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Breathing O2 on the earth, vertebrates suffer from diseases originating from oxidative stress, which 

however can be relieved by various antioxidants. Similarly, proton exchange membrane fuel cells 

(PEMFCs) remain a major challenge of limited lifetime caused by chemical attacking of reactive oxygen 

species (ROS). Learning from vertebrates ourselves, we herein show that incorporation of a natural 

antioxidant acting as the free radical scavenger, α–tocopherol (α–TOH), the most abundant component of 10 

vitamin E, enables performance maintenance for PEMFCs that is impossible for fuel cells in the absence 

of α–TOH. It was notable that oxidized α–TOH can be in turn reduced by permeated H2 during fuel cell 

operation, resulting in the regeneration. Such reversibility builds in a chemical circulation system, which 

ensures not only effective recycling of α–TOH, but also permits efficient protection of PEMs that allows 

long-term operation. 15 

Introduction 

Inhaled into lungs, respired in cells, oxygen [1] is indispensable 

that supports all vertebrates, including human beings, for the 

daily metabolic activities. Paradoxically, reactive oxygen species 

(ROS), by-products of oxygen use, such as oxygen ions, free 20 

radicals and peroxides, oxidatively damage and deteriorate 

organisms, including lipids, proteins, DNA, etc., causing 

disorders, diseases, cancers and aging. [2–4] Similarly oxygen 

also plays a vitally essential role in a series of energy conversion 

systems. For example, PEMFCs “inhale” oxygen; “digest” 25 

hydrogen; generate energy in electrical and heating forms; and 

finally “excrete” water as the waste. [5] However, oxidative stress 

exists in PEMFCs likewise. [6, 7] Nafion, one representative of 

the commercialized perfluorosulfonic acid PEMs, has been 

demonstrated chemically attacked by ROS, such as hydroxyl and 30 

peroxyl radicals that stem from H2O2, leading to performance loss 

of fuel cells, and even catastrophic failure. [7–10] The chemical 

degradation of PEMs is one of the major problems that shorten 

the lifespans of PEMFCs. And finding out a proper method to 

level up the durability and reliability of PEMs has become a pre-35 

requisite and worthwhile goal that attracts worldwide research 

interest in the past decade. [11–24] 

 

Antioxidants, especially non-enzymatic antioxidants that protect 

cellular systems from over-oxidized, such as ascorbate, 40 

tocopherol, glutathione, carotenoids, and polyphenols, [3, 25–28] 

might be a proper recipe for the dilemma of unexpected corrosion 

of PEMs, as they are functioning “in vivo” of PEMFCs. Within 

this family, vitamin E is water-insoluble and thermally stable 

(≥503K), [29, 30] acting as a peroxyl radical scavenger, 45 

preventing chain breaking and lipid peroxidation. [25] In view of 

the varying temperature and humidity that PEMFCs need to 

sustain, vitamin E seems a great additive candidate for PEMs 

without weight and functional loss caused by dissolving into 

water or decomposing under heat. 50 

 

Vitamin E refers to a group of eight compounds that include both 

tocopherols and tocotrienols, [3] among which α–TOH is the 

most naturally abundant, fully methylated, and biologically 

active. The major antioxidating function of α–TOH in 55 

mammalian tissues majorly includes two principal steps. First, α–

TOH reacts with an oxidized lipid radical (LOO�) to yield a 

hydroperoxide molecule (LOOH) and the tocopheroxyl radical 

(α–TO�) (reaction 1). Second, the α–TO� radical further reduces 

another LOO� radical (reaction 2), so that one α–TOH molecule is 60 

able to inhibit two peroxide radicals. [25] Cyclic 

voltammogramic research of α–TOH has also demonstrated that 

in protic solvent there can be two one-electron (ECE) processes at 

the potential of around +0.6 and +1.4 V v.s. Fc/Fc+ respectively, 

[31–34] indicating the recyclability of α–TOH with appropriate 65 

electron donors. [35] Owing to this, it can be rationally estimated 

that α–TOH can be potentially applied in PEMs, e.g. Nafion, as 

the radical scavenger to minimize Nafion decay under severe 

electrochemical circumstance. 

