
	Cecum	13.81 ± 2.59 *	0.00 ± 0.00
543			
	Data are mean \pm SE i	ng/g cerium concentration, n=:	5/group
544	Ce concentration was	s estimated (ng/ μ Ci _{ionic/NPs} x μ C	Ci/g_{tissue})

Ce concentration was estimated (ng/ μ Ci_{ionic/NPs} x μ Ci/g_{tissue})

* P< 0.05, IT > Gavage

545 546

Table 3. Tissue distribution of
141
Ce at 28 days post-instillation of 141 CeO₂

550		CeO ₂ NPs	CeCl ₃
	Tissue	(1 mg/kg)	(0.1 mg/kg)
551	Blood	0.00 \pm 0.00	$0.01 \pm 0.005 *$
	Bone marrow	0.08 ± 0.01	$0.70 \pm 0.06 *$
552	Bone	0.32 ± 0.04	2.50 ± 0.33 *
	Skin	0.01 ± 0.001	0.06 ± 0.03
553	Brain	0.0002 ± 0.0001	0.001 ± 0.0004
554	Skeletal muscle	0.01 ± 0.0004	0.05 ± 0.02
554	Testes	0.0005 ± 0.0001	$0.01 \pm 0.002 *$
555	Kidneys	0.01 ± 0.0004	$0.09 \pm 0.01 *$
	Spleen	0.002 ± 0.001	0.01 ± 0.01
556	Heart	0.04 \pm 0.04	0.01 ± 0.002
	Liver	0.26 ± 0.01	$2.15 \pm 0.31 *$
557	GIT	0.12 ± 0.04	$0.43 \pm 0.05 *$
	Data are mean ± SE %	instilled dose, n=5/group	
558	GIT – gastrointestinal	tract	
550	* $P < 0.05$, $CeCl_3 > Cecl_3 > Cecl_$	O ₂	
559			
560			
559 560	GIT – gastrointestinal * P< 0.05, CeCl ₃ > Ce	tract O ₂	

565 References

566		
567	1.	V. D. Kosynkin, Arzgatkina, A.A., Ivanov, E.N., Chtoutsa, M.G., Grabko, A.I.,
568		Kardapolov, A.V., Sysina, N.A., J. Alloys Compounds 2000, 303, 421-425.
569	2.	Z. Shao and S. M. Haile, Nature, 2004, 431, 170-173.
570	3.	A. B. Stambouli and E. Traversa, <i>Renewable and Sustainable Energy Reviews</i> , 2002,
571		6 , 433-455.
572	4.	K. Nikolaou, Sci Total Environ, 1999, 235, 71-76.
573	5.	B. Park, K. Donaldson, R. Duffin, L. Tran, F. Kelly, I. Mudway, J. P. Morin, R.
574		Guest, P. Jenkinson, Z. Samaras, M. Giannouli, H. Kouridis and P. Martin, Inhal
575		<i>Toxicol</i> , 2008, 20 , 547-566.
576	6.	A. Bumajdad, J. Eastoe and A. Mathew, Adv Colloid Interface Sci, 2009, 147-148,
577		56-66.
578	7.	A. S. Karakoti, P. Munusamy, K. Hostetler, V. Kodali, S. Kuchibhatla, G. Orr, J. G.
579		Pounds, J. G. Teeguarden, B. D. Thrall and D. R. Baer, Surf Interface Anal, 2012, 44,
580		882-889.
581	8.	A. S. Karakoti, S. Singh, A. Kumar, M. Malinska, S. V. Kuchibhatla, K. Wozniak, W.
582		T. Self and S. Seal, J Am Chem Soc, 2009, 131, 14144-14145.
583	9.	J. Chen, S. Patil, S. Seal and J. F. McGinnis, Nat Nanotechnol, 2006, 1, 142-150.
584	10.	S. Chen, Y. Hou, G. Cheng, C. Zhang, S. Wang and J. Zhang, Biol Trace Elem Res,
585		2013, 154 , 156-166.
586	11.	N. M. Zholobak, V. K. Ivanov, A. B. Shcherbakov, A. S. Shaporev, O. S. Polezhaeva,
587		A. Y. Baranchikov, N. Y. Spivak and Y. D. Tretyakov, <i>J Photochem Photobiol B</i> ,
588		2011, 102 , 32-38.
589	12.	M. Horie, K. Nishio, H. Kato, K. Fujita, S. Endoh, A. Nakamura, A. Miyauchi, S.
590		Kinugasa, K. Yamamoto, E. Niki, Y. Yoshida, Y. Hagihara and H. Iwahashi, J
591		<i>Biochem</i> , 2011, 150 , 461-471.
592	13.	J. Y. Ma, R. R. Mercer, M. Barger, D. Schwegler-Berry, J. Scabilloni, J. K. Ma and
593		V. Castranova, Toxicol Appl Pharmacol, 2012, 262, 255-264.
594	14.	A. Srinivas, P. J. Rao, G. Selvam, P. B. Murthy and P. N. Reddy, <i>Toxicol Lett</i> , 2011,
595		205 , 105-115.
596	15.	J. M. Dowding, T. Dosani, A. Kumar, S. Seal and W. T. Self, Chem Commun
597		(Camb), 2012, 48 , 4896-4898.
598	16.	R. A. Madero-Visbal, B. E. Alvarado, J. F. Colon, C. H. Baker, M. S. Wason, B.
599		Isley, S. Seal, C. M. Lee, S. Das and R. Manon, <i>Nanomedicine</i> , 2012, 8 , 1223-1231.
600	17.	F. Pagliari, C. Mandoli, G. Forte, E. Magnani, S. Pagliari, G. Nardone, S. Licoccia,
601		M. Minieri, P. Di Nardo and E. Traversa, ACS Nano, 2012, 6, 3767-3775.
602	18.	M. S. Wason and J. Zhao, Am J Transl Res, 2013, 5, 126-131.
603	19.	D. R. Baer, <i>J of Surface Anal</i> , 2011, 17 .
604	20.	G. Oberdorster, E. Oberdorster and J. Oberdorster, Environ Health Perspect, 2005,
605		113, 823-839.
606	21.	A. Peters, B. Veronesi, L. Calderon-Garciduenas, P. Gehr, L. C. Chen, M. Geiser, W.
607		Reed, B. Rothen-Rutishauser, S. Schurch and H. Schulz, Part Fibre Toxicol, 2006, 3,
608		13.
609	22.	S. Takenaka, E. Karg, C. Roth, H. Schulz, A. Ziesenis, U. Heinzmann, P. Schramel
610		and J. Heyder, Environ Health Perspect, 2001, 109 Suppl 4, 547-551.
611	23.	X. He, H. Zhang, Y. Ma, W. Bai, Z. Zhang, K. Lu, Y. Ding, Y. Zhao and Z. Chai,
612		<i>Nanotechnology</i> , 2010, 21 , 285103.

