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Increasing concern regarding the presence and effects of pharmaceuticals in water has led to 

changes in European legislation; with a number of pharmaceuticals named on a watch list as part of 

the Water Framework Directive. The potentially huge cost to the water industry to meet new 

standards requires accurate predictions of likely concentrations at a catchment scale, in order to 

target resources. This paper describes an environmental management tool to more accurately 

predict pharmaceutical loadings to rivers at a catchment scale, using a combination of recently 

available prescription data, metabolism and fate information and recent monitoring data to develop 

and calibrate a model to allow all stakeholders to identify sewage treatment works which pose the 

greatest risk to receiving waters. 
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Newly available prescription data has been used along with census data to develop a localised 

method for predicting pharmaceutical concentrations in sewage influent and effluent for 

England, and applied to a case study: the steroid estrogens estrone, 17β-estradiol, and 17α-

ethinylestradiol in a selected catchment. The prescription data allows calculation of the mass 

consumed of synthetic estrogens, while use of highly localised census data improves 

predictions of naturally excreted estrogens by accounting for regional variations in population 

demographics. This serves two key purposes; to increase the accuracy of predictions in 

general, and to call attention to the need for more accurate predictions at a localised and/or 

catchment level, especially in light of newly proposed regulatory measures which may in 

future require removal of steroid estrogens by sewage treatment facilities. In addition, the 

general lack of measured sewage works data necessitated the development of a novel approach 

which allowed comparison of localised predictions to average national measurements of 

influent and effluent. Overall in the case study catchment, estrogen predictions obtained using 

the model described herein were within 95% confidence intervals of measured values drawn 

from across the UK, with large improvements to predictions of EE2 being made compared with 

previous predictive methods. 
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Introduction 

Human pharmaceuticals are now ubiquitous in the environment 

and are found as far afield as the Arctic [1]. The vast majority 

of human medicines enter the aquatic environment in sewage 

treatment works (STW) effluents, derived from excretion in 

urine or faeces or via the incorrect disposal of unused 

medications into household sewerage. Due to the general 

resistance of patients to taking medication [2], and their 

tendency to under-medicate [3], with typically 50% of 

prescribed pharmaceuticals not being administered [4], large 

quantities of unused pharmaceuticals can be generated. In the 

UK it is estimated that 85% of these unused medications are 

disposed of improperly (63% to landfill; 12% domestic waste 

water stream), and only 22% are returned to pharmacies as 

recommended [5].   Less significant loadings may be derived 

from combined sewer overflows, and contributions from 

landfill leachates are likely to be limited due to advancements 

in liners [6, 7]. Transport to the environment of these bioactive 

compounds, which can have deleterious effects upon biota [8, 
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9], is set to continue and is likely to be further exacerbated over 

the coming years due to factors such as an aging and 

increasingly obese population influencing drug usage [10-12]. 

Furthermore, the occurrence of drugs in drinking water has 

been an additional cause for concern [13, 14].  

In Europe these concerns have led to legislative reform, with 

selected pharmaceuticals (Diclofenac, 17-α-ethinylestradiol 

[EE2], 17-β-estradiol [E2]) now included in the Water 

Framework Directive [15, 16] as substances on a ‘watch list’ 

which requires Member States to undertake monitoring 

programmes and consider reduction in discharges to the 

environment where appropriate. Initial environmental quality 

standards (EQS) were proposed as 100, 0.035 and 0.4 ng L-1 as 

annual averages for Diclofenac, EE2 and E2 respectively. 

Treatment technologies are available to reduce pharmaceutical 

concentrations in wastewaters, however these raise financial 

and sustainability concerns [17]. A recent impact assessment 

estimated compliance costs for the UK water industry to meet 

proposed EQS for EE2 as over £20 billion [18]. It will therefore 

be necessary and pertinent to focus limited financial resources 

at ‘pollution hotspots’. One means by which to identify such 

hotspots is predictive modelling at a small geographical scale. 

This requires two key numbers to be derived; the concentration 

being discharged into receiving waters from STW and based on 

available dilutions [19, 20], predicted environmental 

concentrations which can be compared against relevant 

environmental quality standards. This paper sets out an 

approach for achieving the first objective by improving 

parameterisation of pharmaceutical usage, and subsequent 

quantities discharged from STWs. Other developmental work in 

the UK on modelling water quality [21] has the ability to take 

discharged loads and predict water quality based on predicted 

and measured flows.    