LOO∙ + α − TOH → LOOH + α − TO∙  1) 70 

LOO∙ + α − TO· → 
α − TO�OOL  2) 

Results and discussion 

Even though α–TOH is a great peroxyl radical scavenger, no clue 
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leads to the conclusion that it can hinder all ROS from being 

generated and corroding PEMs, especially hydroxyl radicals. It 

has been literally demonstrated that the reactivity of α–TOH to 

hydroxyl radicals is much limited compared with that to peroxyl 

radicals. [3, 36] As a result, it is quite questionable that whether 5 

α–TOH can inhibit hydroxyl radicals attacking on Nafion 

macromolecules. For the purpose to identify the hindrance 

efficiency of α–TOH on hydroxyl radicals, chromogenic 

experiments were implemented with rhodamine B as the colorant 

in aqueous solution. Certain amount of H2SO4 was added to 10 

simulate the acidic environment of PEMs; and the oily α–TOH 

was dispersed in the solution as uniform emulsions (see Fig. S1). 

Aliquots of H2O2 were then added, and catalyzed with transition 

metal ions, e.g. Fe2+, converted to hydroxyl radicals (Fenton 

mechanism). And the decrease in UV-vis light absorbance was 15 

evaluated as a function of the amount of H2O2, owning to the 

linear relationship between the concentration and absorbance 

intensity of rhodamine B (see Fig. 1). It is notable that the 

decrease of colorant intensity was only recorded after the system 

achieved equilibrium, [37] as determined by monitoring the 20 

change in absorbance as function of time upon the addition of 

H2O2. For each H2O2 addition, the system achieved equilibrium 

in less than 2 min. The experiment was repeated without catalyst 

ions Fe2+, and it was shown that rhodamine B was only sensitive 

towards hydroxyl radicals, rather than H2O2. (Fig. S2)  25 

  

 
 

Fig. 1 Ex situ chromogenic experiments between rhodamine B and 30 

hydroxyl radicals, illustrating the α–TOH protection of Rhodamine B 

against Fenton agents. Absorbance response of Rhodamine B a) without 

α–TOH, and b) with 10 mg�L
-1

 α–TOH to aliquots of H2O2. c) Absorbance 

intensity of Rhodamine B (wavelength = 550 nm) as the function of the 

concentration of H2O2. Different amount of α–TOH was dispersed into 35 

the solution for comparison of antioxidant efficiency. d) Absorbance 

intensity of Rhodamine B with different amount of α–TOH was dispersed 

in the solution when 147 µM H2O2 was added. In (a-d), 5mM H2SO4 was 

added to simulate the acidic environment of PEMs. e) The influence of 

the concentration of H2SO4 on the absorbance intensity of Rhodamine B 40 

for the solution containing 22 mg�L-1 α–TOH and 147 µM H2O2. 

 

 

 

 45 

 

Fig. 2 Cross-sectional morphological characterization of PEMs. SEM 

images of cross-sectional views of a) recasted Nafion, c) Nafion/0.5% α–

TOH, e) Nafion/1% α–TOH, and g) Nafion/3% α–TOH composite 

membrane. Magnified TEM images in which holes were remained due to 50 

oily α–TOH was removed were also shown for b) recasted Nafion, d) 

Nafion/0.5% α–TOH, f) Nafion/1% α–TOH, and h) Nafion/3% α–TOH 

composite membrane, respectively. 

With aliquots of H2O2 continuously trickled into the solution, the 

fading response of rhodamine B was obviously inhibited after the 55 

addition of α–TOH (Fig. 1). As seen in Fig 1a and 1b, the 

absorbance intensity at the wavelength of 550 nm (peak) could be 

preserved at 82.0% with 10 mg�L-1 α–TOH, while it decreased to 

around 5.2% in absence of α–TOH with 147.0 µM H2O2 added in 

both solution, indicating the predominant reactivity of α–TOH 60 

with hydroxyl radicals compared with that of rhodamine B. 