613	24.	L. L. Wong, S. M. Hirst, Q. N. Pye, C. M. Reilly, S. Seal and J. F. McGinnis, <i>PLoS</i>
614	~ -	One, 2013, 8, e58431.
615	25.	W. S. Cho, R. Duffin, F. Thielbeer, M. Bradley, I. L. Megson, W. Macnee, C. A.
616		Poland, C. L. Tran and K. Donaldson, <i>Toxicol Sci</i> , 2012, 126 , 469-477.
617	26.	C. L. Klein, K. Wiench, M. Wiemann, L. Ma-Hock, B. van Ravenzwaay and R.
618		Landsiedel, Arch Toxicol, 2012, 86, 1137-1151.
619	27.	EJ. Park, YK. Park and K. Park, <i>Toxicol Res</i> , 2009, 25, 79-84.
620	28.	R. A. Yokel, T. C. Au, R. MacPhail, S. S. Hardas, D. A. Butterfield, R. Sultana, M.
621		Goodman, M. T. Tseng, M. Dan, H. Haghnazar, J. M. Unrine, U. M. Graham, P. Wu
622		and E. A. Grulke, <i>Toxicol Sci</i> , 2012, 127 , 256-268.
623	29.	R. A. Yokel, M. T. Tseng, M. Dan, J. M. Unrine, U. M. Graham, P. Wu and E. A.
624		Grulke, <i>Nanomedicine</i> , 2013, 9 , 398-407.
625	30.	M. Dan, P. Wu, E. A. Grulke, U. M. Graham, J. M. Unrine and R. A. Yokel.
626		Nanomedicine 2012 7 95-110
627	31	L Geraets A G Oomen L D Schroeter V A Coleman and F R Cassee <i>Toxicol</i>
628	51.	Sci 2012 127 463-473
629	32	C Singh S Friedrichs G Ceccone N Gibson K A Jensen M Levin H G
630	52.	Infante D Carlander and K Rasmussen Carium Diovida NM 211 NM 212 NM
631		213 Characterisation and test item preparation European Commission Joint
632		Pacearch Centre Institute for Health and Consumer Protection Ispra. Italy, 2014
622	22	ECUA (European Chemicale Acong) Children on information nonvinements and
624	33.	echa, (European Chemicals Agency), Guidance on information requirements and
034		chemical sajety assessment: Appendix K/-1 Recommendations for hanomalerials
635		applicable to Chapter R/a - Endpoint specific guidance - ECHA-12-G-03-EN.,
636	~ 1	European Chemicals Agency, 2012.
637	34.	W. Wohlleben, L. Ma-Hock, V. Boyko, G. Cox, H. Egenolf, H. Freiberger and B.
638		Hinrichsen, J. Ceramic Sci. Technol. , 2013, 4, 93-104.
639	35.	A. B. Stefaniak, R. A. Guilmette, G. A. Day, M. D. Hoover, P. N. Breysse and R. C.
640		Scripsick, Toxicol In Vitro, 2005, 19, 123-134.
641	36.	J. Cohen, G. Deloid, G. Pyrgiotakis and P. Demokritou, <i>Nanotoxicology</i> , 2013, 7,
642		417-431.
643	37.	J. D. Brain, D. E. Knudson, S. P. Sorokin and M. A. Davis, <i>Environ Res</i> , 1976, 11,
644		13-33.
645	38.	B. D. Beck, J. D. Brain and D. E. Bohannon, <i>Toxicol Appl Pharmacol</i> , 1982, 66, 9-
646		29.
647	39.	C. Buzea, Pacheco, II and K. Robbie, <i>Biointerphases</i> , 2007, 2 , MR17-71.
648	40.	H. S. Choi, Y. Ashitate, J. H. Lee, S. H. Kim, A. Matsui, N. Insin, M. G. Bawendi, M.
649		Semmler-Behnke, J. V. Frangioni and A. Tsuda, Nat Biotechnol, 2010, 28, 1300-
650		1303.
651	41.	R. P. Brown, M. D. Delp, S. L. Lindstedt, L. R. Rhomberg and R. P. Beliles, <i>Toxicol</i>
652		Ind Health, 1997, 13 , 407-484.
653	42.	D. J. Schoeffner, D. A. Warren, S. Muralidara, J. V. Bruckner and J. E. Simmons, J.
654		<i>Toxicol Environ Health A</i> , 1999, 56 , 449-462.
655	43	P Demokritou S Gass G Pyrgiotakis I M Cohen W Goldsmith W McKinney
656		D Frazer I Ma D Schwegler-Berry I Brain and V Castranova Nanotoxicology
657		2013 7 1338-1350
658	44	R Landsiedel I Ma-Hock A Kroll D Hahn I Schnekenburger K Wiench and
650		W Wohlleben Adv Mater 2010 22 2601-2627
660	45	R Landsiedel I Ma-Hock T Hofmann M Wiemann V Strauss S Treumann W
661	чJ.	Wohlleben S Groters K Wiench and B van Pavenzwaay Part Fibre Toxical 2014
662		11 16
002		11, 10.

