
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

Energy &
Environmental
 Science

www.rsc.org/ees

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Energy & Environmental Science  RSCPublishing 

ARTICLE	  

This	  journal	  is	  ©	  The	  Royal	  Society	  of	  Chemistry	  2013	   J.	  Name.,	  2013,	  00,	  1-‐3	  |	  1 	  

Cite this:  DOI: 
10.1039/x0xx00000x 

Received 00th January 2012, 
Accepted 00th January 2012 

DOI: 10.1039/x0xx00000x 

www.rsc.org/ 

The Materials Genome in Action:  Identifying the 
Performance Limits for Methane Storage 

Cory M. Simon,a Jihan Kim,b Diego A. Gomez-Gualdron,c Jeffrey S. Camp,d 
Yongchul G. Chung,c Richard L. Martin,e Rocio Mercado,f Michael W. Deem,g 
Dan Gunter, e Maciej Haranczyk, e David S. Sholl,d Randall Q. Snurr c* and Berend 
Smit,a,f,h*,  

Analogous to the way the Human Genome Project advanced an array of biological sciences by 
mapping the human genome, the Materials Genome Initiative aims to enhance our 
understanding of the fundamentals of material science by providing the information we need to 
accelerate the development of new materials. This approach is particularly applicable to 
recently developed classes of nanoporous materials, such as metal-organic frameworks 
(MOFs), which are synthesized from a limited set of molecular building blocks that can be 
combined to generate a very large number of different structures. In this Perspective, we 
illustrate how a materials genome approach can be used to search for high-performing 
adsorbent materials to store natural gas in a vehicular fuel tank. Drawing upon recent reports of 
large databases of existing and predicted nanoporous materials generated in silico, we have 
collected and compared on a consistent basis the methane uptake in over 650,000 materials 
based on the results of molecular simulation. The data that we have collected provide candidate 
structures for synthesis, reveal relationships between structural characteristics and 
performance, and suggest that it may be difficult to reach the current Advanced Research 
Project Agency-Energy (ARPA-E) target for natural gas storage. 
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Broader	  Context	  
	  
Natural	  gas,	  mostly	  methane,	  is	  an	  attractive	  
replacement	  of	  petroleum	  fuels	  for	  automotive	  
vehicles	  because	  of	  its	  economic	  and	  
environmental	  advantages.	  However,	  it	  suffers	  
from	  a	  low	  volumetric	  energy	  density,	  
necessitating	  densification	  to	  yield	  reasonable	  
driving	  ranges	  from	  a	  full	  fuel	  tank.	  Densification	  
strategies	  in	  the	  market	  today,	  liquefied	  natural	  
gas	  (LNG)	  and	  compressed	  natural	  gas	  (CNG),	  
require	  expensive,	  cumbersome	  vehicular	  fuel	  
tanks	  and	  refill	  station	  infrastructure.	  If	  we	  are	  able	  
to	  develop	  nanoporous	  material	  adsorbent	  to	  store	  
natural	  gas	  at	  ambient	  temperature	  and	  a	  
moderate	  pressure,	  one	  could	  envision	  simple	  fuel	  
tank	  that	  can	  be	  refilled	  at	  home.	  Modern,	  
advanced	  nanoporous	  materials	  are	  highly	  tunable;	  
inundating	  researchers	  with	  practically	  infinite	  
possibilities	  of	  materials	  to	  synthesize	  and	  test	  for	  
methane	  storage.	  The	  current	  research	  is	  focused	  
on	  finding	  among	  these	  millions	  of	  possible	  
materials	  one	  that	  can	  replace	  CNG	  or	  LNG.	  In	  this	  
Perspective,	  we	  adopt	  a	  computational	  approach	  
to	  screen	  databases	  of	  over	  650,000	  nanoporous	  
material	  structures.	  Using	  this	  Nanoporous	  
Materials	  Genome	  approach,	  we	  reveal	  
relationships	  between	  structural	  characteristics	  
and	  performance,	  and	  suggest	  that	  it	  may	  be	  
difficult,	  if	  not	  impossible,	  to	  reach	  the	  current	  
Advanced	  Research	  Project	  Agency-‐Energy	  (ARPA-‐
E)	  target	  for	  natural	  gas	  storage	  using	  nanoporous	  
materials.	  
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Introduction	  

Natural gas, which is mostly methane, is an attractive 
alternative to petroleum as a transportation fuel because of the 
increasing supply1 and possibly lower emissions of greenhouse 
gases and other pollutants.2-4 The main technological obstacle 
for the replacement of gasoline with natural gas is the 
comparatively low volumetric energy density of natural gas. 
On a mass basis, the heat of combustion of methane is slightly 
higher than that of gasoline. However, at ambient conditions, 
the density of methane is so low that one needs a densification 
strategy to get an acceptable driving range from a reasonably 
sized vehicular fuel tank. The current technologies for 
increasing the density of natural gas – liquefaction or 
compression – require special infrastructure and incur high 
energy costs.5 Liquefied natural gas (LNG) involves an energy-
intensive process of cooling methane to a liquid at ca. 111 K, 
and the cryogenic fuel tanks required to store LNG onboard are 
bulky and expensive. Compressed natural gas (CNG) involves 
compression to 200-300 bar at ambient temperature, requiring 
costly, multi-stage compressors at refilling stations. To 
withstand such high pressures, CNG fuel tanks are thick-walled 
and heavy. Furthermore, the tanks must be cylindrical or 
spherical to evenly distribute stress. This makes for 
cumbersome, non-conformable tanks that take up cargo space 
in the vehicle.5  
 