Catchment models have been developed to predict 

concentrations of chemicals such as pharmaceuticals in the 

aquatic environment (e.g. ‘Geography Referenced Regional 

Exposure Assessment Tool for European Rivers’ (GREAT-ER) 

and LowFlow2000-WQX [22, 23] for estrogens). They have 

been used to assess inputs from specific sources such as 

hospitals [24] or to predict pharmaceuticals such as estrogens 

for specific catchments using estimates of excretion rates based 

on assumptions regarding per capita use of estrogenic 

medications and demographics [25]. A model has been recently 

developed (SAGIS) that combines derived loads of 

contaminants discharged to surface waters from point and 

diffuse sources which is combined with a water quality model 

(SIMCAT) via a Geographic Information System (GIS) system 

to allow accurate predictions of a variety of chemicals in UK 

water bodies [21]. Generating accurate load data from the main 

sources such as STWs will generate load inputs for these types 

of models now being used by the Environment Agency and 

water industry for planning purposes. Such models rely entirely 

on the accuracy of the input data and so improvements in 

estimations of input loads strengthens the decision making 

process.  

To improve estimates of pharmaceutical loads it is essential to 

take account of the factors that influence endogenous 

production, exogenous usage, and therefore excretion of 

steroidal estrogens on a local scale. These include, but are not 

limited to, the population demographics, prescribing habits of 

local physicians, pregnancy rates and cultural views on 

contraception. Incorporation of these influencing factors into a 

model (as far as is possible) will therefore increase model 

validity at finer spatial resolution and improve reliability of the 

outputs.  

This research describes the development of a modelling 

approach that takes account of actual prescription data within 

specific catchments, alongside local demographic data, 

resulting in more refined predictions of these populations’ 

contribution to the environmental burden by improving 

parameterisation. In the following sections a case study, using 

estrogenic compounds and a selected catchment in England, is 

presented as an example of the model’s application. This case 

study uses census data [26] and prescription data [27, 28] 

encompassing all formulations of hormone replacement therapy 

including both E2 and conjugated estrogens (CE), and 

contraceptive pills containing EE2, to predict estrogen influent 

and concentrations in effluent for a specific catchment, by 

building  upon established modelling concepts. A generic form 

of this approach, which may be applied to any river catchment, 

any STW, and any medication, for which prescription data is 

available, is provided in the electronic supporting information. 

The production of a modelling approach such as this, which is 

novel in its use of prescription data at highly localised scales 

(i.e. down to individual STW) and can be applied to any human 

pharmaceutical, is key in the development of strategies for the 

deployment of interventional approaches, including 

technological, to reduce pharmaceutical pollution; thus 

allowing finite resources to be targeted. 

Modelling Approach (Parameterisation) and 

Calibration  

River Catchment Identification  

A specific catchment was selected as a case study based on factors 

which included varying demographics and low river flows available 

for effluent to be diluted into (<10), thus indicating a potential risk 

of elevated levels of pharmaceuticals occurring in the aquatic 

environment downstream of the STWs [29]. Census data was 

obtained [26] to estimate population demographics and utilised for 

calculation of naturally excreted estrogens in the catchment. Whilst 

census statistical area boundaries do not generally conform to river 

catchments, Census Output Areas (COAs) are very small 

geographical units with a mean population around 300. A ‘best-fit’ 

selection of COAs to the catchment was made by overlaying the two 

sets of boundaries in GIS, resulting in a selection of 79 COAs. GIS 

analyses were conducted using ArcGIS 10 (ESRI, Redlands, CA) to 

derive population characteristics (Table 1). 

Table 1: Estimated Population Statistics for the Selected River 

Catchment, 2001 Census  

Total Population 22,199 

Female Population Age 13-49  4,737 

Female Population Age 50+  5,317 

Total Male Population 10,598 

Total Female Population  11,601 

Data source: UK Census 2001[26] 

Prescribed Synthetic Estrogens in the Selected Catchment  
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Isolation of Local Prescription Data STW discharge locations 

were plotted (GIS) and overlaid with the location of all General 

Practitioner (GP) surgeries in the region based upon postcodes; 

three GP surgeries were identified as serving the selected 

catchment. It was assumed that all residents were registered 

with GPs within this catchment and that all medication 

prescribed by these surgeries was excreted within the 

catchment. Any commuting to work was considered to have a 

neutral impact (i.e. as many people may travel to work in the 

catchment as travel out of the catchment to their place of work). 