However, it should be noted the nonlinear relationship between 

the added amount of α–TOH and the remnant absorbance 

intensity of rhodamine B with the same amount of H2O2 added. 
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As shown in Fig. 1d, with 147.0 µM H2O2, the highest 

absorbance signal appears at the concentration of 10 mg�L-1 α–

TOH, while either inadequate or excess, α–TOH could hardly 

hinder effectively oxidation of H2O2 on the colorant, leading to 

lower remained intensity. This may probably caused by better 5 

dispersion of α–TOH in more acidic solution, leading to higher 

interfacial areas, and thus higher reactivity. As a result, with fixed 

concentration of H2SO4, only proper amount of α–TOH could 

achieve the highest interfacial areas to expose to the radicals; 

while higher concentration of H2SO4 should lead to better 10 

reactivity of α–TOH with certain amount, which was 

demonstrated in Fig. 1e. H2SO4 was then replaced with Nafion, 

and similar phenomena were observed, as seen in Fig. S3. The 

chromogenic experiments clearly demonstrated that α–TOH 

could efficiently trap ROS, and may protect Nafion from being 15 

oxidized. 

 

α–TOH was then incorporated into Nafion to fabricate composite 

membranes for further investigations. Increasing percentage of α–

TOH, from 0, 0.5, 1, to 3 wt% versus Nafion, were added to 20 

Nafion/DMSO solution to cast pristine/composite PEMs with 

thicknesses at around 40 µm (Fig. 2a, c, e, and g). SEM and TEM 

images of corresponding PEMs were illustrated in Fig. 2. 

Compared with the pristine Nafion (Fig. 2a, b), nanoparticulate 

droplets with the size of around 200 nm were uniformly dispersed 25 

in composite PEMs with 0.5, and 1% α–TOH (Fig. 2c–f), 

demonstrating the formation of α–TOH/Nafion composite 

membranes. However, polydispersity (Fig. 2g) and size 

enlargement (Fig. 2h) can be observed when the percentage 

increased to 3%. On account of the proton non-conductivity 30 

property of α–TOH, oversized oily droplets might block the 

routes for proton transport, leading to lower conductibility. As a 

result, it was supposed that the morphological differences may 

lead to a performance downfall especially for PEMs with 3% α–

TOH. Furthermore, the successful fabrication of Nafion/α–TOH 35 

composite membranes could also be confirmed with the FT-IR 

spectra, which was shown in Fig. 4.  

 

Single cells that contained membrane electrode assemblies 

(MEAs) with different PEMs mentioned above were then 40 

constructed. It was noticed that though oily liquid, α–TOH could 

be stably in the membranes for as long as months. 24-hour open 

circuit voltage (OCV) holding tests were operated to investigate 

chemical degradation. The data in Fig. 3 proved the supposition 

that α–TOH additive had few effects on the fuel cell performance 45 

until 3% was added. Before OCV holding tests, the initial 

potential at 1000 mA�cm-2 for PEMs with 0, 0.5 and 1% α–TOH 

was 560, 530, 570 mV, respectively; while the potential dropped 

to 473 mV for that with 3% α–TOH. After OCV holding tests, it 

was occasionally noticed that with subsequent 8-hour discharging 50 

under high current density, i.e. ≥1000 mA�cm-2, performance was 

recovered for all PEMFCs containing α–TOH. For example, 

single cell with PEM containing 0.5% α–TOH partially recovered 

15 mV from 496 to 511 mV at 1000 mA�cm-2, other than the 

further reduction of 8 mV for that with pristine Nafion membrane 55 

(see Fig. 3a). This observation not only demonstrated the 

protection efficiency of α–TOH on PEMs, but steered the 

investigation to the further stage. 