An alternative way to increase the density of natural gas is to 
pack the fuel tank with a porous material.6 The goal is to adsorb 
methane within the pores to achieve a density competitive with 
CNG but at a lower storage pressure by exploiting the van der 
Waals attractions between methane and the pore walls. This 
lower storage pressure would alleviate the infrastructure 
barriers of LNG or CNG and allow for lighter, thinner-walled, 
conformable fuel tanks. The Advanced Research Projects 
Agency-Energy (ARPA-E) of the US Department of Energy set 
a target that one volume of adsorbent material should deliver 
315 volumes of methane at STP (standard temperature and 
pressure) to the engine using a storage pressure of 65 bar at 
ambient temperature. The target was set to be 25% more than 
the energy density of CNG to anticipate the reduction of the 
single-crystal deliverable capacity during packing and 
pelletization.7, 8 These targets have generated a significant 
experimental effort to synthesize and test different nanoporous 
materials.9-11 At present, the most promising materials have a 
deliverable capacity well below the ARPA-E target.7, 9, 12 An 
important practical question is whether any sorbent material 
can be designed to deliver 315 v STP/v of methane at these 
conditions, especially given that the ARPA-E target is based 
solely on economic considerations for competitiveness with 
CNG. 
 
One of the exciting aspects of advanced nanoporous materials 
is the analogy with the Human Genome where a small number 
of building blocks (e.g., amino acids) can be combined to yield 
the nearly infinite variety of biology.  Similarly, by combining 
different molecular building blocks, researchers have recently 
obtained unprecedented chemical and geometrical tunability of 
nanoporous materials, enabling optimization and tailoring for 
specific applications. For example, for materials such as metal-
organic frameworks (MOFs)7-9 or porous polymer networks 
(PPNs),10 millions of different materials can, in principle, be 
synthesized by combining different molecular building blocks 
in varying topologies (see Fig 1). In practice, however, due to 
limits on time and resources, only a small set of the possible 
materials will ever be synthesized and tested as natural gas 
adsorbents.  Similar challenges exist in the development of Li-
ion batteries,13 solar water-splitters,14 piezoelectrics,15  
scintillators,16 photovoltaics,17 and thermoelectrics.18 In 
recognition of this problem, the Materials Genome Initiative is 
a 100 million dollar effort from the White House that aims to 

“discover, develop, and deploy new materials twice as fast” as 
current methods.19, 20 Part of this initiative is to develop 
computational tools to explore the vast space of materials and 
identify those that are optimal for a given application.19, 21 In 
this Perspective, we analyze recent reports from the literature 
and demonstrate how this approach can address a very practical 
question: can we find a material that meets the ARPA-E target 
for methane storage?  

Metric	  for	  methane	  storage	  

There are many important requirements for a material to be a 
successful candidate for a gas tank adsorbent. At present, it is 
impossible to take all these factors into account in a screening 
study. For example, it can be difficult to estimate the costs to 
synthesize a given material. Screening strategies have therefore 
focused on the metric that primarily determines the driving 
range from a given tank volume,9 the deliverable capacity. The 
deliverable capacity is defined as the methane stored per 
volume of material in a fully loaded tank at the storage 
pressure, 65 bar, minus the methane that remains at the 
depletion pressure. The depletion pressure set by ARPA-E, 5.8 
bar, was chosen because a sufficient pressure differential must 
be present to drive flow from the adsorbent to the engine. The 
deliverable capacity metric takes into account that a material 
must not only store a large amount of methane at the fuel 
station; it must also release the methane from the pores when 
the valve from the tank is open to fuel the engine. 

The	  Nanoporous	  Materials	  Genome	  

Over 3,000,000 different materials have been generated in 
silico by various research groups within the past few years. 
This set of materials includes libraries of in silico-generated 
zeolites22, 23, MOFs24, 25, zeolitic imidazolate frameworks 
(ZIFs)26, and PPNs,27 as well as a library of ~5,000 MOFs that 
have been synthesized.28  

Materials 

Table 1 summarizes the building blocks and structure of the 
different classes of porous materials examined in this 
Perspective. Table 2 illustrates the different strategies used to 
combine the buildings blocks to build the structures. 
 
