Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

rsc.li/process-impacts

3

1 Matrix-bound phosphine, phosphorus fractions and phosphatase activity

2 through sediment profiles in Lake Chaohu, China

- Wei Ding,^a Renbin Zhu,*^a Lijun Hou^b and Qing Wang^a
- 4 ^aInstitute of Polar Environment, School of Earth and Space Sciences, University of Science and
- 5 Technology of China, Hefei city, Anhui Province 230026, P. R China
- ⁶ ^bState Key Laboratory of Estuarine and Coastal Research, East China Normal University,
- 7 Shanghai 200062, P. R China
- 8 *Corresponding author: Email: zhurb@ustc.edu.cn; Tel: 0086-551-63606010; Fax:
- 9 0086-551-63607583.

Environmental impact

Phosphorus, the nutrient causing the eutrophication in most of lakes, has been in the forefront of hydrobiological research to explore the mechanism and prevention of eutrophication. Matrix-bound phosphine is an important gaseous link in the P biogeochemical cycle, and reliable detection of this compound in the sediments will improve our understanding of P cycling and their environmental significance in the eutrophic lakes.

nvironmental Science: Processes & Impacts Accepted Manuscr

10 Abstract

11 The distribution patterns of Matrix-bound phosphine (MBP), phosphorus (P) factions and neutral phosphatase activity (NPA) were investigated through the five sediment profiles in 12 Lake Chaohu, China. MBP was found in all the sediment profiles with the concentration range 13 of 1.58–50.34 ng kg⁻¹. The concentrations of MBP exhibited a consistent vertical distribution 14 pattern in all the profiles, and higher MBP concentrations generally occurred in the surface 15 16 sediments. MBP concentrations showed a significant positive correlation with P fractions, total nitrogen (TN), Cu and Zn under lower levels of inorganic phosphorus (<0.6 g kg⁻¹), organic 17 phosphorus (<0.2 g kg⁻¹), TN (<0.13%), Cu (<25 mg kg⁻¹) and Zn (<150 mg kg⁻¹), but no 18 19 statistically significant correlations were obtained under higher levels. The multiple stepwise 20 regression model ([MBP]=1.36[NPA]-6.21[pH]-0.06[Zn]+0.75[Cu]+49.86) was obtained 21 between MBP concentrations and environmental variables, and MBP concentrations showed a strong positive correlation with NPA (P < 0.0001), indicating that the production of sediment 22 23 MBP was controlled by the microbially-mediated processes in Lake Chaohu. This model could be used to predict MBP levels in the sediments. Our results indicated that MBP level could not 24 be used as an indicator for the degree of lake eutrophication. The study of sediment MBP, P 25 26 factions and NPA will improve our understanding of P cycling and their environmental significance in the eutrophic Lake Chaohu. 27

Key words: Matrix-bound phosphine; Organic phosphorus; Inorganic phosphorus; phosphatase
activity; Lake sediment.

30 Introduction

Phosphorus, the nutrient limiting organic matter production and causing the eutrophication 31 in most of lakes, has been in the forefront of hydrobiological research to explore the 32 mechanism and prevention of eutrophication during the past decades.¹⁻⁴ Previous publications 33 on lake nutrients focused almost completely on phosphates in aqueous and solid forms and did 34 not consider the possible presence of volatile phosphorus compounds. Phosphine (PH_3) , as a 35 reactive and reduced phosphorus component, has been detected in the natural environment with 36 two different forms: free gaseous phosphine (FGP) and matrix-bound phosphine (MBP).⁵⁻¹⁰ 37 MBP, defined as PH₃ bound to condensed environmental samples, can hydrolyze in biological 38 aquatic media to form FGP by acid or alkaline digestion. Since phosphine produced during 39 fermentation is prone to be adsorbed by condensed matrix, the actual amount of phosphine 40 41 released as free gas form is much less than the total amount of phosphine formed in soils or sediments.^{10,11} Therefore a better understanding of the behavior of MBP, as a gaseous carrier of 42 the nutrient phosphorus, is essential to explore whether MBP contributes to a certain extent to 43 the geochemical cycle of phosphorus. 44

As for the formation mechanism of phosphine in the nature, it has been controversial for years. The point that the production of PH₃ is considered to be associated with microbial activity, has been universally accepted, because all kinds of organic or inorganic phosphorus compounds can be reduced to PH₃ by anaerobic bacteria.^{12–16} Non-biological PH₃ formation mechanisms have also been proposed.¹⁷ Many evaluations have showed that environmental factors, such as P fractions, redox condition, metal elements and phosphatase activity (PA), could affect the formation of phosphine in various matrixes including lake sediments.^{18–22} In

52	lake ecosystems, phosphine can ultimately be converted to phosphate and hypophosphite,
53	released into the water from the sediments, and thus phosphine might play a considerable role
54	in lake eutrophication. ^{23–26} In the eutrophic waters, phosphine and its oxides could accelerate
55	the growth of Microcystis aeruginosa, and furthermore PH ₃ , as a highly toxic compound,
56	might induce the death of aquatic organisms at the concentration of above 550 mg m ⁻³ . ²⁷
57	Sediments could be the main sources of phosphine in the eutrophic lakes due to higher P level
58	compared with overlying water. ²⁶ Therefore it is very important to investigate the distribution
59	patterns of phosphine and P fractions in lake sediment profiles, and their possible links with
60	lake eutrophication.
61	Lake Chaohu, as the fifth largest freshwater lake in China, has been suffering the
62	eutrophication due to a large amount of nutrient (mainly N and P) loading from industrial
63	wastewater, domestic sewage and agricultural fertilizers since the late 1970s. ^{28–31} To the best of
64	our knowledge, no previous research has been conducted on the occurrence of MBP and its
65	distribution patterns in the sediments of Lake Chaohu. In this study, a total of five sediment
66	cores were collected from Lake Chaohu and the concentrations of MBP, phosphorus fractions,
67	phosphatase activity and other environmental factors were measured in these cores. Our main
68	objectives are: (1) to detect the distribution patterns of MBP, P fractions and phosphatase
69	activity through the sediment depth profiles; (2) to investigate the effects of environmental
70	parameters on the concentrations of sediment MBP; (3) to discuss the effects of MBP on the
71	P-cycle and its environmental significance in Lake Chaohu.