 

60 

 

 
 65 

Fig. 3. Variation of fuel cell performance before and after OCV holding 

tests. Polarization curves and power output of PEM single fuel cells with 

a) recasted Nafion, b) Nafion/0.5% α–TOH, c) Nafion/1% α–TOH, and d) 

Nafion/3% α–TOH composite membrane. Comparison of performance 

between recasted Nafion and Nafion/0.5% α–TOH composite membrane 70 

after recovery procedure, i.e. 8-hour galvanostatic output at high current 

density, were shown in a) and b) respectively. Comparison of hydrogen 

crossover current density before and after OCV holding tests were 

illustrated with e) recasted Nafion, f) Nafion/0.5% α–TOH, g) Nafion/1% 

α–TOH, and h) Nafion/3% α–TOH composite membrane. i) Specifically, 75 

the variation of potential at current density of 1000 mA�cm
-2

 and 

hydrogen crossover current density at 0.3 V for PEMFCs with different 

concentrations of α–TOH before and after OCV holding tests was 

normalized from initial performance and was compared. 

As the performance recovery has been extensively investigated, 80 

the major cause is generally the removal of catalyst contaminants, 

such as CO, [38] SO2, [39] H2S, [40] etc., or temperature lifting. 

[41] And only a few reports mentioned the performance recovery 

as the result of electrolyte. [42 – 47] According the 

abovementioned chromogenic experiments, it was believed that 85 

with the protection of incorporated α-TOH, reactive oxygen 

species (ROS) should preferentially react with the antioxidant. 

The reaction of α-TOH with ROS has been extensively 
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investigated [48], The major reactions between α-TOH and 

oxygen radicals in PEMFCs can be shown as follows: 

HOO∙ + α − TOH → H�O� + α − TO
·  3) 

HOO∙ + α − TO· → 
α − TO�OOH  4) 

OH∙ + α − TOH → H�O + α − TO
·  5) 5 

OH∙ + α − TO· → 
α − TO�OH  6) 

In reaction 4 and 6, oxygen species of (α-TO)OOH and (α-

TO)OH forms as tocophenoxonium cations, i.e. α-TO+[31]. 

  

The products including α-TO� and α-TO+ are generally reversible. 10 

[3, 31] On account of the highly restricted hydrogen crossover 

rates after OCV holding tests for composite membranes (Fig. 3e – 

i), the oxidized α-TOH products should be reduced by more 

reductive species, such as permeated H2: 

2	α − TO∙ + H� → 2	α − TOH  7) 15 

α − TO� + H� → α − TOH + H�  8) 

The abovementioned reactions are the major redox and 

intermediate reactions that probably happen in the composite 

membrane during PEMFC operating.  

 20 

Fig. 4 FT-IR spectra of Nafion and Nafion/α–TOH composite membranes. 

The peaks at 879.4, and 840.8 cm
-1

 should be assigned with the 

stretching vibration of epoxy group of α–TOH molecules; the peak of 

1403.9 cm
-1

 should be associated with the bending vibration of phenolic 

hydroxyl group of α–TOH molecules; indicating the success fabrication of 25 

composite membrane of Nafion/α–TOH. The small peak appeared at 

1664.2 cm
-1

 for the composite membrane after OCV holding test should 

be due to the carbonyl stretching vibration, indicating the formation of 

reversible phenoxonium cations for oxidized species of α–TOH. 

However, two major difficulties hindered the investigations from 30 

more precisely figuring out the detailed mechanism inside the 

membrane, including a bunch of side reactions during PEMFC 

operation (see Table S1), and the absence of a sophisticated 

characterization method to detect the chemical change inside 

PEMs. Although series of characterization techniques has been 35 

developed for the real-time monitoring the PEMFC operation, 

such as ambient pressure XPS [49], in-situ ATR-FTIR [50], 

electron paramagnetic resonance (ERP) [51], etc., because of the 

barrier of thick gas-diffusion layers and catalyst layers, it is still 

too difficult to monitor the chemical reactions occurring at the 40 

inner part of PEMFCs, i.e. electrolyte layer. In our investigation, 

although some reaction product is very stable, such as α-TO+, 

others can only exist in a very short lifespan. As a result, there is 

neither in-situ method to identify the products and/or by-products, 

nor enough time to transfer the samples. 45 

 

 
 

Fig. 5. Influence of variation of α–TOH on the ionic clusters of PEMs. 