In the Materials Genome approach, we aim to generate models 
for a large number of structures that are representative for a 
class of materials. This is, of course, very different from 
enumerating all possible structures, which would be an 
impossible aim given the infinite possible combinations of 
inorganic and organic building blocks. An intuitive strategy for 
designing new materials is to take inspiration from known 
experimental materials. In Table 2 we illustrate different 
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strategies, which apply this concept to generate databases of 
predicted materials. In the first work of this kind, Wilmer et 
al.24 compiled a set of inorganic secondary building units 
(SBUs) and bridging organic linkers known from experimental 
MOF structures and combined these building blocks to generate 
over 130,000 new MOF structures. In such a scheme, the size 
of the resulting database can be arbitrarily expanded by the 
addition of linkers (or metal SBUs), but not all of these might 
be synthesizable. In a complementary strategy, Martin et al.25 
used a database of commercially available molecules as a 
starting point and identified those with the appropriate linker 
characteristics; this strategy resulted in over 100 analogues of 
the well-studied MOF-5 system, and more recently, 
approximately 18,000 new PPN materials.27 A similar strategy 
was employed to identify alternative imidazole-like substituents 
for ZIF materials.26 Gomez-Gualdron et al.29 used a small 
library of building blocks compatible with experimentally 
observed nets based on the metal SBU of the UiO-66 
system,30 –which is renowned for its stability- resulting in over 
200 MOF structures. These are examples of “building block 
selection” strategies for advanced porous materials; we duly 
note that this terminology does not readily apply to other 
materials such as zeolites. 
 
The next step in computational materials design is developing 
an algorithm to combine the organic and/or metallic SBUs to 
form a particular structure. Here we also see different 
approaches. Wilmer et al.24 defined rules specifying how 
building blocks may coordinate to one another (much like the 
limited ways in which Lego bricks may connect) and used a 
recursive algorithm to exhaustively generate MOF structure 
models. Martin et al.31 enumerated highly symmetric crystal 
topologies consistent with particular SBU combinations and 
constructed models by positioning the building blocks 
according to the underlying net. These schemes are not limited 
to MOFs, and can also be used to generate PPNs, ZIFs and 
related materials such as covalent organic frameworks (COFs).  
 
An alternative approach was employed for enumeration of 
novel zeolite structures, which differ in their pore topologies. 
Deem et al.22, 23 sampled alternative zeolite topologies by 
positioning silicon atoms within a unit cell through a Monte 
Carlo procedure, exploring a wide range of unit cell dimensions 
and crystal densities for all 230-space groups. Symmetry 
operations acting on crystallographically unique atoms then 
generate the full unit cell structure, resulting in 2.6 million 
topologically distinct zeolite-like structures. The structures 
were then optimized using a classical force field. Out of the 2.7 
million structures, 331,172 were identified to be 
thermodynamically accessible, i.e., exhibiting energies no more 
than 30 kJ mol−1-Si above α-quartz. Finally, since ZIFs are a 
class of MOFs processing the same pore topologies as zeolites, 
Lin et al.26 used the zeolite database to generate a 
corresponding ZIF database through chemical substitution. 
 
Most experimentally synthesized MOF structures are deposited 
in the Cambridge Structural Database.32 However, many of 
these structures contain solvent molecules and other impurities, 
which makes it very difficult to directly compare these 
structures with those generated computationally. To make such 
a comparison possible, Chung et al.28 developed computational 
methods to automatically remove these impurities from the 
~5,000 deposited structures; the resulting dataset is known as 
the computation-ready, experimental (CoRE) MOF database.28 
All of these structures are accessible through the Nanopous 
Material Website.33  

Properties 

To characterize and compare the libraries of different classes of 
materials, we show in Fig 2 the distributions of their geometric 
properties. These properties were calculated with the open-
source software suite Zeo++,34 which  uses a Voronoi 
decomposition to translate structural information (positions and 
hard-sphere radii of atoms, size and shape of the periodic unit 
cell) into a periodic graph representation of the material's 
porosity. This graph is then analyzed to obtain the accessible 
surface area and the largest included free sphere. The largest 
free sphere is defined as the largest hard-sphere that fits in the 
pore network of the material without overlap with any 
framework atoms, also modeled as hard-spheres. 
 
Fig. 2 illustrates the large range of geometric properties 
spanned by these materials. Fig. 2a shows that zeolites typically 
have the highest crystal densities while PPNs have the lowest; 
MOFs have a very broad density distribution. Fig. 2b shows 
that the crystal density correlates inversely with the geometric 
void fraction, as the most porous materials are generally the 
least dense. The distribution of pore sizes (Fig. 2c), measured 
by the largest included hard-sphere that can fit inside the 
material without overlapping any atoms of the material, mimics 
the distribution of void fractions as expected from intuition. 
Fig. 2d shows that PPNs and MOFs tend to achieve the highest 
surface areas. Characterizing materials by their geometric 
properties is important because we can link these simple 
descriptors to the deliverable capacity and elucidate guidelines 
for material design and selection. Furthermore, these 
descriptors serve as a multi-dimensional fingerprint that 
characterizes each material in a high-dimensional space, 
opening up the possibility for data mining and machine 
learning techniques to rapidly search this space and predict 
material performance from simple, easily-computed structural 
descriptors.35, 36  
 