72 Materials and methods

73 Study area

0
S
Ξ
σ
\geq
-
0
ţ
0
Q
N
9
S
*
ğ
ö
Ξ
2
00
S
0
S
S
N.
ŏ
0
Ö
9
0
S
2
Ð
5
Ľ
7
5
άŪ –

74	Lake Chaohu (117°16′54″-117°51′46″E and 31°25′28″-31°43′28″N; Fig. 1), which is
75	located in the middle and lower reaches of Yangtze River in Anhui Province of China, covers
76	an area of 780 km^2 and has a mean water depth of 3 m. ³¹ The climate of Lake Chaohu belongs
77	to subtropical monsoon climate, with an annual mean precipitation of 1120 mm and
78	temperature of 15-16 °C. ³² Eight main rivers (Nanfei River, Pai River, etc.), which provide
79	about 90% of the runoff volume from the catchments, feed Lake Chaohu, and the Yuxi River
80	as its outflow is the only channel linking to the Yangtze River. Lake Chaohu is divided into the
81	western lake and eastern lake by Mushan Island. Hefei City (~ 11000 km^2), Feidong County (~
82	2200 km ²) and Feixi County (~ 2100 km ²) are distributed around the western lake (ca. 1/3 of
83	area), whereas Chaohu City (~ 2000 km ²) is distributed around the eastern lake (ca. $2/3$ of area).
84	Lake Chaohu plays an important role in fishing, industrial and agricultural irrigation water,
85	flood prevention, and drinking water for surrounding cities and counties. Economic
86	development and rapid urbanization in Chaohu Lake catchments have led to the excessive
87	input of the nutrients and contaminants by runoff into the lake. It was recorded that the
88	concentrations of TP, TN and Chl-a in Lake Chaohu were 1.2–4.6 mg L^{-1} , 0.11–0.42 mg L^{-1} ,
89	and 1.1–38.2 μ g L ⁻¹ , respectively. ³⁰ The toxic metal contents in the sediments were 9.23–40.97
90	$\mu g g^{-1}$ (26.23±8.66 $\mu g g^{-1}$) for Cu and 33.20–360.29 $\mu g g^{-1}$ (153.68±98.37 $\mu g g^{-1}$) for Zn. ^{32,33}
91	According to the New York sediment screening criteria for the metal contamination, the values
92	of the severe effect level are 110 $\mu g~g^{\text{-1}}$ for Cu and 270 $\mu g~g^{\text{-1}}$ for Zn, and the sediments in Lake
93	Chaohu are severely contaminated in 20% of the area for Zn, but 0% for Cu. ³² In Lake Chaohu,
94	the cyanobacteria often bloom, and the macrophytes are not abundant. The water system in the
95	western lake suffers more serious eutrophication than that in the eastern lake. ²⁹

invironmental Science: Processes & Impacts Accepted Manuscr

96 Sample collection

According to the pollution degree, we collected five sediment cores (CH1, CH2, CH3, CH4 97 and CH5) from Lake Chaohu in the middle of October, 2010 using a gravity core sediment 98 sampler (Fig. 1). The cores CH1, CH2 and CH3 were located in the heavily polluted western 99 lake while CH4 and CH5 were in the slightly polluted eastern lake. The lengths of these 100 101 sediment cores were 70 cm, 60 cm, 60 cm, 30 cm and 20 cm, respectively. They had not been disturbed and kept intact at the bottom of the lake. Immediately after collection, all samples 102 were completely sealed and stored in the dark under -20 °C until laboratory analysis. The 103 storage method did not compromise the samples' integrity, and it minimized the effects of 104 MBP concentration in the sediments according to several references and our previous 105 studies.^{19–21,34} The sediment cores were sectioned at 2 cm intervals, and then the sediment 106 107 samples for each section were divided into two portions in sequence. One portion was used to analyze MBP concentrations, whereas the other portion was used to determine phosphorus 108 factions, phosphatase activity, and other physiochemical properties of the sediments. The 109 concentrations of MBP and P fractions, and phosphatase activity in all the samples were 110 measured within one month after the sediment cores were collected. 111

112 **Determination of MBP**

In this study, MBP is defined as the amount of phosphine released from the sediments during an acidic digestion, which releases adsorbed phosphine, metal-phosphine complexes, and inorganic phosphides.¹⁸ Briefly, about one gram of wet sediment was digested in a glass reactor with 5 ml of 0.5 mol L⁻¹ H₂SO₄ for 5 min at 100 °C under highly pure N₂ (99.999%).

The liberated phosphine was purged with pure N₂ out of the reactor into a 30 ml syringe and 117 transferred into the gas chromatograph (Varian CP 3800) after enrichment through a capillary 118 cryo-trapping (a Plot-Q capillary column, cooled down with liquid nitrogen). The gas 119 120 chromatograph was equipped with a capillary 121 column (crosslinked 5% Ph Me Silicone, 25 $m \times 0.2 \text{ mm} \times 0.33 \text{ µm}$ film thickness, Hewlett Packard) and a pulsed flame photometric detector 121 (PFPD). A standard gas mixture of phosphine in N_2 (10 ppmv) was used as authentic reference. 122 The method has a detection limit of 0.1 ng m^{-3} of phosphine. Each gas sample was measured at 123 least three times with a relative standard deviation of less than 10%.³⁴ 124

125 Analyses of P fractions and NPA

Phosphorus fractions in the sediment were measured as total phosphorus (TP), inorganic 126 127 phosphorus (IP) and organic phosphorus (OP). TP was analyzed by measuring phosphate using 128 the ammonium molybdate spectrophotometric method after digestion, in which all the samples were dried at room temperature, and then incinerated in a muffle furnace at 550 °C for 2 h, 129 followed by the extraction with 1 mol L^{-1} hydrochloric acid for 16–18 h at room temperature.³⁵ 130 IP was detected by the same method as TP except the incinerating procedure, and OP was 131 obtained by the difference between TP and IP.35 The standard reference material (GSD-4 as a 132 133 standard reference sample drainage sediment supplied by the Chinese Academy of Geological Sciences) were included with every batch of samples to test the validity of the data, and the 134 analytical errors for P fractions are within $\pm 0.5\%$. 135

The present study was focused on the characterization of neutral phosphatase activity (NPA) in the sediments since almost all the samples were almost neutral (pH close to 7). NPA was determined using phenyl phosphate disodium (0.115 M).³⁶ This assay was based on the

release and detection of phenol (PN). The 2.5 ml of 0.1 M citric acid buffer and 2.5 ml of 139 substrate were added into 2.5 g of sample and incubated at 37 °C for 24 h. The phenol (PN) in 140 the filtrate was determined using a spectrophotometer at 578 nm, expressed as mg PN kg⁻¹ h⁻¹. 141