Parts of the catchment are located near the coast, and so some 

seasonal influences could be expected. However, data obtained 

from England’s National Health Service (NHS) [27] detailed 

the number of monthly prescriptions written by each GP 

surgery between September of 2011 and January of 2012 and 

therefore out of the peak holiday season [30]. Although it 

would have been beneficial to work with data on a seasonal or 

yearly average basis, the NHS only began to release data in this 

format in September 2011, and this case study acts as an 

illustrative example. The NHS details this prescribing data in 

the form of British National Formulary (BNF) codes, which is a 

prescription guide routinely used by pharmacists and GPs in the 

UK. Details regarding the BNF codes are provided in the SI 

(S1).  

The prescribing data for BNF codes that included estradiol 

(E2), conjugated estrogens (CE) and ethinyl estradiol (EE2) 

were isolated from the dataset for analysis.  The average 

number of prescriptions per month for each relevant BNF code 

and each of the three GP surgeries within the selected river 

catchment was determined and summed; providing the total 

average number of monthly prescriptions written in the selected 

catchment for each relevant BNF code. Further prescription 

details can be found in the SI (Table S1). 

 

Conversion of number of prescriptions to prescribed mass 

Converting the number of prescriptions into a mass of 

prescribed estrogens in the selected catchment required the use 

of another data set. The NHS quarterly prescription cost 

analysis data for October-December 2011 [28], details the 

number of prescriptions for each individual formulation within 

all BNF codes, for the whole UK; datasets that are tied to GP 

locations only detail prescribing data down to BNF code i.e. not 

formulation level. This was used to ascertain typical prescribing 

practices in the UK, which were used with formulation-specific 

dosing information obtained from the BNF and online sources 

[31] to convert the localised prescription data for relevant BNF 

codes, to a mass of estrogens prescribed, while accounting for 

different formulations. The net result of these steps can be 

applied to any human pharmaceutical for which prescription 

data exists. An example of the application of this approach is 

provided in the SI (Tables S2 and S3). 

Synthetic and Natural Steroid Hormone Excretion  

The model developed by Johnson and Williams outlines a 

framework that identifies 5 major population groups which 

contribute to the environmental burden of estrogens [25]: 

pregnant females; menstrual females; menopausal females; 

menopausal females using hormone replacement therapy 

(HRT); and males. The method described herein and further 

detailed in SI (S1-S5) for calculating the use of synthetic 

estrogens in a target river catchment can be used to improve the 

accuracy in determining the contribution to environmental 

estrogen load from the population group “menopausal on HRT” 

and menstrual females using estrogen based contraceptives. The 

following sections summarize the variables considered when 

predicting excretion of synthetic and natural estrogens for all 

population groups. It should be noted that data used within 

models regarding excretion of pharmaceuticals and their 

metabolites can have a significant impact upon model outputs. 

For many pharmaceuticals there is a paucity of data regarding 

excretion rates, and many of the pharmacokinetic studies which 

generate these figures utilise radio-labelled compounds, and 

therefore do not account for metabolites. Additionally a number 

of other factors specific to the individual using the medicine, 

such as age and disease status, can also influence excretion 

rates. In the case of steroid estrogens the opposite scenario 

occurs with a wide range of highly variable and specific studies 

available from which to draw excretion data. An approach to 

take account of this variable data to establish an appropriate 

excretion rates for estrogenic compounds (as used herein) is 

described by A.C. Johnson and R.J. Williams [25].  

 

Another consideration is the fact that not all medication 

prescribed is actually consumed. Previous studies for 

pharmaceuticals suggests as much as 50% of prescriptions are 

taken [4]. However, the situation is different for steroid 

oestrogen use for hormone replacement treatment and the 

contraceptive pill, as they require long term adherence to 

prescribed doses to ensure effectiveness [32, 33]. For the 

purpose of this case study, it has therefore been assumed that all 

of the prescribed medication within the catchment is consumed. 

 

Excretion of Synthetic E2 The source of synthetic E1 and E2 

is the excretion of metabolites from HRT. The method 

described above was used to calculate the ingestion of HRT 

medication in the selected catchment. The prescription data also 

allows for HRT usage to be broken down into estradiol (E2) 

and conjugated estrogen (CE) use, which provides a further 

increase in the accuracy of the model.  

The total daily ingestion of synthetic E2 in the selected river 

catchment was calculated, and using literature data it was 

assumed that 2.8% of ingested E2 [25] and 1.5% of ingested 

CE [344] are excreted in a potentially releasable form; 

including free E2 and the E2 glucuronide-conjugate (Figure 1). 

Summing the two provided the total E2 load discharged to 

sewer derived from estradiol and conjugated estrogen HRT. 
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Figure 1: Summary schematic of synthetic and natural estrogen 

inputs, and removal during transport and treatment. (Note: Presented 

percentage removals during sewer transport and STW processing are 

refined removal rates - see S9, Table S5). 