Screening	  the	  Materials	  Genome	  

Monte Carlo Simulations 

Grand-canonical Monte Carlo simulations have been used in 
the literature to calculate the adsorption of methane in 650,000 
structures in libraries of zeolites,37 MOFs,24, 25, 29, 38 and PPNs.27 
Some of these studies have used slightly different force fields 
or pressures. To allow for a direct comparison of these studies, 
we recomputed the deliverable capacity for these materials. In 
these calculations, we used the following force fields: UFF39 
for PPNs, MOFs, and ZIFs and Dubbeldam et al.40, 41 for 
zeolites; TraPPE42 for methane. Lorentz-Berthelot mixing rules 
were used to obtain the solid-adsorbate Lennard-Jones 
parameters. We used periodic boundary conditions, and the 
Lennard-Jones potentials were truncated and shifted with a cut-
off radius of 12.8Å. We assumed the crystal structures to be 
rigid, which may induce some errors, as some materials are 
known to expand and contract with gas adsorption.43-45 These 
force fields generally provide good descriptions of most 
materials in our study (see ESI for a comparison for some 
structures with experimental data). Notable exceptions are 
MOFs containing open-metal sites.46, 47 
 
Methane isotherms at 298 K were calculated using a high-
performance, parallel algorithm developed for GPUs (graphics 
processing units), allowing us to compute such a large number 
of adsorption isotherms in a reasonable time.48 The Peng-
Robinson equation of state was used to relate the pressure of 
methane gas to its chemical potential. 

Screening 
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Our initial screening included 650,000 materials: 139,407 
predicted zeolite structures22, 23 with isotherms from Simon et 
al.37; 137,953 predicted metal-organic framework (hMOF) 
strcutures24 of which we made a random selection of  10,000 
structures; 17,970  predicted porous polymer network (PPN) 
structures;27 381,178 predicted zeolitic imidazolate frameworks 
(hZIF) structures,26 of which we simulated a random section of 
20,000 structures; and a subset of 5,109 Computation-Ready 
Experimental (CoRE) metal-organic framework structures.28  
 

We computed the deliverable capacity for the initial set of 
20,000 hZIFs and 10,000 hMOFs. These calculations showed 
that the materials with the highest deliverable capacity are 
described with a largest included sphere in the range 8.0-14.5Å 
and have void fractions in the range 0.25-0.7 (See Fig SI-1, in 
the SI). We then used these criteria on void fractions and 
largest included spheres to pre-screen the remaining hMOFs 
and hZIFs for top performers, and added 34,363 hMOF and 
37,437 hZIF structures to our final list for which we performed 
Grand Canonical Monte Carlo simulations.  
 

 

 
              

Figure	   2: Comparison	   of	   the	   geometric	   properties	   in	   the	   predicted	   materials	   datasets	   (zeolites,	   PPNs,	   ZIFs,	   and	   MOFs)	   and	   the	   set	   of	   experimental	   MOFs,	   as	  
computed	  from	  the	  crystal	  structures:	  (top	  left)	  crystal	  density,	  (top	  right)	  geometric	  void	  fraction,	  (bottom	  left)	   largest	   included	  sphere,	  (bottom	  right)	  accessible	  
surface	  area.	  In	  these	  histograms	  we	  include	  only	  those	  structures	  that	  are	  methane-‐accessible.	  A	  structure	  is	  declared	  methane-‐accessible	  (using	  a	  methane	  probe	  
of	  radius	  1.625Å)	  if	  the	  largest	  free	  sphere	  is	  greater	  than	  the	  size	  of	  our	  methane	  probe.	  We	  also	  do	  not	  include	  materials	  that	  have	  deliverable	  capacities	  of	  less	  
than	   1	   v	   STP/v.
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Results and discussion 

Large datasets such as this can be used to identify promising 
candidate materials for different applications, assess 
thermodynamic limits to performance, and elucidate 
relationships between geometric properties and performance, as 
illustrated below for natural gas storage. 
 

 
Figure	   3:	   Distribution	   of	   the	   deliverable	   capacity	   for	   different	   materials;	   the	  
vertical	  line	  marks	  the	  deliverable	  capacity	  of	  an	  empty	  tank	  (calculated	  from	  the	  
density	  of	  bulk	  methane	  at	  65	  bar	  minus	  that	  at	  5.8	  bar	  using	  the	  Peng-‐Robinson	  
equation	  of	  state)	  

Fig. 3 shows the distribution of the deliverable capacities of the 
different materials. Generally, PPNs and MOFs have 
significantly higher deliverable capacities than zeolites. While 
the best structures are a significant improvement over the 62 v 
STP/v deliverable capacity of a free-space tank, no material 
examined meets the ARPA-E deliverable capacity target. The 
highest predicted deliverable capacity in the set of 650,000 
materials is 196 v STP/v (see ESI, Fig. S5). The materials with 
the best experimentally measured deliverable capacities to date 
are MOF-5 (185 v STP/v),9 HKUST-1 (185 v STP/v),7 UTSA-
76 (194 v STP/v),49 and MOF-519 (208 v STP/v).12 Given 
possible errors in simulation force fields, experimental sample 
quality, and experimental adsorption measurements, it is 
striking that extensive experimental and computational work all 
converge on a maximum deliverable capacity of approximately 
200 v STP/v.  The very large number of structures examined 
computationally suggests that the top experimentally tested 
adsorbents are already at the boundary of the thermodynamic 
and material performance limits.  
 