Every sample was measured three times with a relative standard deviation of less than 10%. 142

143

General analysis of sediment characteristics

144 All the samples were separated from sediment cores and mixed homogeneously for the general analyses. The mean grain size (Mz) of the sediments was determined three times for 145 each sample by using a laser diffraction particle size analyzer (LS I3 320).³⁷ The pH was 146 determined by ion selection electrode.²² The pH was determined by ion selection electrode.²² 147 Total carbon (TC), total nitrogen (TN) and total sulfur (TS) were determined by using a CNS 148 Elemental Analyzer (Vario EL III) with a relative error of 0.1%.³⁴ For the analyses of other 149 chemical elements including Cu and Zn, the samples digested by multi-acids 150 (HNO₃-HF-HClO₄) were analyzed by Inductively Coupled Plasma Optical Emission 151 Spectrometer (Optima 2100DV).³⁴ Data quality was ensured through the use of duplicates, 152 blanks and standard reference materials (GSD-6 as a standard reference sample drainage 153 sediment and GSS-7 as a geochemical standard reference sample drainage soil supplied by the 154 155 Chinese Academy of Geological Sciences). The analytical errors for the elements are within $\pm 5\%$ of the certified ones. 156

Statistical analysis 157

The mean values and standard deviation (mean±sd) were calculated to facilitate 158 comparisons of the data between the different sediment cores. Differences in the mean 159

concentrations of MBP, P fraction, NPA and other environmental parameters (Mz, pH, TN, TC,
TS, Cu and Zn) between both the sediment cores and different depths of each core were tested
with Student's *t*-test. The relationships between MBP concentrations and environmental factors
were shown by the linear regression analysis, and the multiple stepwise regression analysis was
used to identify the main driving factors for the MBP contents. All statistical analyses were
preformed using Microsoft Excel 2007, SigmaPlot 12.0 and SPSS 16.0 for Window XP.

166 **Results and discussion**

167 Environmental variables, phosphorus fractions and phosphatase activity through 168 sediment profiles

The grain size (Mz) of the sediments was highly variable with the range of 11.10-34.92 µm 169 170 in the sediment profiles (Table 1), and the maximum of Mz almost occurred at about 20 cm with the exception of the profile CH1 (Fig. 2). In this study, all the sediment profiles displayed 171 a slight decrease in pH from the bottom to surface sediments ranging between 5.8 and 7.2, and 172 overall pH values were almost neutral. The concentrations of P fractions, especially OP and TP, 173 all showed an increasing trend with sediment depths from the bottom to surface sediments in 174 all the profiles (Fig. 2). High TP and IP concentrations occurred in the sediment profiles with 175 the ranges of 474–1617 μ g g⁻¹ and 395–1075 μ g g⁻¹, respectively, whereas OP concentrations 176 $(41-542 \ \mu g \ g^{-1})$ were one order of magnitude lower than IP concentrations (Table 1). Overall 177 the mean contents of P fractions in sediment profile CH1 were two to three times higher than 178 those in other sediment profiles (Fig. 3). 179

Of all the profiles TC, TN, TS, Cu and Zn concentrations also displayed a slight increasetrend with depths from the bottom to surface sediments although some fluctuations occurred at

the different sediment layers (Fig. 2). TP levels showed significant positive correlations 182 (P < 0.01) with TC, TN, Cu, Zn levels when all the data were combined (Fig. 4). In addition, the 183 concentrations of TC, TN, TS, Cu and Zn showed a significant positive correlation with each 184 185 other, but they significantly negatively correlated with pH values (Table 2). Heavy metals such as Cu and Zn, are regarded as serious contaminants in aquatic ecosystems since they are 186 accumulated in the sediments instead of degradation. Thus Cu and Zn levels can be used as the 187 indicators for anthropogenic sources. It was noted that the mean TC and TN contents in profile 188 189 CH1 were two or three times higher than those in other profiles, and Cu and Zn contents were also significantly higher in profile CH1 (Fig. 3). As reported in several previous 190 references, ^{30,34,36} anthropogenic sources, such as discharge of industrial waste water and 191 192 domestic sewage, and the runoff of agricultural phosphorus fertilization, might increase 193 sediment P, N, Cu and Zn levels in Lake Chaohu. The sediment profile CH1 was closer to the bayou of Nanfei River, a seriously polluted river from Hefei City, indicating that the sediment 194 profile CH1 might be subjected a stronger impact from anthropogenic sources. 195

Neutral phosphatase activity (NPA) through the sediment profiles showed an inconsistent 196 variation pattern with the range from 0.65 to 1.81 mg PN kg⁻¹ h⁻¹. The mean NPA indicated no 197 198 statistically significant differences between these five sediment profiles (P>0.05, Fig. 3). It was 199 noted that relatively lower NPA, but higher TP, OP, TC, TN, Cu and Zn contents occurred at the surface 20 cm than in deep layer sediments for profiles CH1, CH2 and CH3, which were 200 201 located in the heavily-polluted western lake, suggesting that high-level pollutants might inhibit NPA in the sediments. A significant negative correlation between NPA and pH indicated that 202 203 sediment acidification could stimulate the formation of NPA and the related microbial activities 204 involved in P cycles.

205 MBP concentrations and its correlation with environmental variables

The MBP was found in all the sediment profiles of Lake Chaohu. The concentrations of 206 MBP exhibited a consistent vertical distribution pattern in almost all the profiles, and 207 high-level MBP occurred in the surface sediments, decreased with depths and then increased 208 209 again in the bottom sediments (Fig. 2). The mean MBP concentrations of sediment profiles CH1 (18.38±7.10 ng kg⁻¹), CH2 (14.78±3.75 ng kg⁻¹) and CH3 (19.33±3.88 ng kg⁻¹) in the 210 211 western area of this lake were much lower than those of sediment profiles CH4 (25.65±12.38 ng kg⁻¹) and CH5 (22.54±6.66 ng kg⁻¹) in the eastern area of Lake Chaohu (Fig. 3). Sediment 212 MBP concentrations had no statistical correlation with P fractions, TC, TN, TS and Cu, Zn 213 214 levels when all the data were combined from these five sediment profiles (Table 2). However, it is interesting that all the data points for MBP and environmental variables can be categorized 215 into two groups (Fig. 5): Group I indicated a good positive correlation between MBP and TP, IP, 216 OP, TN, Cu and Zn under relatively lower levels of TP (<0.7 g kg⁻¹), IP (<0.6 g kg⁻¹), OP (<0.2217 g kg⁻¹), TN (<0.13%), Cu (<25mg kg⁻¹) and Zn (<150 mg kg⁻¹); Group II indicated no 218 statistically significant correlation between MBP and these variables under higher levels of P 219 220 fractions, TN, Cu and Zn in the sediments of Lake Chaohu. The MBP concentrations showed a 221 significant positive correlation (P < 0.001) with NPA (Fig. 6a). A significant negative correlation was obtained between MBP and pH (P=0.03) in the sediments (Fig. 6b). We further analyzed 222 the relationships between MBP concentrations and environmental variables using multiple 223 224 stepwise regression analysis. The following best fitting regression model was obtained:

226
$$(r=0.53, F=3.15, P=0.02, n=54)$$

In this model, MBP concentrations were related with NPA, pH, Cu and Zn levels, and the correlation coefficient (r=0.53) is higher than those through simple linear regression analysis. MBP concentrations showed no statistical correlation with Cu and Zn concentration in the sediments (Table 2). Overall MBP concentrations were controlled by NPA and pH in the sediments. According to this model, the regression values of MBP concentrations showed a strong correlation (P=0.02) with their measurement values, suggesting that this model could be used to predict MBP levels in the sediments.

234 Effects of environmental variables on sediment MBP concentrations

Recent studies have shown that the fine Mz favored high MBP concentrations.^{19,20} This 235 236 mainly results from larger surface areas and higher absorption potentials to phosphine for finer sediments, whereas coarse sediments allow the transfer and oxidation of phosphine due to 237 porous characteristics. In this study, no significant correlation was obtained between MBP and 238 Mz (Table 2), suggesting that sediment grain size might have little impact on MBP 239 preservation in Lake Chaohu. The disturbance from the hydrodynamic effects is also a physical 240 factor affecting the production and depletion of MBP in the sediments.^{5,18} The sediment 241 disturbance might change the sedimentation rates, bottom sediment compositions and the 242 anaerobic conditions, and promote phosphine oxidization into phosphate.⁵ In shallow Lake 243 Chaohu, the sediment profiles CH1 and CH2 might be subject to strong disturbance from the 244 hydrodynamic effects since they were close to the river inflow. Therefore lower MBP levels 245 occurred in profiles CH1 and CH2 than in other profiles, indicating that the disturbance might 246

Environmental Science: Processes & Impacts Accepted Manuscript

have an important effect on the MBP levels in the sediments of Lake Chaohu.

The phosphorus and nitrogen levels are generally regarded as an important index to 248 determine the degree of lake eutrophication.^{1,2,36} Generally the internal phosphorus release had 249 been one of the main sources of lake eutrophication besides external input.³² MBP, as the 250 approach to an internal phosphorus release, can be converted to phosphate into the water or 251 transfer into the atmosphere through the biogeochemical processes.²¹ Previous researches 252 revealed that the enhanced inputs of easily decomposable organic substance were in favor of 253 the production of phosphine in the sediments.^{19,20} In this study, sediment MBP concentrations 254 showed a positive correlation with the contents of P fractions and N under the relatively lower 255 levels, whereas no statistically significant correlation was obtained under higher levels of P 256 fractions and N (Fig. 5a-d). Therefore the relatively lower-level P and N nutrient loadings 257 258 might promote the formation of phosphine in the sediments, whereas higher-level P and N did 259 not favor the formation of MBP in Lake Chaohu, indicating that MBP level could not be used as an indicator for the degree of lake eutrophication. 260

In addition, NPA has an important effect on the decomposition and conversion of soil organic phosphorus and inorganic phosphorus, and it can be an indicator for the microbial activities related to P biogeochemical cycles.³⁸ The significant positive correlation between MBP concentrations and NPA (Fig. 6a) suggested that the formation of MBP might be associated with microbially-mediated process of both the IP reduction and the OP decomposition in the sediments.^{15,16} Multiple regression analysis further indicated that MBP levels in Lake Chaohu sediments might be controlled by the NPA under effects of microbes.

268 The pH affected the existence of phosphine in the sediments by changing the

physicochemical properties of sediments and the activity of microbes responsible for the fate of 269 phosphine. Han et al.³⁹ claimed that the highest MBP was produced under neutral conditions 270 (pH=6.74), and the lowest was in acidic soil (pH=4.85). Other studies reported that low pH in a 271 certain range accelerated chemical reactions and stimulated the formation of MBP and bacterial 272 activity in the sediments,²² which was accordance with our results. A significant negative 273 274 correlation between MBP and pH (P=0.03) showed that sediment acidification was conducive to MBP storage in Lake Chaohu (Fig. 6b). Multiple regression analysis also indicated that 275 sediment acidification favored the preservation of MBP in Lake Chaohu. 276

Some researchers have found that PH_3 can react with some transition metals such as Cu^{2+} , 277 Pb^{2+} , Zn^{2+} , etc., to form slightly or not soluble metal-phosphides²⁵ in solutions with H⁺, and 278 there were dramatic increases in PH₃ loss.³ Therefore high levels of trace metals, such as Cu 279 280 and Zn might have an effect on the MBP distribution in lake sediments. In this study, the increase in MBP concentrations corresponded to low Cu (<25 mg kg⁻¹) and Zn (<150 mg kg⁻¹) 281 levels, and high Cu and Zn levels did not increase the concentration of MBP in the sediments 282 (Fig. 5e, f), suggesting that high heavy metal levels might lead to metal-phosphide formation 283 and the increase in PH₃ loss. According to the multiple regression equation, MBP levels had a 284 285 positive correlation with Cu but a negative correlation with Zn, and thereby the complex 286 chemistry needs further research in the future.

Generally the fate of phosphine in the sediments was determined by three processes: (i) adsorbed by the sediments as a matrix-bound form; (ii) oxidized by microorganisms, chemical reaction and physical transformation; and (iii) transported as a free gas form. The complex combination of these processes is subsequently controlled by different characteristics of the sedimentary environment.^{6,26} In summary, MBP detected in the sediments of Lake Chaohu can
be regarded as a relative equilibrium concentration of phosphine between the production and
consumption which can be impacted by sediment characteristics, and mediated by microbial
processes.

