Energy & Environmental Science

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

Graphical abstract

Review Articles

Environmental Science

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

Energy &

Recent Advances in Solid Sorbents for CO₂ Capture and New Development Trends

Junya Wang,^a Liang Huang,^a Ruoyan Yang,^a Zhang Zhang,^a Jingwen Wu,^a Yanshan Gao,^a Qiang Wang,^{*,a} Dermot O'Hare,^b Ziyi Zhong^{*,c}

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX

DOI: 10.1039/b000000x

Carbon dioxide (CO_2) capture using solid sorbents has been recognized as a very promising technology that has attracted intense attention from both academic and industrial fields in the last decade. It is astonishing that around 2000 papers have been published from 2011 to 2014 alone, which is less than three years after our first review paper in this journal on solid CO₂ sorbents was published. In this short period, much progress has been made and the major research focuses have more or less changed. Therefore, we feel that it is necessary to give a timely update on solid CO₂ capture materials, although we still have to keep some important literature results published in earlier years so as to keep the good continuity. We believe this work will benefit researchers working in both academic and industrial areas.

¹⁵ In this paper, we still organize the CO₂ sorbents according to their working temperatures by classifying them as such: (1) low-temperature (<200 °C), (2) intermediate-temperature (200–400 °C), and (3) hightemperature (> 400 °C). Since the sorption capacity, kinetics, recycling stability and cost are important parameters when evaluating a sorbent, these features will be carefully considered and discussed. In addition, due to the huge amounts of cost-effective CO₂ sorbents demanded and the importance of waste

²⁰ resources, solid CO₂ sorbents prepared from waste resources and their performance are reviewed. Finally, the techno-economic assessments of various CO₂ sorbents and technologies in real applications are briefly discussed.

1. Introduction

 CO_2 is one of the major greenhouse gases $(GHG)^1$ that absorbs ²⁵ heat radiation from Earth's surface which would otherwise have left the atmosphere. Although atmospheric CO_2 is the primary source of carbon in life on Earth and its concentration since the late Precambrian eon has been regulated by photosynthetic organisms, its continuous increase due to the large-scale burning

- $_{30}$ of fossil fuels starting from the industrial revolution has led to the global warming and anthropogenic climate change. It is without a doubt that the many extreme weather events in recent years can be strongly correlated with the increase in atmospheric CO₂ concentration and the GHG effect, which contributes significantly
- ³⁵ to global warming and its environmental effects, such as the continuous rise of water-level in sea and the increasing number of ocean storms, floods, etc. Although other factors exist, the importance of the aforementioned relationship should not be undermined.^{2, 3} Unfortunately, it is predicted that this trend of
- ⁴⁰ increasing atmospheric CO₂ concentration will not be altered within next several decades, because fossil fuels will be still the

dominant energy source. As measured by Scripps Institute of Oceanography, the CO₂ concentration increased from ca. 315 ppm in March 1958 to 391 ppm in January of 2011, and close to ⁴⁵ 398 ppm in January 2014.⁴

One of the major anthropogenic sources of CO₂ emission is the power plant. For example, a 500 MW coal-fired power plant will generate ca. 3 million tons of CO₂ per year.⁵ Therefore, CO₂ capture and sequestration (CCS) from these large point sources is ⁵⁰ essential for the reduction of CO₂ emission into atmosphere, which should be applied not only to new power plants but also to the retrofitting of old power plants.⁶ Currently there are three approaches or processes to capture CO₂ from these point sources, namely pre-combustion capture, post-combustion capture and ⁵⁵ oxyfuel combustion.⁷ In comparison with the other two processes, the post-combustion capture method is quite competitive in cost but as it involves flue gas, which has a low CO₂ concentration, i.e. typically below 15%, it creates a technical challenge for the development of cost-effective advanced capture processes.⁸ Three ⁶⁰ main technologies including the use of scrubbing solutions, solid sorbents and membranes are used to separate and capture CO₂ from the flue stream. Among these, solid sorbents have been most commonly investigated for post combustion CO₂ capture in recent years. Unlike liquid sorbents, solid sorbents can be used ⁵ over a wider temperature range from ambient temperature to 700