 

Synthetic E1 Excretion Estradiol and conjugated estrogen 

hormone replacement therapies are also a source of E1 

excretion and can therefore be calculated from women on HRT 

in a similar manner to synthetic E2 excretion. Using localised 

prescription data along with previously reported excretion rates, 

it is assumed that 1.4% of ingested E2 [25], and 7.2% of 

ingested CE [34] is excreted as potentially releasable E1 

(Figure 1). Adding these loads together provides the 

contribution of E1 excretion from estradiol HRT and CE 

therapy to the sewerage system. 

 

Excretion of Natural E1 and E2 

Pregnant Females Although pregnant women account for only 

a small proportion of the total populace, their per capita 

contribution to estrogen load can be upwards of 100 times 

greater than that of a menstruating, non-pregnant female [25]. 

Accurate demographic and birth rate data are therefore essential 

when predicting loads to sewer. There are many factors that 

influence the rate of pregnancy, which may include culture, 

socio-economic status, religion, views on contraception, and 

population demographics. By using localised census data the 

confounding effect of these variables, on regional changes in 

pregnancy rates, could be accounted for.  

Fertility rates are available annually for the UK [35] and are 

broken down into districts which include any given catchment 

of interest [36]. In 2010 the UK as a whole had a birth rate per 

capita of 1.3% and the selected district had a birth rate per 

capita of 0.88%. During the same period the Waltham Forest 

district outside of London had a rate of 2.1%. This disparity 

highlights the importance of using local data to account for 

societal and demographic differences in pregnancy rates. It 

should be noted that longitudinal studies demonstrate temporal 

variation in birth rates [37], as is exemplified by the UK baby 

boom of the 1960s, which can be due to a range of factors 

which can feature as a component of socio-economic status 

[38], such as social norms and financial incentives; thus it is 

necessary to update assumptions within models to take account 

of current trends. Since districts encompass areas larger than 

catchments, relevant district birth rates were broken down by 

age category and were used alongside corresponding census 

data for the identified catchment in order to improve accuracy. 

This derived a per capita rate of 1.0% live births for the 

selected catchment, which was used in further calculations. An 

additional factor (0.76) must then be applied to take account of 

multiple gestations and average gestational period of 40 weeks, 

i.e. on any given day there are approximately 23% less pregnant 

women than the yearly number of pregnancies [36]. It should 

be noted that this approach measures live births, which include 

all babies that are born with signs of life. Because of the 

incidence of multiple gestations, there are inherently more live 

births than maternities in a given population. In the UK, this 

equates to approximately a 1% difference. Having ascertained 

the number of pregnant women in the selected catchment, it 

was possible to determine this population group’s contribution 

to excreted potentially releasable E1 and E2 (free estrogens and 

glucuronated conjugates [25]; Figure 1). 

 

Menstrual Females Women of childbearing age that are not 

pregnant are the second most important contributors to 

naturally excreted estrogens. To accurately assign estrogen 

excretion from this population, the age range of females 

menstruating has to be defined. Previously the average for 

menarche was placed at 13.5 years [39]. A more recent study 

showed that the average age of menarche for girls in the US 

was 12.5 years, while also demonstrating an association 

between earlier age at menarche and factors such as increasing 

body mass index and black racial background [40]. On the 

other end of the spectrum, multiple reports support an age of 51 

as the natural age of menopause, with factors such as education, 

marital status, education, race and smoking status being 

implicated as independent predictors of either an increase or 

decrease in age at menopause [41,42]. This is clear evidence 

that changing societal factors such as demographics and socio-

economic conditions are an important to consider with respect 

to the accuracy of model outputs. Before the onset of 

menopause, there is also a period of “perimenopause”, which is 

characterized by irregularity of menstrual periods that begins on 

average at the age of 47.5 [42]. Thus for the purposes of this 

model, women between and including the ages of 13 and 49 

and who are not pregnant were considered as part of the 

“menstrual female” population group. Applying this 

information to census information allowed excretion amount to 

be calculated (Figure 1). 

 

Menopausal Females Based upon the discussion of menstrual 

females, it follows that the population group menopausal 

females is defined as women of age 50 plus. However, when 

considering only the natural estrogen contribution from this 

population group, menopausal females using HRT must be 

excluded as their contribution has already been accounted for. 

Thus, this group is more accurately portrayed as “non-

medicated menopausal females”.  