Highly magnified TEM of the Nafion/0.5% α–TOH composite membrane a) 50 

before OCV holding test; b) after OCV oxidation; and c) after subsequent 

H2 regeneration; with the stain of Na
+
 ions for clear observation of ionic 

clusters were shown. The dark spots in the Nafion region represent 

hydrophilic domains, i.e., ionic clusters. 

For the purpose of supporting the suggested mechanism, two 55 

approaches were come up with to demonstrate the product and 

recyclability of α-TOH. As seen in Fig. 4, compared with the 

composite membrane before oxidization of OCV holding, a new 

band is detected at 1664.2 cm-1 for oxidized Nafion/α-TOH 

composite membrane, which is assigned to a C=O stretch 60 

occurring at the wavenumber to band observed in the spectra of 

nonaromatic cyclic ketones [52], indicating the formation of α-

TO+ cations. Furthermore, with the transformation from neutral 

α-TOH to α-TO+ cations, there should be a change on the 

interactions between α-TOH fillers and the Nafion matrix. α-TO+ 65 

was supposed to be attractive to the sulfonic anions, –SO3
–. Fig. 5 

shows that after oxidization of OCV holding test, a dark circle 

was observed around the α-TOH nano-droplets, illustrating that 

Na+ stained ionic clusters in Nafion aggregates around oxidized 

α-TO+. However, such phenomenon cannot be observed in both 70 

composite membranes before OCV oxidization (Fig. 5a) and after 

2 hr holding in H2/N2 atmosphere (Fig. 5c), indicating the 

regeneration of neutral α-TOH with the reduction of H2. The 

TEM images were another supportive evidence for α-TO+ 

production and regeneration of α-TOH. Conclusively, it is a 75 

rational supposition that α-TOH is oxidized by hydroxyl and 

peroxyl radicals to form α-TO+. And the oxidized α-TO+ can then 

be reduced by permeating H2 from the anode side, regenerating to 

reductive α-TOH. This chemical circulation ensures lower H2 

permeation through the electrolyte membrane, the hindrance of 80 

generation and transportation of ROS, [7] effective recycling of 

α-TOH as free radical scavenger, the decreasing rate of chemical 

degradation of Nafion matrices, and eventually the elongated 

lifespan of PEMs for fuel cell operation. 

 85 

Finally, it can be observed that with the increasing amount of 
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added α-TOH, the fuel cell performances after 1 cycle OCV 

holding and recovery were increasingly improved. As seen in Fig. 

3i, for pristine Nafion, potential loss was as high as 6.25%. This 

value decreased to 3.69% for Nafion/0.5% α–TOH, 0.73% for 

Nafion/1% α–TOH at 1000 mA�cm-2. And potential growth was 5 

even found for Nafion/3% α–TOH composite membranes, 

demonstrating the protecting efficiency of α–TOH on PEMs. 

 
Fig. 6. Scheme of the setup for the detection of testing membranes. A 

scroll-like curved Pt wire was sandwiched in the recasted Nafion (anode 10 

side) and testing membranes(cathode side) as the detecting electrode for 

in-situ H2O2 monitoring during fuel cell operation. 