- ^oC, yielding less waste during cycling, and the spent solid sorbents can be disposed without undue environmental precautions.
- In 2011, we published a review paper in Energy and ¹⁰ Environmental Sciences on solid CO₂-sorbents for CO₂ capture and their applications.⁹ However, within only three years (from 2011 to 2014), we noticed that there have been nearly 2000 new publications in this area, and some types of CO₂-sorbents, such as supported ion liquid, graphite/graphene based materials, boron mittide, alou based ascharte gizen under the materials and the solution of the s
- ¹⁵ nitride, clay-based sorbents, zirconium phosphate, metals oxides (TiO₂, NiO, CuO, Fe₃O₄, etc), etc, have been reported. More importantly, some waste-derived CO₂ sorbents, which probably will reduce the cost of the CO₂-sorbents significantly, have appeared.¹⁰ In addition, there are many papers dealing with
- ²⁰ simulation/modeling studies on the technical and economic evaluations for different types of sorbents. Therefore, we feel that it is necessary to give a timely update on these solid CO₂ sorbents, which may benefit researchers working in both academic and industrial areas.
- ²⁵ The solid sorbents may have various chemical or physical interactions with CO_2 molecules. However, following our previous classification, we continue to organize them according to their sorption and desorption temperatures and classify them as (1) low-temperature (< 200 °C), (2) intermediate-temperature
- ³⁰ (200–400 °C), and (3) high-temperature (> 400 °C) sorbents. Since the sorption capacity, kinetics, recycling stability and cost are important parameters when evaluating a sorbent, these features will be paid with special attention in this review. In addition, due to the potential demand of huge amounts of low
- ³⁵ cost CO₂ sorbents and the importance of waste resources, many active research activities in this field have appeared. Hence, a detailed review on the preparation of solid CO₂ sorbents from waste resources has been provided as well. Finally, the technoeconomic assessments of various CO₂ sorbents and technologies ⁴⁰ in real applications are briefly discussed.

2. Low-temperature solid CO₂ adsorbents

2.1 Solid amine-based adsorbents

CO₂ removal from flue gas by sorption and stripping with aqueous amines (commonly monoethanolamine (MEA), ⁴⁵ diethanolamine (DEA) and methyldiethanolamine (MDEA)) has been established since 1930 and is still believed to be a feasible technology.^{11, 12} However, this process suffers from a series of inherent problems, including the corrosive nature of the amines, fouling of the process equipment and high regeneration energy,

⁵⁰ etc.¹³ To avoid the above problems, solid adsorbents with loaded organic amines on certain support materials are intensively investigated.¹⁴⁻¹⁸ Compared to the aqueous amine solutions, these solid adsorbents usually require lower capital cost, lower pressure for gas recovery, and less energy for regeneration.¹⁹ Aminess grafted silica was first proposed by Burwell and Leal²⁰ for SO₂ capture. Since then, amine-impregnated porous supports for CO₂ capture have been widely explored.^{21, 22} From 2011 to 2014, many groups have also tried to improve the CO₂ sorption capacity of these amine-based solid adsorbents via the following technical

⁶⁰ routes: (1) supporting amines on porous materials, (2) selecting proper amines, and (3) enhancing CO₂ diffusion, etc. A vital variable that governs the CO₂ adsorption performance is the support. Up to date, many porous materials including carbon, graphite/grapheme, zeolite, MOF, silica, polymer, clay, and TiO₂
 ⁶⁵ nanotubes, etc., have been investigated. With respect to the support effects, more details will be given in the following sections of 2.2–2.9.

The methods for loading of amine on supports can be classified as (a) impregnation, (b) post-synthesis grafting, and (c) direct ⁷⁰ condensation.⁹ The impregnated samples often have high capture capacities. However, the transport limitations of CO₂ to active sites and the leaching of amines over multiple regeneration cycles limit their performance and long-term viability as CO₂ capture solutions.²³ The leaching problem can be alleviated or solved by 75 covalently attaching amines onto solid surfaces, e.g., hyperbranched amines covalently attached to silica,9 amine groups functionalized onto silica or alumina supports,⁹ or by adding additives to the polyethylenimine (PEI) to increase stability.²³ Another group of amine adsorbents is solid polymeric ⁸⁰ systems in which the amines are covalently incorporated into the polymer backbone via chemical bonds such as C-C bonds. These C-C bonds usually are more stable than Si-O-C bonds hydrothermally.23, 24