	  

 
Figure	  4:	  Deliverable	  capacity	  for	  different	  materials:	  (top)	  Relationship	  between	  
deliverable	   capacity	   and	   crystal	   density.	   The	   symbols	   are	   some	   examples	   of	  
structures	   for	   which	   we	   computed	   the	   deliverable	   capacity	   from	   the	  
experimental	   isotherms	   (see	   ESI).	   In	   all	   figures,	   the	   materials	   are	   color-‐coded	  
according	   to	   class.	   (bottom)	   Relationship	   between	   deliverable	   capacity	   and	  
largest	   included	  sphere;	  horizontal	   line	   indicates	   the	  deliverable	  capacity	  of	  an	  
empty	   tank.	   In	   these	   scatter	   plots	  we	   include	   only	   a	   random	   sample	   of	   3,701	  
structures	   from	   each	   class	   to	   avoid	   cluttering	   the	   plots	   and	   to	   assign	   equal	  
importance	  to	  each	  class	  of	  materials.	  	  

Analysis of these large datasets in the Materials Genome 
approach can also provide fundamental insights that are 
difficult to draw from the limited experimental data.  For 
example, Fig. 4 shows that the materials with the largest 
deliverable capacities occur in a narrow range of crystal 
densities. Fig. 4 also shows the relationship between the 
deliverable capacity and the pore size. We included in Fig. 4 a 
selection of experimental structures from each material class 
that exhibit high deliverable capacities and for which 
experimental methane adsorption isotherms were available.  
The experimental data generally show the same trends as the 
simulated data, but the limited number of data points makes it 
difficult to spot the trends. Fig. 4 illustrates how larger pores 
increase the capacity to an extent; if the pores become too 
large, the methane molecules in the middle of the pores do not 
feel the van der Waals interactions with the walls, and the 
deliverable capacity approaches that of a free-space tank. The 
optimal pore diameter of ~11Å for methane storage is a useful 
guideline because the size of the molecular building blocks 
used in synthesis directly controls the pore size. 
 

Page 6 of 31Energy & Environmental Science

E
ne

rg
y

&
E

nv
ir

on
m

en
ta

lS
ci

en
ce

A
cc

ep
te

d
M

an
us

cr
ip

t



Journal	  Name	   ARTICLE	  

This	  journal	  is	  ©	  The	  Royal	  Society	  of	  Chemistry	  2012	   J.	  Name.,	  2012,	  00,	  1-‐3	  |	  7 	  

 
Figure	  5:	  Fractional	  deliverable	  capacity	  f	  plotted	  against	  the	  saturation	  loading	  
M	  for	  each	  material.	  Hyperbolas	   indicate	   lines	  of	  constant	  deliverable	  capacity.	  
The	  bottom	  and	  top	  hyperbolas	  give	  the	  deliverable	  capacity	  of	  a	  free	  space	  tank	  
and	   the	  APRA-‐E	   target,	   respectively;	   the	   region	  exceeding	   the	  ARPA-‐E	   target	   is	  
highlighted	  in	  yellow.	  

 Fundamental physical models are an important complement to 
the “big-data” approach of plots as presented in Fig. 4. An 
empirical formula for methane storage of MOF materials has 
been developed by Kong et al.50 and He et al.51 For example, 
Simon et al.37 developed a statistical thermodynamic model in 
which the deliverable capacity of a material is viewed as the 
product of the number of effective adsorption sites per volume, 
M, and the fractional deliverable capacity f. The fractional 
deliverable capacity is maximal if the energetics of the 
adsorption sites is optimal; if the adsorption of methane is too 
strong, too much methane remains in the tank at the discharge 
pressure, and, if the adsorption is too weak, too little methane 
will be in the tank at the storage pressure.37, 52 In Fig. 5, we plot 
the fractional deliverable capacity f of each material against the 
saturation loading, M (see ESI for details). A hyperbola 
f=σdel/M is a curve of constant deliverable capacity σdel. If the 
adsorbent in the fuel tank were filled at infinite pressure and 
depleted by pulling a vacuum to remove all residual methane, 
all sites would be fully utilized and the deliverable capacity 
would be equal to the saturation loading (M). However, the 
adsorption sites may not be fully occupied at 65 bar, and some 
methane will remain in the pores at 5.8 bar; therefore even for 
an optimal material, the deliverable capacity is only some 
fraction f of the saturation loading. For all material classes, we 
find similar behavior in Fig. 5. For low M (~350 v STP/v), 
there are many materials that have adsorption sites with the 
optimal methane affinity, endowing the material with a 
maximal fractional deliverable capacity. However, there is a 
tradeoff between the density of adsorption sites and the density 
of the material, such that in the case of high M, we reach an 
effective density of sites where none of the materials have sites 
that have optimal affinities for methane. We can only increase 
the number of adsorption sites if we decrease the number of 
framework atoms. Lowering the density of framework atoms 
causes the additional adsorption sites to have little or no 
interactions with the framework. Hence, the deliverable 
capacity of these materials approaches that of an empty tank.  
 