In situ electrochemical detection could be further evidence for 

chemical protection and H2 consumption of α-TOH. Herein 

triple-layer PEMs were used, with the testing membrane at the 15 

cathode side (air), pristine Nafion at the anode side (H2), and a 

scroll-like Pt wire as the sandwiched detecting electrode. Owning 

to the ultrafast kinetics for free radical reactions, it was only 

possible to detect the permeated H2O2, one of the major by-

products, instead of hydroxyl and peroxyl radicals. The 20 

thicknesses of the membranes at both sides were around 12 µm, 

as illustrated in the schematic diagram of Fig. 6. Recasted Nafion 

membrane was first assembled for comparison. The cyclic 

voltammogram (CV) for Nafion testing membrane can be seen in 

Fig. 7a. CV scans under various cathodic conditions were 25 

detected in both H2/N2 and H2/air atmosphere with varying 

operating voltage. It could be seen a typical H2 oxidation process 

at acidic environment in H2/N2 atmosphere. [53, 54] In H2/air 

atmosphere, peaks at around 0.96 and 0.80 mV should be 

assigned to the oxidation and reduction of H2O2, respectively. At 30 

low cathodic voltage, e.g. 613 mV, the current rise between 1.30 

and 1.40 V should be assigned to H2O. In order to eliminate the 

influence of H2 oxidation, corresponding H2/N2 CV scan were 

subtracted from all H2/air scans, nominated as “–H2 CV”, as 

illustrated in Fig. 7b, in which the H2O2 oxidation and reduction 35 

peaks could be clearly observed. Different from pristine Nafion, 

with 1% α–TOH added, the –H2 CV scan showed no significant 

peaks except for minor negative current at potential below 0.80 

V, which resembled to that of oxygen reduction in acidic solution 

(Fig. S4c), thus could result from reduction of permeated oxygen 40 

from the cathode side or other impurities in the membrane, 

indicating that H2O2 generation and permeation were highly 

restricted (see Fig. 7c). After 12-hour OCV holding test, the peak 

of H2O2 oxidation emerged again at the potential of 0.96 V (Fig. 

7e). The emergence of H2O2 suggested the exhaust of α–TOH 45 

because of oxidization, causing H2O2 reformation and 

permeation. However, this changing trend was reversible. The 

peaks of H2O2 oxidation vanished again after the Nafion/α–TOH 

composited membranes being kept in H2/N2 atmosphere for 2 

hours (see Fig. 7d, e), indicating the reformation of reductive α–50 

TOH in the membrane. From the in situ electrochemical 

detection, it can be concluded that α–TOH was able to diminish 

ROS and to protect PEMs. Further, α–TOH could also be reduced 

under reductive environment, reforming from the oxidized 

species to the reductive conformation. As the evidence of the 55 

feasibility of in situ electrochemical detection, parallel ex situ 

electrochemical detection were also made, and the similar 

conclusions could be made, which can be seen in the 
supplementary information. 

 60 

Fig. 8. Variation of current on the detecting electrode with the potential 

at 1.3 V with the switch of cathode gas conditions for PEMFCs. a) 

Variation of cathodic potential with the switch of cathode gas between 

N2 and O2. Potentiostatic test for PEMFC with b) recasted Nafion and c) 

Nafion/1% α–TOH composite membrane. 65 

 

 
Fig. 7. In situ electrochemical detection of PEM. a) Cyclic voltammograms with sandwiched Pt wire as the working electrode with recasted Nafion as the 

testing membrane, at various cathodic conditions. “–H2 CV” diagrams were also shown with b) recasted Nafion, and c) Nafion/1% α–TOH composite 

membrane before 12-hour OCV holding test, and d) Nafion/1% α–TOH composite membrane after H2 reduction. e) “–H2 CV” of Nafion/1% α–TOH 70 

composite membrane under cathodic OCV condition at different periods were compared. “–H2 CV” of recasted Nafion were also shown for comparison. 

An obvious peak at ~0.96 V was observed after 12hr OCV test, indicating the oxidation of α–TOH. However, the peak disappeared either before OCV test, 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.2

0.4

0.6

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

 

Time (hr)

Recasted Nafion

 

D
e
te

c
te

d
 C

u
rr

e
n

t 
(m

A
)

1% αααα-TOH/Nafionc

b

H
2
/Air H

2
/AirH

2
/N

2

 

 

P
o

te
n

ti
a
l 
(V

)

Cathodic Potential

H
2
/N

2

a

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.4

0.6

0.8

1.0

1.2
0.4

0.6

0.8

1.0

1.2
0.4

0.6

0.8

1.0

1.2
0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

 

Potential (V v.s. Anode)

H
2
/Air 613 mV

D
e

te
c
te

d
 C

u
rr

e
n

t 
(m

A
)