663	46.	M. Geiser and W. G. Kreyling, <i>Part Fibre Toxicol</i> , 2010, 7, 2.
664	47.	C. Schulze, U. F. Schaefer, C. A. Ruge, W. Wohlleben and C. M. Lehr, Eur J Pharm
665		<i>Biopharm</i> , 2011, 77 , 376-383.
666	48.	S. K. Nalabotu, M. B. Kolli, W. E. Triest, J. Y. Ma, N. D. Manne, A. Katta, H. S.
667		Addagarla, K. M. Rice and E. R. Blough, Int J Nanomedicine, 2011, 6, 2327-2335.
668	49.	P. H. Hoet, I. Bruske-Hohlfeld and O. V. Salata, <i>J Nanobiotechnology</i> , 2004, 2 , 12.
669	50.	D. E. Coppen and N. T. Davies, Br J Nutr, 1987, 57, 35-44.
670	51.	K. Thompson, R. M. Molina, T. Donaghey, J. D. Brain and M. Wessling-Resnick,
671		American journal of physiology, 2007, 293, G640-644.
672	52.	R. M. Molina, L. A. Schaider, T. C. Donaghey, J. P. Shine and J. D. Brain, Environ
673		<i>Pollut</i> , 2013, 182 , 217-224.
674	53.	E. A. Heilig, K. J. Thompson, R. M. Molina, A. R. Ivanov, J. D. Brain and M.
675		Wessling-Resnick, Am J Physiol Lung Cell Mol Physiol, 2006, 290, L1247-1259.
676	54.	K. Thompson, R. Molina, T. Donaghey, J. D. Brain and M. Wessling-Resnick,
677		<i>Toxicol Appl Pharmacol</i> , 2006, 210 , 17-23.
678	55.	J. D. Brain, R. M. Molina, M. M. DeCamp and A. E. Warner, Am J Physiol, 1999,
679		276 , L146-154.