In order to estimate the percentage of women in a population 

using HRT, recent trends in HRT use must be accounted for. In 

1994, it was estimated that 22% of postmenopausal females 

were using HRT pills; the statistic used within the Johnson and 

Williams (2004) model. Multiple studies have since shown that 

the use of HRT has decreased by an estimated 40-50%, due to 
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concerns over associations with cancer and heart disease [42-

45]. Based on a conservative estimate of a 40% reduction, it 

can be estimated that only 13.2% of postmenopausal women 

currently use HRT. It should be noted that over 45% of the 

female population of the selected catchment was considered 

menopausal, compared with a UK average of 35% (reflecting 

the region’s attraction to retirees). It can therefore be expected 

that the synthetic estrogen load is increased owing to greater 

HRT use, whilst natural estrogen load would be lower because 

estrogen excretion among non-medicated menopausal females 

is considerably lower than that of menstrual females (Figure 1). 

 

Males Localised census data for the selected catchment allowed 

for more precise estimates of the male contribution to estrogen 

excretion (47.7% of the population) residing in the catchment. 

The excretion rate of potentially releasable estrogens for males 

has been reported elsewhere [25] (Figure 1); allowing 

calculation of E1 and E2 excreted by males within the 

catchment. 

 

EE2 Excretion Since the contraceptive pill is the only source 

of EE2 excretion, targeted prescription data is an exceptionally 

valuable tool for estimating EE2 in the environment. A load to 

sewer can be calculated on the basis of reported excretion of 

potentially releasable EE2 of 40% of the consumed mass [25] 

(Figure 1). 

 

Transformations and losses during sewer transport 

In-sewer transformations: previous studies Once within the 

sewerage system the concentration of pharmaceuticals is 

amended by a complex set of physico-chemical and biological 

processes which result in de-conjugation of steroid sulphates 

and glucuronides, partitioning between solids and aqueous 

phases, and degradation of E2 to E1. Many of these effects are 

themselves heavily influenced by a variable range of factors 

including residence time, degree of oxygenation, suspended 

solids levels and bacterial assemblages present. The dynamics 

of sewerage systems have therefore influenced previously 

reported observations of steroid fate which show wide variance 

depending on ambient conditions. Previous studies have 

estimated and measured typical retention times for most sewer 

systems to be between 2 and 6 hours; this is considered too 

short and of insufficient biodegradation potential to 

significantly impact on E1 and EE2 concentrations [25, 46,47]. 

However, it is widely accepted that E2 will degrade to some 

extent under these timescales and conditions to E1. Values vary 

between an estimated 50% degradation to E1 [25] to a between 

only 6 and 8% based on measured data [47]. These values are 

largely controlled by factors such as temperature, de-

conjugation rates and suspended solids levels. 

 

In-sewer transformations: this study The case study 

catchment and its attendant STWs were selected on the basis of 

available dilution within the watershed, identifying the 

catchment as a potential ‘hotspot’ for pharmaceuticals entering 

surface waters. This provided the opportunity to use it as a case 

study for the application of the model. Like most STW in the 

UK, there were no available routinely measured steroid data for 

crude sewage or effluents in the case study STW. Time and 

budget precluded sampling and determination of steroid 

estrogens in STW present within the case study catchment and 

therefore direct comparison between measured estrogen 

concentrations and concentrations modelled for the select 

catchment could not be performed. However, the application of 

English demographic data to the model (details provided in 

Supporting Information, page S6 and Table S3) enabled 

comparison with measured data from a recent detailed UK 

survey by generating predicted excretion data for England as a 

whole; thereby allowing optimisation of removal rates. 

Modification of model inputs to allow predictions for England 

are detailed in the supporting information (Page S6 and Table 

S3). 

The UK water industry has recently undertaken an extensive 

research programme to determine priority chemicals, including 

estrogens entering and being discharged from 25 STWs [48] 

(Figure 2). This dataset was generated under carefully 

controlled sampling and analysis conditions, with thorough 

quality assurance applied throughout. This has generated a 

valuable dataset with statistically rigorous summary statistics 

regarding concentration ranges and removal rates with which to 

compare the model outputs.  

 

Although the total E1 + E2 influent predicted for England by 

the model described herein (~16 µg capita-1 day-1) is less than 

the measured E1 + E2 influent (~22 µg capita-1 day-1), it was 

possible to utilise measured data to refine the value of the in-

sewer degradation rate of E2 to E1. When a 50% in-sewer 

degradation of E2 to E1 is assumed, the result is a predicted 

ratio of E1:E2 that differs considerably from measured values. 