The first amine impregnated CO₂ adsorbent (PEI/MCM-41) 85 was developed by Xu et al.²⁵ in 2002. The adsorbent had a CO₂ capacity of 3.0 mmol g^{-1} at 75 °C under a dry 100% CO₂ feed gas. After that, intensive efforts have been made to synthesize aminebased CO₂ adsorbents with better performance, and to know more about the effects of operation temperature, CO₂ partial pressure, 90 textural pore character of the support, and the nature of the amines on the CO₂ capture performance.^{26, 27} For the impregnated systems, most studies have shown that supports having a larger pore volume and pore diameter give better adsorption performance. Son et al.²⁸ impregnated PEI onto five different 95 mesoporous silica materials (i.e.MCM-41, MCM-48, SBA-15, SBA-16, KIT-6) and discovered that the adsorption capacity increased with increase of the pore diameter. Qi et al.29 synthesized novel nanocomposites based on PEI and tetraethylenepentamine (TEPA) supported on specially designed 100 mesoporous SiO₂ hollow capsules (see Figure 1).²⁹ They found that TEPA impregnated mesoporous silica capsules achieved adsorption capacities of 6.6 and 5.6 mmol g⁻¹ using dry streams containing 100% and 10% CO₂ respectively at 75 °C, as well as 7.9 mmol g^{-1} under a humid 10% CO₂ stream, which are the 105 highest reported adsorption capacity so far for the impregnated systems. This high capture capacity can be attributed to the large pore space and open structural character of the supports, which can enable high amine loadings and effective amine distribution, fast CO₂ adsorption kinetics and high CO₂ adsorption capacities.

Amine-silanol interactions are believed to be important for the adsorption of CO_2 .³⁰ The impregnated PEI may not be very stable on the surface of the support. Although the grafted and hyperbranched amines have demonstrated improved CO_2 capture ⁵ and stability over their impregnated counterparts, there is still reservation that, with increase of the complexity of the sorbents, the number of required steps in sorbent processing, and their associated costs, will also be increased simultaneously. Because of the required scale for CO_2 capture, the production of amine-¹⁰ functionalized and/or amine-impregnated sorbents should be at

- low cost and environmentally benign.³¹ The amines in the polymeric forms may provide solution to the above problems. A class of polymeric amines with potential for CO_2 capture is ion exchanged resins (IER) with amine functionality. These materials
- ¹⁵ showed ability to scrub CO_2 at low concentrations, like that in confined quarters such as marine and space vehicles, or from air.^{32, 33} They also have high potential for application in CO_2 capture from fossil energy power plant flue gas. A variety of amine-functionalized IERs have been synthesized and
- ²⁰ investigated, including primary to quaternary amine functional groups.²³ Alesi. et al.²³ and Hallenbeck et al.³⁴ reported a primary amine-functionalized polymeric ion-exchange resin with a CO₂ capture capacity of 1.85 and 1.15 mmol g⁻¹ at 30 and 70 °C, respectively. The capture capacity of the resin was stable over 18 ²⁵ adsorption/regeneration cycles. Also, the solid CO₂ adsorbents
- may be further improved by eliminating the use of the inert porous support via tailoring the molecular structures. Wang et al.³⁵ prepared support-free polyamine porous particles by a precipitation-polymerization method and obtained a CO₂ capture ³⁰ capacity of 2.3 mmol g⁻¹. This solid sorbent is very easy to be
- regenerated, requiring heating to only 100 °C under a N₂ flow.

Figure 1. (a) Synthesis of amine impregnated composite sorbents based on mesoporous capsules, and TEM images of two silica ³⁵ supports, (b) MC400/50, and (c) MC160/20 (MC x/y, where x and y represent the approximate diameter and the shell thickness of the mesoporous capsules in nanometres, respectively).²⁹

Besides the work on selecting and optimizing the supports, ⁴⁰ another aspect is to select the proper amines, such as primary amines, secondary amines, tertiary amines, and polyamines etc. Primary amines can form stable complexes with CO₂, capture CO₂ efficiently but are difficult to regenerate.³⁶ Tertiary amines do not capture CO₂ as efficiently as primary amines, but can be ⁴⁵ regenerated readily at relatively low temperatures.³⁶⁻⁴² As for the secondary amines, they can offer a compromise between the primary and tertiary amines. Bollini et al.⁴³ used four different silane coupling agents, three with a single primary, secondary, or tertiary amine at the end of a propyl surface linker, and the fourth ⁵⁰ with a secondary propylamine separated from a primary amine by an ethyl linker. They found that both amine type and their proximity had a significant effect on oxidative degradation rates. In particular, the supported primary and tertiary amines were stable under the oxidizing conditions used, whereas the secondary ⁵⁵ amines degraded at elevated treatment temperatures. Among all the studied amines, PEI and TEPA are the mostly used in adsorbent formulations because of their wide availability and efficient characteristics in CO₂ capture.