295 Effect of MBP on the P-cycle and its environmental significance in Lake Chaohu

Recent researches provide an overview of MBP concentrations in different types of 296 sediments at the global scale (Table 3). In this study, MBP concentrations are in the ranges of 297 1.58–50.34 ng kg⁻¹ in the sediment profiles of Lake Chaohu. Our data are comparable to those 298 in the freshwater sediments of Lake Taihu in China,²⁶ Elster River¹¹ and Elbe River⁴⁰ in 299 Germany, Chinese paddy fields,⁴¹ the ornithogenic sediments in eastern Antarctica and 300 Arctic,³⁴ and in marine surface sediments of Chinese coastal areas.^{19,20,24} although they are one 301 to two orders of magnitude lower than those in the freshwater sediments of Lake Wulongtan,⁸ 302 and in marine surface sediments of seriously polluted areas⁴² in Chinese Jiaozhou Bay. 303 Furthermore, MBP concentrations in this study are higher than those in ornithogenic sediments 304 of western Antarctica.⁴³ and estuarine intertidal sediments of Yangtze River.⁴⁴ Therefore, MBP 305 is an important reduced phosphorus compounds in the sediments of Lake Chaohu. 306

Lake Chaohu is characterized with shallow water and the medium eutrophication due to high load of the nutrients. To a certain degree, the load of nutrients such as N and P favors the MBP formation in the sediments under the effects of microbial activity. On the other hand, MBP is a reduced and unstable phosphorus compound, and easily oxidized into phosphate under the aerobic conditions.¹¹ The shallow water (mean 3 m deep) might accelerate the oxidation and transformation of MBP in the sediments, thus a relatively rapid turnover of MBP

might occur in the sediments, and a rapid migration process of PH₃ was possible in the 313 interstitial gas of lake sediments.²¹ Therefore MBP might be an important gaseous link in the P 314 biogeochemical cycle in Lake Chaohu. The study of MBP and P fractions in the sediment 315 profiles of Lake Chaohu will improve our understanding of P cycling and its environmental 316 significance under the eutrophic conditions. 317

Conclusion 318

The present study reveals the existence and distribution patterns of MBP through sediments 319 profiles in Lake Chaohu. The MBP was found in all the sediments with the range from 1.58 to 320 50.34 ng kg⁻¹. It was found that sediment MBP concentrations showed a positive correlation 321 322 with the contents of P fractions and N under the relatively lower levels of P fractions and N, whereas no statistically significant correlation was obtained under their higher levels. The MBP 323 324 concentrations showed a significant positive correlation with NPA (P < 0.001), suggesting that the formation of MBP might be associated with microbially-mediated process of both the IP 325 reduction and the OP decomposition in the sediments under anaerobic conditions. Our results 326 indicated that MBP level could not be used as an indicator for the degree of the eutrophication, 327 though sediment MBP contributed to the P geochemical cycle in Lake Chaohu. 328

329

Acknowledgements

We sincerely thanked Dr. Dawei Ma, Dr. Zijun Wu and Dr. Xiaodong Liu for helping 330 collect sediment cores in the field. This work was supported by the National Natural Science 331 Foundation of China (Grant No. 41176171 and 41076124), and Specialized Research Fund for 332 333 the Doctoral Program of Higher Education (Grant No. 20123402110026).

nvironmental Science: Processes

334 **References**

- 1 J. M. Jaeoby, D. Lynch, E. Welch and M. Perkins, *Water Res.*, 1982, 16, 911–919.
- 2 J. L. Pinckney, H. W. Paerl, P. Tester and T. L. Richardson, *Environ Health Perspect.*, 2001,
- **109**, 699–706.
- 338 3 S. C. Morton, D. Glindemann and M. Edwards, Environ. Sci. Technol., 2003, 37, 1169-
- 339 1174.
- 4 M. Chen, J. Chen and F. Sun, *Sci. Total Environ.*, 2008, **405**, 140–152.
- 5 I. Dévai and R. D. Delaune, *Org.* Geochem., 1995, **23**, 277–279.
- 6 F. Eismann, D. Glindemann, A. Bergmann and P. Kuschk, *Chemosphere*, 1997, **35**, 523–
 533.
- 7 S. H. Han, Z. J. Wang, Y. H. Zhuang, Z. M. Yu and D. Glindemann, *J. Environ. Sci.* China,
 2003, 15, 339–341.
- 8 Y. N. Hong, J. J. Geng, S. Qiao, L. L. Ding, X. Y. Gu, X. R. Wang, D. Glindemann and H. Q.
- 347 Ren, Mar. Chem., 2010, **118**, 67–74.
- 348 9 Y. N. Hong, J. J. Geng, S. Qiao, Y. Z. Zhang, L. L. Ding, X. R. Wang and H. Q. Ren, J.
- 349 *Hazard. Mater.*, 2010, **181**, 556–564.
- 350 10 D. Glindemann, M. Edwards and P. Kuschk, Atmos. Environ., 2003, 37, 2429–2433.
- 11 D. Glindemann, M. Edwards, J. Liu and P. Kuschk, *Ecol. Eng.*, 2005, 24, 457–463.
- 352 12 B. V. Rutishauser and R. Bachofen, *Anaerobe*, 1999, **5**, 525–531.
- 353 13 J. Roels and W. Verstraete, *Bioresour. Technol.*, 2001, **79**, 243–250.
- 354 14 J. Roels and W. Verstraete, Sci. Total Environ., 2004, 327, 185–196.
- 355 15 J. Roels, G. Huyghe and W. Verstraete, *Sci. Total Environ.*, 2005, **338**, 253–265.