Reduction of the degradation rate within the sewerage system 

will decrease E1 influent predictions, whilst increasing E2 

predictions, which allows for the ratio of the compounds in 

predicted data to calibrate with the measured data. In measured 

influent an E1:E2 ratio of 2.72 is observed, an identical E1:E2 

ratio is achieved in the model with a 28.8% transformation rate; 

thus providing a balance between observed and predicted E1 

and E2 concentrations entering STWs. Details of this ratio-

approach for the case study are detail in the SI (Pages S7-8; 

Table S4). 

 

The data in Figure 2 above and Table S4 of the SI shows the 

outcome of the calibration exercise and clearly illustrate that 

predicted influent quantities of the three compounds were 

proportionally comparable with those measured across a 

number of UK STWs. Due to the ratio calibration approach 

used this is hardly surprising for E1 and E2, however EE2 

influent predictions were not adjusted (i.e. assumed no in-sewer 

losses) and despite this the relative proportions of all 3 

compounds when taken together align well with measured data 

versus previous model outputs. Although there are variations 

between predicted influent concentrations for the catchment 

and England they are not significant and can be explained via 

differences in demographics (detailed below). For other 

pharmaceuticals much greater variation in local versus national 

estimates may be expected as drug use may be more polarised. 

For example use of beta blockers and statins in aging 

populations in retirement biased locations, elevated 

antidepressant use in socially deprived areas and antibiotics use 

on a seasonal basis or in the event of an outbreak of an 

infectious disease. It is therefore important to consider the 

benefit of locally derived estimates across the range of 

pharmaceutical use, not just estrogens.     
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Figure 2: Comparison of predictions of influent steroid loads 

between this study, previous predictions and measured data drawn 

from across the UK. Error bars represent ± 1 standard deviation. 

Predictions for this work (catchment and England) were performed 

with sewer removal rate of 28.75% (E2 to E1 transformation). 

 

Predicted E1 influent loads for England (10.4 µg capita-1 day-1) 

were within two standard deviations of the measured mean 

(mean of 10.4 with ± 2σ = 8.3 to 24 µg capita-1 day-1). The 

observed variation may, in part, reflect the demographics of the 

catchment. Pregnant women dominate the amount of E1 and E2 

excreted and so any small variations in catchment 

demographics could impact significantly upon predicted 

influent loads to the STWs. The equivalent E1 predictions for 

England (12.0 µg capita-1 day-1) are also less than measured 

values, and could indicate that an alternative source of E1 has 

not been accounted for in the model which could include 

prepubertal children [49, 50] and individuals not registered on 

the census (including holidaymakers). Although animals such 

as cattle, sheep, pigs, poultry and domestic animals naturally 

excrete E1 and E2 [51, 52]; their contribution to the sewerage 

system would not be expected to be significant, with the 

exception of possible veterinarian discharges.  

A similar situation exists for E2 where estimates from this 

research generate STW influent loads of 3.9 µg capita-1 day-1 

for the selected catchment, and 4.4 for England as a whole; 

similar to the value of 3.3 predicted previously [25], but less 

than that measured in the UK survey of 5.9 µg capita-1 day-1. 

The data in the model shows the significance of regional 

variations in demographics associated with proportion of 

pregnant females and age variations.   

Predicted influent loads of EE2 for England were 0.5 µg capita-

1 day-1 compared with a measured average value of 0.31 µg 

capita-1 day-1. However, this is closer to the measured data than 

achieved in a previous model (0.89 µg capita-1 day-1), and is 

also within +1 standard deviation of observed values. 

Variations may be owing to the assumption that all prescribed 

medication was consumed, which is not necessarily the case 

[32] which would lead to over estimation of actual loads. In 

consideration of this influencing factor, it would also be logical 

to argue that E1 and E2 influent concentrations should also be 

modified to reflect HRT compliance rates. However, drug 

adherence in HRT users is high (98.9% compliance [33]) and 

so would have a limited impact on excretion and influent 

predictions. Other physico-chemical characteristics of EE2 such 

as its higher log Kow [52] may also mean a degree of 

partitioning to biofilms present in the sewerage system thereby 

reducing levels at the STW. The different predictions of EE2 

concentrations in effluent seen in a previous study compared 

with measured and modelled data presented here (Figure 2) 

may be explained by assumptions used for estimating 

populations of women using the contraceptive pill. From 2006-

2010, the Center for Disease Control and Prevention reported 

that use of oral contraceptives was 17% of women aged 15-44 

in the US [53]. As of 2011, 39.8% of the total UK female 

population is between 15 and 44 [36]. Assuming that use of the 

pill in England does not differ from the US, only 6.8% of all 

females in the UK (i.e. regardless of age) are using the 

contraceptive pill. Previous estimates also cited the same CDC 

source, but used a figure of 17% of all women using the pill 

[25]. The difference between 17% and 6.8% is approximately 

60%, remarkably similar to the 56% difference in EE2 influent 

predicted by both methods. 