 

H
2
/Air 800 mV

 

H
2
/Air OCV

 

H
2
/N

2
 OCV

a

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
-0.2

0.0

0.2

-0.2

0.0

0.2

-0.2

0.0

0.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

 

Potential (V v.s. Anode)

613 mV

b

 

800 mV

H
2
O

2
 Oxidation

H
2
O

2
 Reduction

H
2
O

2
 Oxidation

H
2
O

2
 Reduction

H
2
O

2
 Reduction

 

OCV

D
e
te

c
te

d
 C

u
rr

e
n

t 
(m

A
)

H
2
O

2
 Oxidation

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.0

0.2

0.4

-0.4

-0.2

0.0

0.2

0.4

-0.4

-0.2

0.0

0.2

0.4
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

D
e

te
c
te

d
 C

u
rr

e
n

t 
(m

A
)

 

Potential (V v.s. Anode)

613 mV

 

800 mV

c

 

OCV

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
-0.2

0.0

0.2

0.4

0.6

-0.4

-0.2

0.0

0.2

0.4

-0.4

-0.2

0.0

0.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

D
e
te

c
te

d
 C

u
rr

e
n

t 
(m

A
)

 

Potential (V v.s. Anode)

613 mV

d

 

800 mV

 

OCV

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.0

-0.8

-0.6

-0.4
-0.4

-0.2

0.0

-0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4e

D
e
te

c
te

d
 C

u
rr

e
n

t 
(m

A
)

 

Potential (V v.s. Aonde)

Nafion/αααα-TOH After H
2
 Reduction

 

Nafion/αααα-TOH After 12hr OCV

H
2
O

2
 Oxidation

 

Nafion/αααα-TOH Initial

 

Nafion

Page 5 of 9 Energy & Environmental Science

E
ne

rg
y

&
E

nv
ir

on
m

en
ta

lS
ci

en
ce

A
cc

ep
te

d
M

an
us

cr
ip

t



 

6  |  Journal Name, [year], [vol], 00–00 This journal is © The Royal Society of Chemistry [year] 

or after H2 reduction, suggesting the existence of reductive α–TOH. 

 

 5 

Fig. 9. 5-cycle OCV holding test for MEAs with pristine Nafion and composite Nafion/α–TOH Membranes. Polarization curves and power output of PEM 

single cells with a) recasted Nafion, and b) Nafion/1.5% α–TOH. c) The variation of potential at current density of 1000 mA�cm
-2

 after each OCV holding 

tests was normalized with Cycle 1 as the original denominator for each MEA. Comparison of d) electrochemical surface area, e) Hydrogen crossover 

current density (voltage = 0.3 V), and f) OCV drop for both membranes are shown. 

H2O2 generation and permeation process with the switch of 10 

cathode gas conditions was also real-time monitored. The OCV at 

the cathode was recorded at Fig. 8a to monitor the gas change 

during fuel cell operation. It was observed both a sudden growth 

of OCV with the change of cathode gas from N2 to air, and a 

gradual decline with a reverse gas change because of the 15 

remanent oxygen until the cathode was thoroughly purged with 

nitrogen. Considering that the major signal for the detecting 

electrode is H2 oxidation, there should be a magnitude change 

when H2O2 participated in the electrochemical system. As a result 

the potentiostatic test was carried out at the sandwiched detecting 20 

electrode with the potential at 1.3 V, the potential level typically 

used for the detection of H2O2. [53, 54] As seen in Fig. 8, a 

notable decrease of detected current could be observed with 

Nafion testing membrane. This suppression probably originated 

from the generation of H2O2 at the cathode side in H2/air 25 

atmosphere. The as-generated H2O2 permeated though the testing 

membrane to reach the detecting electrode. Oxidation of H2O2 on 

the detecting electrode became predominant that led to more Pt-O 

bonds formation, resulting in the decline of H2 oxidation current, 

and thus, a current depression compared with that in H2/N2 30 

atmosphere. In contrast, minor current change was observed with 

the Nafion/α–TOH composite membrane, indicating the 

remarkable decrease of generated/permeated H2O2 that could be 

detected by the sandwiched electrode. 