From these data, we can identify the ideal material for methane 
storage: the material with the largest density of adsorption sites 
under the constraint that the sites have optimal methane 
interactions. The distinguishing characteristic between different 
classes of materials is the number of atoms that are involved in 
creating an optimal adsorption site. Fig. 4 shows that PPNs and 
MOFs perform better than zeolites and ZIFs, as the former 
require fewer atoms to create optimal adsorption sites.  
 
An intriguing question is whether a material exists that meets 
the ARPA-E target. The experimental results to date and 
computational screening of over 650,000 structures suggest that 
there may be a physical limitation on the deliverable capacity, 

around 200 v STP/v, which is quite far from the ARPA-E target 
of 315 v STP/v.  Adopting a Materials Genome approach 
allowed this conclusion to be reached rather quickly.  Note that 
the computational studies that provided the data in Figs 2-5 
were all published in the past 2 years. Given this tentative 
conclusion, we can ask whether some other set of operating 
temperatures and pressures might, then, make adsorbed natural 
gas tanks more attractive.  With the computational 
infrastructure in place, we can readily recalculate the 
deliverable capacity for other conditions.  For example, in Figs. 
S8 and S9 (see ESI) we show how changing the loading and 
delivery pressures affect the deliverable capacity. Another 
interesting option is to re-engineer the tank to use residual heat 
from the engine to drive off the residual methane at the delivery 
pressure.38 Fig. 6 shows that by discharging at a higher 
temperature, one can significantly increase the deliverable 
capacity. We also see that the shape of the distribution changes. 
The reason being that a different set of materials is optimal for 
different storage conditions (Figs. S8-S9, see ESI). For 
example, a lower discharge pressure or higher discharge 
temperature favors materials that have stronger interactions 
with methane, while a higher storage pressure favors materials 
with a larger pore volume and weaker interactions. Still, none 
of these more favorable storage conditions allow materials to 
reach the ARPA-e target.   

 
Figure	   6:	   Amending	   the	   storage	   conditions	   and	   tank	   design	   changes	   the	  
deliverable	  capacity.	   	  The	  distribution	  of	  deliverable	  capacities	  between	  65	  and	  
5.8	   bar	   for	   ambient	   temperature	   operation	   (green),	   when	   the	   adsorbent	   is	  
heated	  to	  Tf=	  400	  K	  when	  nearing	  discharge	  (yellow),	  and	  when	  all	  residual	  gas	  is	  
driven	  off	  (red).	  In	  the	  last	  scenario,	  the	  deliverable	  capacity	  is	  equal	  to	  the	  high-‐
pressure	  loading.	  Vertical	  lines	  denote	  the	  deliverable	  capacity	  of	  an	  empty	  tank	  
and	  the	  ARPA-‐E	  target.	  

Conclusions 
Screening hundreds of thousands of different materials gives us 
new insights that cannot be obtained otherwise. First of all, the 
Materials Genome approach allows us to explore a much larger 
range of materials than researchers could ever synthesize and is 
therefore ideal to obtain insights into the limits of an entire 
class of materials and into structure/performance relationships. 
In the past, if we wanted to know how methane uptake 
correlates with, for example, crystal density, we might measure 
or simulate the properties of a dozen materials and look for a 
simple linear correlation. Now, with hundreds of thousands of 
structures, we obtain a much more complete insight into the full 
complexity of this question, as shown in Fig. 4. In addition, the 
huge amount of data generated in high-throughput screening 
opens opportunities for data mining as a tool to extract 
additional, possibly unexpected relationships between material 
characteristics and performance. For example, in Fig. 5, we can 
visualize the relation between pore size and deliverable 
capacity with a simple scatter plot. As we see drastically 

Exceeds  ARPA-e  
target

315  v  STP/v

62  v  STP/v

125  v  STP/v
188  v  STP/v
251  v  STP/v
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different deliverable capacities for a given pore size, it is clear 
that certain combinations of properties are required and thus 
including other descriptors will add predictive value. In such a 
high-dimensional space, machine-learning techniques are 
useful for extracting complicated relationships and making 
more accurate performance predictions from structural 
descriptors. 
 
Although hundreds of thousands of predicted nanoporous 
materials have been generated within the past few years, the 
chemical search space is so large that all possible structures 
cannot be enumerated. Fig. 2 shows that the experimental MOF 
structures have different crystal density and surface area 
distributions than structures in the predicted MOF database. 
These differences raise questions about how to ensure that the 
chemical space is adequately sampled. In addition, only a 
subspace of all possible materials can ever be synthesized.  An 
interesting application of material genomics would be to 
identify the feasibility of synthesizing a given material.  
 
From the screening studies summarized here, we conclude that 
the classes of materials currently being investigated are 
unlikely to meet the ARPA-E target for natural gas storage. 
This is not surprising as the ARPA-E target was not based on 
thermodynamic or material arguments but rather based on 
economic competition with CNG. High-throughput screening 
allowed an assessment about the feasibility of the target in a 
very short period of time, allowed alternative operating 
scenarios to be quickly evaluated, and provided useful 
structure/performance relationships.  This is an illustrative 
example of how a Materials Genome approach can drastically 
reduce experimental time and effort by eliminating 
unproductive tasks and focusing experimental efforts on the 
most interesting candidates. 
 