- 356 16 Z. P. Liu, S. F. Jia, B. J. Wang, T. Zhang and S. J. Liu, J. Environ. Sci., 2008, 20, 885–890.
- 357 17 D. Glindemann, M. Edwards and P. Morgenstern, *Environ. Sci. Technol.*, 2005, **39**, 8295–
 358 8299.
- 359 18 J. J. Geng, X. C. Jin, Q. Wang, X. J. Niu, X. R. Wang, M. Edwards and D. Glindemann,
- *Anaerobe*, 2005, **11**, 273–279.
- 361 19 Z. H. Feng, X. X. Song and Z. M. Yu, *Chemosphere*, 2008, **73**, 519–525.
- 362 20 Z. H. Feng, X. X. Song and Z. M. Yu, *Marine Pollut. Bull.*, 2008, 56, 1630–1636.
- 363 21 L. J. Hou, M. Liu, P. X. Ding, J. L. Zhou, Y. Yang, D. Zhao and Y. L. Zheng, Chemosphere,
- 364 2011, **83**, 917–924.
- 22 Q. H. Huang, Z. J. Wang, C. X. Wang, S. R, Wang and X. C. J, *Chem. Spec. Bioavailab.*,
 2005, 17, 55–61.
- 367 23 J. J. Geng, X. J. Niu, X. C. Jin, X. R. Wang, X. H. Gu, E. Marc and D. Glindemann,
 368 *Biogeochemistry*, 2005, 76, 283–298.
- 369 24 J. B. Li, G. L. Zhang, J. Zhang, S. M. Liu and J. L. Ren, *Cont. Shelf Res.*, 2010, **30**, 743–
 370 751.
- 371 25 J. B. Li, G. L. Zhang, J. Zhang, Z. Y. Zhu, J. L. Ren and S. M. Liu, *Estuar. Coast Shelf Sci.*,
 372 2010, **90**, 206–211.
- 26 X. J. Niu, J. J. Geng, X. R. Wang, C. H. Wang, X. H. Gu, M. Edwards and D. Glindemann,
- *Sci. Total Environ.*, 2004, **323**, 169–178.
- 375 27 X. J. Niu, J. F. Zhang and X. L. Shi, J. Lake Sci., 2003, 15, 263–268.
- 376 28 F. Y. Zan, S. L. Huo, B. D. Xi and Q. Q. Li, *Environ. Earth Sci.*, 2011, **62**, 1643–1653.
- 377 29 G. P. Shang and J. C. Shang, *Chinese Geogr. Sci.*, 2005, **15**, 348–354.

- 378 30 G. P. Shang and J. C. Shang, *Environ. Monit. Assess.*, 2007, **130**, 99–109.
- 379 31 M. Q. Xu, H. Cao, P. Xie, D. G. Deng, W. S. Feng and H. Xu, Eur. J. Protistol., 2005, 41,
- 380 183–192.
- 381 32 S. F. Wen, B. Q. Shan and H. Zhang. J. Environ. Sci., 2012, 24, 2041–2050.
- 382 33 H. b. Yin, J. C. Deng, S. G. Shao, F. Gao, J. F. Gao and C. X. Fan. Environ. Monit. Assess.,
- 383 2011, **179**, 431–442.
- 34 R. B. Zhu, D. W. Ma, W. Ding, B. Bai, Y. S. Liu and J. J. Sun, *Sci. Total Environ.*, 2011,
 409, 3789–3800.
- 386 35 K. I. Aspila, H. Agemian and A. S. Y. Chau, *Analyst*, 1976, **101**, 187–193.
- 387 36 H. J. Chen, Forest Ecol. Manag., 2003, **178**, 301–310.
- 388 37 Y. Zhu, X. D. Zou, S. P. Feng and H. Q. Tang, *Environ. Geol.*, 2006, **50**, 753–759.
- 389 38 D. W. Ma, R. B. Zhu, J. J. Sun, Y. S. Liu and L. G. Sun. *Chin. J. Polar Res.*, 2010, 22, 386–
 390 395.
- 391 39 S. H. Han, Y. H. Zhuang, H. X. Zhang, Z. J. Wang and J. Z. Yang, Chemosphere, 2002, 49,
- **392 651–657**.
- 40 G. Gassmann and F. Schorn, *Naturwissenschaften*, 1993, **80**, 78–80.
- 394 41 J. A. Liu, Y. H. Zhuang, H. F. Cao, P. Kuschk, F. Eismann and D. Glindemann, Water, Air,
- *Soil Pollut.*, 1999, **116**, 597–604.
- 396 42 Z. M. Yu and X. X. Song, Chin. Sci. Bull., 2003, 48, 31–35.
- 397 43 R. B. Zhu, L. G. Sun, D. M. Kong, J. J. Geng, N. Wang, Q. Wang and X. R. Wang,
- 398 *Chemosphere*, 2006, **64**, 1429–1435.
- 399 44 L. J. Hou, Y. Yang, J. M. Jiang, X. Lin and M. Liu, *Chemosphere*, 2009, 76, 1114–1119.

Captions of figures:

- **Fig 1.** Study area and the sampling sites. The five sediment profiles (CH1, CH2, CH3, CH4 and CH5) were collected from Lake Chaohu in the autumn of 2010.
- Fig 2. Vertical distribution patterns of MBP, P fractions (TP, IP and OP), NPA and environmental variables (Mz, pH, TN, TC, TS, Cu and Zn) in the five sediment profiles CH1 (Fig. a), CH2 (Fig. b), CH3 (Fig. c), CH4 (Fig. d), and CH5 (Fig. e). Note: MBP, TP, IP, OP and NPA indicated matrix-bound phosphine,total phosphorus, inorganic phosphorus, organic phosphorus and neutral phosphatase activity, respectively. Mz, TC, TN and TS indicated mean grain size, total carbon, total nitrogen and total sulfur, respectively.
- Fig 3. Box plots of MBP, P fraction (TP, IP and OP) and environmental variables (Mz, pH, TN, TC, TS, Cu and Zn) in five sediment profiles. The plots show means with the 75th percentile within the box and the 90th percentile within the error bars. The mean concentrations with different superscript letter (a, b or c) indicate significant differences at *P*<0.05 between the sites. Note: MBP, TP, IP, OP and NPA indicated matrix-bound phosphine,total phosphorus, inorganic phosphorus and neutral phosphatase activity, respectively. Mz, TC, TN and TS indicated mean grain size, total carbon, total nitrogen and total sulfur, respectively.</p>
- **Fig 4.** Relationships between the concentrations of TP, TN, TC, Cu, Zn in the sediment profiles. Note: r and p represent Spearman's rank correlation coefficient and the significant level between the environmental parameters, respectively. Note: TP and TN indicated total phosphorus and total nitrogen, respectively.
- Fig 5. Relationships between MBP concentrations and P fractions, TN and heavy metals Cu and Zn in the profiles of all samples. All these points can be categorized into two groups by the dotted line: Group I with lower levels of these variables indicated the regressing equations; Group II with higher levels of these variables indicated no statistically significant correlation between them.

Note: r and P represent Spearman's rank correlation coefficient and the significant level between MBP and other parameters, respectively. Vertical bars represent the standard error based on three replicates. MBP, TP, IP, OP and TN indicated matrix-bound phosphine,total phosphorus, inorganic phosphorus, organic phosphorus and total nitrogen, respectively.

Fig 6. Relationships between MBP concentrations and NPA and pH with linear variations in the profiles of all samples. Note: r and p represent Spearman's rank correlation coefficient and the significant level between MBP and NPA, pH, respectively. Note: MBP and NPA indicated matrix-bound phosphine and neutral phosphatase activity, respectively.