 35 

Finally, two types of MEA with different PEMs were assembled 

in single cells and operated with multiple OCV holding tests. The 

thickness of each membrane was around 35 µm. As seen in Fig. 

9a – c, while the voltage of recasted Nafion obviously decreased 

by 14.6%, better performance of Nafion/1.5% α–TOH composite 40 

membrane could be observed. The voltage at the current density 

of 1000 mA�cm-2 increased by 2.0% after 5-cycle OCV holding 

tests compared with the initial voltage. (More cyclic performance 

can be found in Fig. S5) Meanwhile, the comparison of 

electrochemical surface area of catalysts, hydrogen crossover 45 

current density, and OCV drop for these two membranes 

demonstrated the protection of α–TOH to the PEMs (Fig. 9d – f). 

The performance of the Nafion/α–TOH composite membranes 

shows very high possibility of long-term fuel cell operation and 

power preservation. As a result, α–TOH can be treated as a great 50 

candidate as PEM additive for future industrialization and 

commercialization. It was notice the influence of the potential 

drop at activation-loss region of the polarization curve on the 

durability of MEAs, [55] and detailed discussion was shown in 

the supplementary information. 55 

 

We recognize that in practical uses, fuel cells may suffer from 

series of circumstances that accelerate the chemical degradation 

of PEMs. However, the purpose of this paper is not to present a 

final, commercial, and practical solution, but rather to confirm the 60 

attempt of building up an inner chemical circulation system, and 

thereby keep the PEMs from being over-oxidized in a long-range 

operation, just as human bodies with a series of antioxidants. 

Resultantly the process of the ROS scavenging and the reason for 

the possibility of long-range PEMFC operation can be 65 

summarized as follows. Chemical degradation of PEMs was 

caused by the generation of ROS, which in the absence of α–TOH 

leads to severe performance loss in fuel cell operation. The α–

TOH molecules, however, being uniformly dispersed in the 

electrolyte, were sacrificed to protect Nafion matrices from being 70 

attacked with ROS; then were reduced by permeated H2 

molecules and reversed to its reductive form. The overall effect 

can be shown as protected PEMs, recyclable α–TOH, and 

hindered H2 crossover rate. 

Conclusion 75 

By incorporating a recyclable antioxidant molecule, here 

illustrated with α–TOH in the polymer electrolyte of PEMFCs, 

we demonstrated that it was possible for α–TOH to protect the 
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membranes from being attacked by ROS that can lead to a 

catastrophic performance loss. With a small percentage of α–

TOH added (1%), almost 90% performance loss could be resisted 

that was impossible without the antioxidant in the same cell. The 

α–TOH was sacrificed first, forming its oxidized species, such as 5 

α–TO+, at high potential and then, oxidized the permeated H2. In 

this process, these oxidized species were reduced back to α–TOH. 

By using an antioxidant, a far more effective protection of Nafion 

matrices is possible than can be achieved in its absence. The 

reversible formation of α–TOH was an essential process in the 10 

electrolyte membrane in such electrochemical cells, although 

questionary voices may come from the gradual α–TOH runoff, 

which is improbable in normal conditions, but may be caused by 

high squeezing pressures applied on the electrolyte membranes 

during fuel cell operation. Nonetheless it is probable that terminal 15 

groups of Nafion, such as the carboxyl groups, could be 

chemically bonded with α–TOH-like molecules to avoid the 

physical losses of antioxidants. Such chemical bonding would 

also eliminate the ROS attack on the terminal groups. The ability 

of a reversible antioxidant to prevent PEMs effectively from 20 

being oxidized by ROS, and to promote the chemical stability, 

and hence the long-range operation addresses one of the 

important challenges that face PEMFCs, and may also be 

available for other electrochemical systems, such as metal-air 

batteries. 25 
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Vitamin E is an efficient antioxidant to elongate the lifetime of fuel cells and circulate itself for long-term use. 
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