An important practical question is whether an energy density of 
ca. 200 v STP/v under the currently proposed storage 
conditions is sufficient to justify the adoption of vehicular 
adsorbed natural gas fuel tanks.  However, natural gas storage 
is not the only application of nanoporous materials. These 
materials are also of interest for other gas separations,53 
including CO2 capture,54 gas sweetening,55 separations of 
hydrocarbons,56 membranes,57 catalysis,58 sensors,59 and drug 
delivery60. For these applications, one can screen the databases 
discussed in this Perspective to reveal any performance limits, 
identify specific materials with exceptional properties, and 
elucidate relationships between material characteristics and 
performance use data mining techniques.  
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Table 1. Materials studied in this work. MOFs, PPNs, zeolites and ZIFs are described in terms of their constituent building blocks and resulting topologies. 
The “Building blocks” column illustrates both symbolic representations of the geometry of possible building blocks (above) and chemical examples thereof 
(below). Similarly, the “Topologies” column provides graph representations (nets) of possible topologies for each material class (above) and examples of 
chemical structures exhibiting these topologies (below). Solid vertical lines distinguish between classes of building block (e.g., metal-organic versus organic) 
or types of topology; note also that in some cases, many more possibilities exist beyond the few illustrated. 

Material class Building blocks Topologies 

MOFs       

 
     

PPNs    

  
   

Zeolites     

  
  

ZIFs     
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Table 2. The complementary strategies employed to navigate the vast chemical space of possible nanoporous materials, exemplified by the specific datasets 
discussed in this work. Each strategy comprises a “Building block selection” and “Model construction” component, as described. 

Name of 
material dataset Building block selection strategy Model construction strategy 

MOFs   
 

Informed selection of previously-utilized metal cations and organic linkers or design of 
similar, permitting additional functional groups 

Modes of coordination between building 
blocks are specified; recursive algorithm 
combines building blocks in permissible 

combinations and infers a unit cell 

MOF-5s   
 

Zn4O with commercially available dicarboxylic acids; pruning of linkers for linearity, 
rigidity etc. prior to construction 

Based on the underlying net of MOF-5 
(pcu), building blocks are positioned in 

space and symmetry operations complete 
the unit cell; structures subsequently relaxed 

with semi-empirical PM6-DH2 

PPNs 
 

 
 

Si/Ge/C/adamantane with commercially available dibromides; pruning of linkers for 
linearity, rigidity etc. prior to construction 

Based on the underlying net of PPN (dia), 
building blocks are positioned in space and 
symmetry operations complete the unit cell; 
structures subsequently relaxed with semi-

empirical PM6-DH2 

Zeolites 
 

 

Tetrahedrally-coordinated silicon atoms, bridged by oxygen atoms 

For each symmetry space group and a 
variety of unit cell parameters, Si atoms are 

positioned via a Monte Carlo process; 
symmetry operations complete the unit cell 
and bridging oxygens are placed; structures 
are subsequently relaxed with one of two 

interatomic potentials 

ZIFs 

 
 ←  

 

Tetrahedrally-coordinated zinc atoms, bridged by imidazolate linkers 

ZIFs 
(decorated)  

 

For each zeolite topology, the Si-O-Si motif 
is replaced by a Zn-Im-Zn motif (Im being 
an imidazolate-like group), the unit cell is 
scaled by 1.95x compared to the original 

zeolite Tetrahedrally-coordinated zinc atoms, bridged by commercially available, functionalized 
imidazolate linkers 
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Graphical abstract 

 

Best ZIF structure found in screening of 

databases containing over half a million 

nanoporous materials for vehicular 

methane storage. 
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S3 Top material for methane storage

The material with the highest predicted deliverable capacity in our study is a hypothetical
porous polymer network (PPN), Adamantane 4387 1-net 004 [3], exhibiting a 65 - 5.8 bar
deliverable capacity of 196 v STP/v. The structure is shown in Fig. S5. We plotted the
potential energy contours of a methane molecule in the pores at -12 kJ/mol (orange) and 0
kJ/mol (gray) to highlight the binding regions. This material exhibits a largest included
sphere of 11.75 Å; this is larger than a single methane molecule. The strong binding
regions in orange indicate that multiple methane molecules can be efficiently packed into
the pores. The computed surface area of this material is 1992 m2/cm3.

This PPN can in principle be synthesized from known synthesis routes [4] using an
adamantane core and 1,2-dibromoethylene linkers: Four of these linkers are appended to
each tetrahedral point of the adamantane cage. When two of these tetrahedral monomers
then react, we get the C4H4 linkage spanning the adamantane cages. This ‘two-monomer
synthesis route’ is discussed in detail in Ref. [3].