Transformations and losses during sewage treatment 

From a risk assessment point of view the wide ranging removal 

levels observed during different types of STW processes generate a 

large degree of uncertainty, which needs to be accounted for when 

assessing likely effluent concentrations. This uncertainty can be 

quantified by substituting different removal rates and comparing 

predicted effluent concentrations with those measured across UK 

STWs. STW removal rates could be modified to ensure that 

predicted and measured effluent values match, however this would 

not take account of the differential influent concentrations seen, nor 

variability in the relative proportions of the three compounds in 

predicted influent. Therefore a ratio-approach similar to that used 

during sewer transformation calculations was used to refine STW 

removal rates for use within the model, and considered removal rates 

across all treatment types and under specific processes. This exercise 

is detailed in the supporting information (Page S9, Table S5) and 

resulted in refined removal rate ranges of 58-84, 89-96 and 53-71% 

for E1, E2 and EE2 respectively. 

The variability in the measured effluent levels (Table 2) is 

significantly higher than that of the influent loads, reflecting the 

variations in removal rates within the STW (S8, Figure S1) leading 

to a wider range of observed effluent concentrations (Table 2). This 

demonstrates that there is still a significant amount of research 

required to identify (and eventually model) specific mechanisms 

within STW which control the removal processes. Nevertheless, 

accepting the inevitable uncertainty, predicted ranges of 

concentrations in effluent (for England and the selected catchment) 

and measured concentrations in effluent (expressed as 95 percentile 

confidence intervals around the means) overlap for all steroids. 

Predictions for the catchment are different from measured data due 

to population differences; highlighting the importance of accounting 

for local demographics in such risk exercises.  

 

Table 2: Summary of predicted data for select catchment and 

England, using refined removal rates 
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Selected Catchment England 

 
E1 E2 EE2 E1 E2 EE2 

Load to sewer 

per capita  

(µg d-1) 

8.82 5.44 0.42 10.22 6.19 0.50 

Catchment 

population 
22199 

2219

9 

221

99 

49138

832 

4913

8832 

4913

8832 

Load to Sewer 

(mg d-1) 
196 121 9.4 

50205

1 

3039

25 

2458

7 

% loss in sewer 

+29%  

(from 

E2) 

-29%  

(to 

E1) 

0 

+29%  

(from 

E2) 

-29%  

(to 

E1) 

0 

Influent load 

(mg d-1) 
230.5 86.0 9.4 

58942

9 

2165

46 

2458

7 

Influent flow to 

STW  

(m3 d-1) 

5550 5550 
555

0 

12284

708 

1228

4708 

1228

4708 

Predicted 

influent (ng L-1) 
41.5 15.5 1.7 48.0 17.6 2.0 

Range of 

removal during 

treatment (%) 

58 – 

84 

89 -

96 

53 - 

71 

58 – 

84 

89 -

96 

53 - 

71 

Predicted range* 

for effluent 

(ng L-1) 

6.6 - 

17.5 

0.6 - 

1.8 

0.5 - 

0.8 

7.7 - 

20.2 

0.7 - 

2.0 

0.6 - 

0.9 

Measured range* 

for effluent  

 (ng L-1) 

   
10.9 – 

24.7 

1.3– 

3.9 

0.33– 

0.78 

* 95% confidence interval around the mean 

Implications 

With predicted concentrations generated, it was possible to 

assess potential compliance with water quality standards. 

Currently in the EU pharmaceuticals are not included in water 

quality assessments. However, predicted no effect 

concentrations have been derived in the UK [54], and include a 

provisional value of between 3 and 5 ng L-1 for E1. At an EU 

level provisional EQS have been derived for E2 and EE2 (0.4 

and 0.035 ng L-1 respectively) but have not been currently 

implemented in lieu of additional data being sought [15]. 