Fig. 1.

Fig. 3.

Fig. 4.

Fig. 6.

	Ľ
	0
	0
	ň
	4
	σ
	0
	ž
	3
	Ö
	7
	X
	X
	Q
	1
	ຸ
	7
	Z
	0
	0
_	
(X
	Ŋ
	U
	ເກ
	Ś
	Ó
	ŏ
	2
	Y
	5
. 1	
	D
	C
	Ć
	5
	0
	'n
_	2
	Ξ
	7
	Ę
	Ξ
	0
	lron
	VIron
	IVITON
	INVITON

29

Sediment profiles	Depth	MBP	ТР	IP	OP	NPA		M ()		TNI (0/)	TC (0/)	Cu	Zn
Sediment profiles	(cm)	$(ng kg^{-1})$	$(g kg^{-1})$	$(g kg^{-1})$	$(g kg^{-1})$	$(mg kg^{-1} h^{-1})$	ph wiz (μm)	IC (%)	IN (%)	15 (%)	$(mg kg^{-1})$	$(mg kg^{-1})$	
CH1	0~20	21.52a	1.62a	1.08a	0.54a	1.11a	6.4a	14.5a	1.41a	0.22a	0.12a	38.92a	378.61a
		(8.88)	(0.20)	(0.15)	(0.06)	(0.18)	(0.2)	(7.8)	(0.10)	(0.02)	(0.01)	(2.36	(35.66)
	20~40	14.86b	1.30ab	1.05a	0.34a	1.30a	6.3a	12.0a	1.14b	0.19b	0.10b	39.40a	387.72a
		(6.00)	(0.24)	(0.09)	(0.22)	(0.18)	(0.1)	(1.0)	(0.12)	(0.02)	(0.00)	(4.00)	(68.43)
	40~60	17.82a	1.20ab	1.01a	0.28a	1.08a	6.6a b	11.6a	1.10b	0.19b	0.08b	36.50a	338.65a
		(6.00)	(0.40)	(0.16)	(0.25)	(0.26)	(0.4)	(0.9)	(0.16)	(0.02)	(0.01)	(4.32)	(52.33)
	60~70	19.97a	0.89b	0.79a	0.16a	1.18a	6.8b	14.6a	0.76b	0.13b	0.06b	29.09a	247.78a
		(4.95)	(0.54)	(0.27)	(0.00)	(0.04)	(0.3)	(4.3)	(0.52)	(0.06)	(0.01)	(11.82)	(177.14)
	0~70	18.38	1.29	1.00	0.30	1.16	6.5	13.0	1.14	0.19	0.09	36.74	348.23
		(7.10)	(0.40)	(0.18)	(0.20)	(0.20)	(0.3)	(4.4)	(0.30)	(0.04)	(0.02)	(6.30)	(90.97)
CH2	0~20	14.29a	0.94a	0.83a	0.11a	0.64a	6.6a	11.1a	0.95a	0.16a	0.08a	31.90a	204.34a
		(3.23)	(0.27)	(0.19)	(0.12)	(0.00)	(0.3)	(2.6)	(0.53)	(0.08)	(0.02)	(7.18)	(114.38)
	20~40	16.00a	0.68ab	0.67ab	0.06a	1.26a	7.0b	12.1a	0.42a	0.08a	0.05b	21.71b	69.75ab
		(2.84)	(0.18)	(0.03)	(0.02)	(0.53)	(0.1)	(1.6)	(0.07)	(0.01)	(0.00)	(1.34)	(6.92)
	40~60	14.30a	0.47b	0.46b	0.09a	1.13a	7.0b	12.2a	0.50a	0.08a	0.05b	17.21c	60.68b
		(4.76)	(0.11)	(0.26)	(0.08)	(0.36)	(0.1)	(1.6)	(0.05)	(0.01)	(0.00)	(2.99)	(12.87)
	0~60	14.78	0.64	0.67	0.10	1.13	6.9	11.8	0.63	0.11	0.06	23.74	114.58
		(3.75)	(0.30)	(0.23)	(0.15)	(0.43)	(0.3)	(1.9)	(0.38)	(0.06)	(0.02)	(7.89)	(94.45)
CH3	0~20	21.79a	0.76a	0.56a	0.20a	1.23a	6.8a	12.2a	0.66a	0.12a	0.06a	24.57a	118.69a
		(3.06)	(0.22)	(0.08)	(0.19)	(0.34)	(0.6)	(2.2)	(0.37)	(0.06)	(0.01)	(5.44)	(67.58)

Page	30	of	32
			Ō

	11
	~
	()
	σ
	()
	<u> </u>
	0
	0
	-
	U.
	U
	Ľ.
	U.
	Ŕ
	U
	—
	X
	U)
	S C C
	68
	SOS
	Ses
	SSGS
	SSSGS
	esses
	Cesses
	Cesses
	OCesses
	OCesses
	rocesses
	rocesses
	Processes
1	Processes
1	: Processes
1	9: Processes
ſ	e: Processes
ſ	ce: Processes
ſ	ICE: Processes
ĺ	nce: Processes
ĺ	ince: Processes
ĺ	ence: Processes
(ience: Processes
1	sience: Processes
1	cience: Processes
	Science: Processes
	Science: Processes
	Science: Processes
	 Science: Processes
	al Science: Processes
	al Science: Processes
	tal Science: Processes
	ntal Science: Processes
	ntal Science: Processes
	ental Science: Processes
	ental Science: Processes
	nental Science: Processes
	mental Science: Processes
	mental Science: Processes
	Imental Science: Processes
	Inmental Science: Processes
	onmental Science: Processes
	onmental Science: Processes
	ronmental Science: Processes
	ironmental Science: Processes
	/ironmental Science: Processes
	Vironmental Science: Processes
	nvironmental Science: Processes
	INVITONMENTAL SCIENCE: Processes
	Environmental Science: Processes