Figure S5. Adamantane 4387 1-net 004 exhibits a 65 - 5.8 bar methane deliverable
capacity of 196 v STP/v. Contours of the potential energy of a methane molecule in the
pores are shown at -12 kJ/mol (orange) and 0 kJ/mol (gray).
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5

S4 Estimating the saturation loading M

To estimate the saturation methane loading in each material, which we call the effective
density of adsorption sites, we fit the simulated methane adsorption isotherms from 1 –
160 bar fugacity to model 1 in Ref. [5], which builds upon a Langmuir model by including
adsorbate-adsorbate interactions. The model is a Langmuir model at first order, with a
correction term that is weighted by the strength of the adsorbate-adsorbate interactions
(θ) [5]

σ

M
=

KH

M
φP

1 + KH

M
φP

+ θ

(

KH

M
φP

1 + KH

M
φP

)2(
KH

M
φP

1 + KH

M
φP

− 1

)

. (S1)

The variable σ is the methane loading per volume of material; M is the saturation loading
or effective density of sites; KH is the Henry coefficient; P is the pressure; φ is the
fugacity coefficient such that φP is the fugacity of methane corresponding to pressure
P . The Henry coefficient in eqn S1 is independently obtained from the Widom insertion
method. We thus fit each methane adsorption isotherm to the model in eqn S1 using
the parameters M and θ with a nonlinear least squares data fitting routine implemented
with the optimize function in Scipy, an open-source computing package in Python. If
the highest-pressure point in the simulated isotherm (160 bar fugacity) was less than 60%
of the identified M , we extended the isotherms to a fugacity of 700 bar to obtain enough
curvature in the simulated isotherms for our fitting routine to reliably estimate M . For
plots involving M , we only include structures whose residual sum of squares (including
all 14 data points on the isotherm) is below 5% of M to help ensure the estimation of M
is reliable.

Page 19 of 31 Energy & Environmental Science

E
ne

rg
y

&
E

nv
ir

on
m

en
ta

lS
ci

en
ce

A
cc

ep
te

d
M

an
us

cr
ip

t



6

S5 Literature survey for experimental methane ad-

sorption isotherms

We searched the literature for high-performing structures in each material class for which
experimentally measured methane adsorption isotherms were available. Where noted, we
took the total adsorption; otherwise, we converted the excess adsorption into total using
the reported pore volume and the density of methane from the Peng-Robinson equation
of state. These data are depicted in Fig. 4 of the main text.

The model in eqn S1 was fitted to the experimental adsorption isotherms to interpolate
methane adsorption for the relevant pressures when the experimental measurement was
not taken at exactly 5.8 and 65 bar. The experimental data were taken from the following
references: MOF-519 and MOF-520 [6]; HKUST-1, Mg2(dobdc), Ni2(dobdc), MOF-5,
PCN-14 [1]; IRMOF-6 [7]; PCN-16, [8]; NU-125, UTSA-20 [9]; ZIF-8, ZIF-76, [10]; PPN-
4 [11]; PPN-1, PPN-2, PPN-3 [12]; DD3R [13]; and Silicate for crystal density [14].
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7

S6 Alternative Operating Conditions

Here, we outline our methods for calculating the deliverable capacity of our materials
under different conditions than set in the ARPA-E target. To avoid having to carry out
simulations at many different temperatures and pressures, we characterize each material
by the parameters M , KH , and θ obtained from fitting the simulated isotherms at 298 K
to the model in eqn S1. To extrapolate the loading at a higher temperature, we assume
that the temperature dependence of the Henry coefficient KH is given by the Van’t Hoff
equation and the temperature dependence of θ (see Ref. [5]):

KH ∼ e−
∆H

RT (S2)

θ ∼

1

T
. (S3)

We calculated the enthalpy of adsorption ∆H (= negative of the heat of adsorption)
during our simulations. We subsequently use these parameters to estimate the methane
adsorption at alternative conditions.

To test that the various predictions made with these fitted parameters gives a suffi-
ciently accurate description of the isotherms that would be obtained by simulations we
carried out several tests. In Fig. S6 we show that the fitted isotherms describe the sim-
ulated deliverable capacity sufficiently accurate. Fig. S7 shows that this approach gives
a sufficiently accurate description of the methane adsorption isotherms at these different
temperatures.

S6.1 Altering the operation conditions

In the calculations that follow, we include a random sample of 3,701 materials from each
class to assign each class an equal prior. We amalgamate all material classes together and
plot the distribution of deliverable capacities at the different storage conditions. For each
alternative operating condition, we also depict how one class of materials may perform
better over another class at different conditions by stacking the probability distributions
for each class. This allows us to visualize the contributions of each material class to the
probability distributions.

We now assess the impact of changing the operating pressures on the deliverable
capacity at 298 K. Methane is stored in the adsorbed natural gas tank at PH bar at the
refilling station, and a tank is considered depleted if it exhibits a pressure of PL bar. By
changing PH and PL, we compute the deliverable capacity under two scenarios that will
benefit the deliverable capacity: (i) Increasing the storage pressure PH but keeping the
ARPA-E target’s discharge pressure of PL = 5.8 bar (ii) Decreasing the discharge pressure
PL but keeping the ARPA-E target’s storage pressure of PH = 65 bar.
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