Comparing ranges for predicted effluent quality, for the 

catchment and England, with these values demonstrates that for 

E1 a dilution of 2.2 to 5.8, and 2.6 to 6.7 respectively, would be 

required to ensure compliance with the downstream EQS 

assuming there is no E1 present upstream of the effluent 

discharge. For E2 a similar situation arises with dilution of 

between 1.4 and 4.4 for the catchment, and 1.6 and 5.0 for 

England required. For EE2, however, as the EQS is so low, 

then dilutions of 14 to 23, and 17 to 27, for the catchment and 

England respectively would be necessary. Given that the 

selected case study catchment was chosen owing to its low 

available dilution (<10) the risk assessment suggests that 

downstream concentrations of EE2 may exceed the derived 

EQS. Recent reported data [29] suggests that between 1 and 5% 

of STW in the UK (depending on STW removal rate) would not 

have sufficient dilution to guarantee compliance with the EE2 

EQS after mixing of effluent with receiving waters, leading to 

an estimate of £26 billion [16] in additional treatment to reduce 

concentrations in effluent. 

In 2004 Johnson and Williams published a model for the 

prediction of estrogenic compounds in influent and effluent. 

The simplistic population group approach used for predicting 

excretion of these compounds requires a minimum of data and 

hence has been a popular approach used in a number of 

different models. The modelling approach described herein 

updates many of the parameters used to correspond with the 

socio-economic and cultural changes seen since its publication. 

Significantly more accurate estimates of EE2 achieved using 

the modelling approach described herein, demonstrate the 

importance of using available up-to-date information and 

databases (in this case prescriptions in particular), in order to 

update and refine models which can be used for screening 

purposes to assess possible compliance with new legislation. 

Additionally the provision of new prescription data sets within 

England, have allowed predictions for the excretion of 

synthetically derived compounds to be more accurately 

incorporated (as evidenced in particular by the improved EE2 

predictions generated herein), for specific geographical 

locations. Furthermore, the approach for calculating usage of 

synthetic compounds can be used in isolation, to predict 

excretion rates for pharmaceuticals which do not have a natural 

source. The availability of highly localised census data has also 

allowed more refined predictions of natural excretion of 

estrogen compounds, and highlights the importance of 

performing these types of risk assessment at small geographical 

scales e.g. catchment level. Improvements in sample processing 

and trace analysis of drugs in complex matrices have resulted in 

recent provision of measured data on pharmaceutical 

concentrations for both influent and effluent. The use of such 

measured data has allowed improvements to removal rate 

assumptions (during sewer transport and within STWs) used 

within this modelling approach, by utilising novel ratio-

approaches, thereby further increasing opportunities for 

calibration and thus predictive accuracy.  

This new approach to estimating pharmaceutical concentrations 

entering and being discharged from STW moves modelling 

capability forward in the UK. The case study data derived for 

the steroid estrogens provides excellent comparison with 

measured influent and concentrations in effluent with 

significant improvements in accuracy of EE2 loads and 

concentrations. This is particularly important as future river 

water standards are likely to be set at very low (potentially sub 

ng L-1) values, which emphasises the importance of being able 

to accurately predict concentrations when considering 

programmes of measures to improve water quality.  

The development of a modelling approach, such as that 

presented herein, which can predict influent and concentrations 

in effluent at scales as small as individual STW will be 

important in targeting limited remediation resources when 

legislation regarding priority substances comes into force. This 

is particularly important as environmental improvements under 

the Water Framework Directive are being focussed on a 

catchment scale with stakeholders such as sewage treatment 

companies needing to identify works at risk of contributing to 

EQS exceedances. The fact that local demographics could lead 

to significantly varying influent/effluent concentrations which 

may also be seasonal in character emphasises the necessity of 

being able to model this variability, particularly in areas where 

tourism is the main industry. Water companies hold 

information on holiday populations within sewer catchments 

which could be used to adjust the excreted loads based on the 
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assumption for example that the incoming population were of 

similar demographics and being prescribed similar medication.   

The applicability of this modelling approach to any 

pharmaceutical is reliant upon data or estimates of excretion 

rates, removal rates in sewer and STW. With improving 

analytical methodologies being developed and an increasing 

concern regarding the discharge and fate of pharmaceuticals in 

the environment, it is anticipated that an increasing dataset will 

be generated in the coming years, driven by legislation such as 

the Water Framework Directive in the EU, which will provide 

input data for modelling approaches such as the one presented 

here.    

The NHS prescription database details millions of prescriptions 

per month which makes large scale (e.g. whole of England) 

assessment of ‘hotspots’ very challenging. However, this could 

be considered in the future when sufficient data is available 

(this database has only been available since September 2011). 

This may be even more significant where local demographical 

variations in pharmaceutical use may vary more significantly 

than for use of steroid estrogens. Examples could include use of 

anti-depressants in socially deprived areas, beta blockers and 

statins in retirement biased populations or the seasonal use of 

antibiotics. 
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