Fig. 1 Physicochemical characterization of CeO2 NM-212. (A) TEM of primary nanoparticles. (B) SEM micrograph of dry powder. (C) XPS results of Oxygen that identify organic impurities and the Ce redox state on the particle surface, in accordance with the spectra of C and Ce in Fig. S2 (Supplementary Information).
 See Table 1 for size characterization by other complementary methods. (D) XRD spectrum of CeO2 NM-212. All major peaks correspond to the expected diffraction angles and intensity of cubic cerianite.
 The minor peaks are attributed to diffraction angles of cubic cerianite from Tungsten La- radiation, excited as low background in the X-ray source.

100x112mm (300 x 300 DPI)

Fig. 2 In vitro dissolution of CeO2 NPs in physiological simulant fluids. (A) Dissolution detected by cerium measurement in the supernatant by ICP-MS. (B) Percentage of fine particles with diameters below 1 μm (detected by AUC). (C) SEM of CeO2 NPs after 28 d in PSF; arrows indicate rhombohedral crystallites. 70x56mm (300 x 300 DPI)

Fig. 3 Cellular and biochemical parameters of lung injury and inflammation in bronchoalveolar lavage (BAL). IT-instilled CeO2 NPs did not induce lung injury and inflammation up to 1 mg/kg. (A) Only the decrease in BAL macrophages was significant. (B and C) No significant changes in neutrophils, lymphocytes, eosinophils, LDH, myeloperoxidase, albumin and hemoglobin were observed with instilled CeO2 NPs. (D and E) Ionic cerium induced significant increases in neutrophils, lactate dehydrogenase and myeloperoxidase, but a decrease in albumin. Data are mean ± SEM, n=6/group. 112x142mm (300 x 300 DPI)

Fig. 4 Lung clearance of 141CeO2 and 141CeCl3 post-IT instillation. (A) Lung clearance of both materials was slow. There was still 88% of 141CeO2 NPs and 74% of ionic 141CeCl3 remaining in the lungs at 28 days post-instillation. (B) Distribution 141CeO2 NPs and of ionic 141CeCl3 within the lungs at 24 h post-instillation. Significantly more ionic 141Ce was recovered free in the supernatant (SN) and less in the cells and lung tissues than 141CeO2 nanoparticles. Data are mean ± SEM, n=5/group. 43x20mm (300 x 300 DPI)

Fig. 5 (A) Translocated 141Ce from the lungs gradually accumulated in extrapulmonary organs. By 28 days, only 0.9% of instilled 141Ce dose from 141CeO2 nanoparticles and 6.0% of ionic 141Ce were retained in all extrapulmonary organs. (B) Elimination of 141Ce post-IT instillation was mainly via the feces. By 28 days post-dosing, 8% of 141Ce from 141CeO2 nanoparticle dose and 24% of ionic 141Ce was excreted in the feces. (C) Only 0.02% and 0.13% was excreted in the urine, respectively. Data are mean ± SEM, n=5/group. 72x57mm (300 x 300 DPI)

Fig. 6 Tissue distribution of 141Ce post-gavage. (A) Immediately post-gavage, nearly 100% of 141CeO2 and ionic 141CeCl3 were recovered in the stomach. (B) At 7 days post-gavage, the total tissue 141Ce detected in all organs examined was negligible (0.003 \pm 0.0004%). Recovered 141Ce in the brain, skeletal muscle and stomach was significantly higher in rats gavaged with 141CeCl3 than with 141CeO2 NP. Data are mean \pm SEM, n=5/group. 35x13mm (300 x 300 DPI)

Fig. 7 Cumulative fecal and urinary excretion of 141Ce post-gavage. (A) Elimination of 141Ce from both 141CeO2 NPs and ionic 141CeCl3 was nearly 100% via the feces. By 7 days post-gavage, less than 0.01% of dose was excreted in the urine (B). Data are mean \pm SEM, n=5/group. 34x13mm (300 x 300 DPI)

Fig. 8. Tissue distribution of 141Ce post-IV injection of 141CeO2 NPs and ionic 141CeCl3. (A) At 2 hours post-injection, 79% (141CeO2 NPs) and 82% (141CeCl3) of 141Ce dose was recovered in the liver, and lower percentages in blood, spleen, bone, and bone marrow. The recovered 141Ce in all tissues was significantly higher in 141CeCl3 versus 141CeO2 NP group except in RBC (P<0.05). (B) Over a period of 2 days, 141Ce levels in the liver decreased from 82% to 74% in the 141CeCl3 group with an accompanying increase in bone. Similarly, the recovered 141Ce in all tissues was significantly higher in 141CeCl3 versus 141CeO2 NP except in the brain and skeletal muscle (P<0.05). (C) Very low level of 141Ce was excreted in feces and urine in both groups. Fecal and urinary excretion of 141Ce was significantly higher in 141CeCl3 versus 141CeO2 NP groups. * P <0.05, Student t test. Data are mean ± SEM, n=5/group. 69x54mm (300 x 300 DPI)