	20~40	18.94ab	0.57a	0.52a	0.04a	1.62a	7.0a	12.1a	0.37a	0.07a	0.04a	24.41a	69.57a
		(3.14)	(0.02)	(0.06)	(0.08)	(0.52)	(0.0)	(0.8)	(0.01)	(0.00)	(0.00)	(2.88)	(1.75)
	40~60	17.16b	0.53a	0.48a	0.05a	1.81a	7.0a	12.0a	0.43a	0.08a	0.04a	18.76a	68.78a
		(3.61)	(0.11)	(0.09)	(0.03)	(1.26)	(0.1)	(0.8)	(0.06)	(0.01)	(0.00)	(2.69)	(13.59)
	0~60	19.33	0.62	0.52	0.10	1.54	6.9	12.1	0.50	0.09	0.05	21.60	87.51
		(3.88)	(0.17)	(0.08)	(0.14)	(0.80)	(0.3)	(1.4)	(0.24)	(0.04)	(0.01)	(4.41)	(45.14)
CH4	0~20	31.26a	0.61a	0.53a	0.08a	1.80a	6.6a	18.8a	0.48a	0.09a	0.05a	23.20a	77.92a
		(11.39)	(0.09)	(0.06)	(0.08)	(1.46)	(0.6)	(8.6)	(0.15)	(0.03)	(0.01)	(4.02)	(22.39)
	20~30	14.44a	0.48b	0.40a	0.05a	0.78a	7.0a	34.9a	0.32a	0.06a	0.04a	12.52b	40.67b
		(2.95)	(0.05)	(0.04)	(0.00)	(0.45)	(0.2)	(15.4)	(0.04)	(0.01)	(0.00)	(0.33)	(2.69)
	0~30	25.65	0.54	0.48	0.05	1.46	6.7	24.2	0.42	0.08	0.04	19.64	65.50
		(12.38)	(0.14)	(0.08)	(0.08)	(1.26)	(0.5)	(12.7)	(0.14)	(0.03)	(0.01)	(6.34)	(25.92)
CH5	0~20	22.54	0.61	0.46	0.15	1.60	6.9	12.2	0.44	0.09	0.05	23.28	74.91
		(6.66)	(0.10)	(0.05)	(0.08)	(1.09)	(0.2)	(0.9)	(0.08)	(0.02)	(0.00)	(2.99)	(12.18)

Note: The data in the parentheses indicate standard deviation of the mean. The mean concentrations with different superscript letter (a, b or c) indicate significant difference at P<0.05. MBP: matrix-bound phosphine, TP: total phosphorus, IP: inorganic phosphorus, OP: organic phosphorus, NPA: neutral phosphatase activity, Mz: mean grain size, TC: total carbon, TN: total nitrogen, TS: total sulfur.

10010 21 0011		, ee n meer, i					e annienie presi		enaena, enn			
Variables	MBP	TP	IP	OP	NPA	Mz	pН	TC	TN	TS	Cu	Zn
MBP	1	0.04	-0.12	0.05	0.34**	-0.04	-0.20*	-0.05	-0.02	-0.04	0.01	-0.06
ТР		1	0.85**	0.85**	-0.07	-0.22	-0.67**	0.90**	0.89**	0.89**	0.87**	0.89**
IP			1	0.58**	-0.09	-0.25	-0.60**	0.82**	0.82**	0.85**	0.89**	0.90**
OP				1	-0.09	-0.23	-0.57**	0.77**	0.76**	0.71**	0.68**	0.74**
NPA					1	-0.19	-0.30*	-0.07	-0.04	-0.16	-0.02	-0.11
Mz						1	0.26*	-0.24	-0.24	-0.20	-0.35**	-0.24
pН							1	-0.71**	-0.73**	-0.64**	-0.66**	-0.67**
TC								1	0.99**	0.91**	0.90**	0.92**
TN									1	0.91**	0.91**	0.92**
TS										1	0.88**	0.91**
Cu											1	0.95**
Zn												1

Table 2. Correlations between MBP, P fractions, NPA and environmental factors in the sediment profiles of Lake Chaohu, China.

Note: * and ** indicate significant correlation at the 0.05 and 0.01 level, respectively. The data of the five profiles were analyzed to obtain their correlation coefficient. MBP: matrix-bound phosphine, TP: total phosphorus, IP: inorganic phosphorus, OP: organic phosphorus, NPA: neutral phosphatase activity, Mz: mean grain size, TC: total carbon, TN: total nitrogen, TS: total sulfur.

Table 3. An overview of MBP	concentrations i	n aquatic	sediments.
-----------------------------	------------------	-----------	------------

Sample type	Location	MBP concentration range	References
Freshwater sediments			
Freshwater lake sediments	Chaohu, China	1.58–50.34 ng kg ⁻¹	This study
Freshwater lake sediments	Taihu Lake, China	5.39–919 ng kg ⁻¹	Geng et al. (2005)
Freshwater lake sediments	Taihu, China	5.4–919.2 ng kg ⁻¹	Niu et al. (2004)
Freshwater river subsurface sediments	Elbe river, Hamburg harbor, German	0.2–56.6 ng kg ⁻¹	Gassmann and Schorn (1993)
Freshwater river sediments	Elster river, Germany	4–1140 ng kg ⁻¹	Glindemann et al. (2005)
Wetland soils	Beijing paddy field sediments	1.7–12.6 ng kg ⁻¹	Liu et al. (1999)
Wetland soils	paddy fields in Jiangsu Province, China	20.8–502 ng kg ⁻¹	Han et al. (2011)
Freshwater river subsurface sediments	Wulongtan in Nanjing, China	335 ± 85 ng kg ⁻¹	Han et al. (2003)
Ornithogenic lake sediments	Y ₂ lake in Ardley Island, western Antarctica	0.29–3.04 ng kg ⁻¹	Zhu et al. (2006)
Ornithogenic lake sediments	Mochou lake on Millor Peninsula, eastern Antarctica	$8.66 \pm 1.38 \ \mu g \ kg^{-1}$	Zhu et al. (2011)
Ornithogenic lake sediments	Lake Solvatnet in the Bird Sanctuary, Arctic	$11.77\pm6.25~\mu g~kg^{-1}$	Zhu et al. (2011)
Lake sediments	Lake Illawarra, New South Wales, Australia	142–1813 ng kg ⁻¹ ,	Song et al. (2011)
Marine sediments			
Estuarine intertidal sediments	Yangtze Estuary, China	0.51–3.25 ng kg ⁻¹	Hou et al. (2009)
Surface sediments	Yellow sea	0.19–38.24 ng kg ⁻¹	Li et al. (2010)
Surface sediments	The coast of China	0.89–25.86 ng kg ⁻¹	Feng et al. (2008)
Surface sediments	Changjing River Estuary	1.93–94.86 ng kg ⁻¹	Feng et al. (2008)
Marine sediments in coastal areas	Jiaozhou Bay, China	124–685 ng kg ⁻¹	Yu and Song (2003)
Marine sediments in coastal areas	Southwest Yellow Sea	0.69–179 ng kg ⁻¹	Hong et al. (2010)