Previous work mainly emphasized how to advance the support $_{60}$ or the amine to improve CO₂ capture performance. There are few strategies to resolve the kinetic barrier for CO₂ inner diffusion. Very recently, Wang et al.⁴⁴ proposed a new method to overcome the limitation of the CO₂ kinetic diffusion, which could improve in CO2 capture performance. They introduced CO2-neutral 65 surfactant into PEI to create extra CO2 transfer pathways that could facilitate CO₂ diffusion into the deeper PEI films (Figure 2).⁴⁴ Consequently, the sorbents offered more reactive sites and higher utilization efficiency of amine groups, leading to a dramatically enhanced CO₂ dynamic capacity and total capacity. 70 Due to the enhanced CO₂ diffusion, the sorbents could work at room temperature with very good performance. At 30 °C, the surfactant-promoted sorbents achieved a CO₂ capture capacity as high as 3.2 mmol g⁻¹ with amine utilization over 50%. Moreover, the surfactant-promoted sorbents also exhibited much better 75 sorption kinetics and regeneration performance. This study provides a cost-efficient and general approach to designing CO₂ solid sorbents with high performance.44

Figure 2. Schematic illustration of the CO₂ sorption process over

the PEI loaded hierarchical porous silica with and without surfactant. ⁴⁴

2.2 Carbon-based adsorbents

- As mentioned in our previous review paper, carbon-based ⁵ materials are considered as one of the most promising adsorbents for CO_2 capture,⁴⁵ because of their low cost, high surface area, high amenability to pore structure modification and surface functionalization, and relative easiness for regeneration. However, the CO_2 adsorption on carbon materials is "physical" and weak,
- ¹⁰ which makes these adsorbents sensitive to temperature and relatively poor in selectivity. The CO₂ sorption capacity drops dramatically at temperatures associated with power plant flue gas (50-120 °C).⁴⁶ Prior to 2011, the research activities on carbonbased CO₂ adsorbents were mainly focused on (1) increasing the
- ¹⁵ surface area and tuning the pore structure, and (2) increasing the alkalinity by surface modifications.⁹ From 2011 to 2014, continuous efforts have been made to improve the CO_2 adsorption capacity of the carbon-based adsorbents via investigating (1) the quantative influence of the particle shape, size, and pore structure,
- 20 (2) surface modification via N-doping, amine modification, oxidation, fluorination, and modification with metal oxide, etc., and (3) synthesis of carbon-based hybrid composites.

It is widely agreed that the pore structure and pore size of carbon-based materials can influence their CO₂ capture capacity. ²⁵ Jiménez et al.⁴⁷ studied the CO₂ sorption behaviors of several types of carbon nanofibers (platelet, fishbone, and ribbon) and amorphous carbon at 26 °C. The results showed that the lower the graphitic component content or the higher the amorphous carbon content in the carbon materials is, the higher the CO₂-sorption

- ³⁰ capacity will be. Sevilla et al.⁴⁸ summarized the CO₂ adsorption capacities of various carbonaceous materials measured at 25 °C and 1 bar. As anticipated, the CO₂ adsorption capacity is strongly correlated with the content of narrow carbon nano- and micropores. Lee et al.⁴⁹ and Wickramaratne et al.⁵⁰ also reported
- ³⁵ similar results. Therefore, design of carbon adsorbents with high volume of small micropores should be essential for achieving high CO₂ uptake under ambient conditions. Marco-Lozar et al.⁵¹ found that for low CO₂ pressure, the sorbent should have the maximum possible volume of micropores smaller than 0.7 nm.
- ⁴⁰ However, the sorbent requires the maximum possible total micropore volume when the capture is performed at high CO₂ pressure. In addition, novel synthesis techniques for preparation of highly efficient carbon-based CO₂ adsorbents are of great interest. For example, Robertson et al.⁵² reported a very simple
- ⁴⁵ method for the formation of carbon aerogels followed with activation to generate carbon materials with very attractive CO₂ storage capacity (2.7–3.0 mmol g⁻¹ at 25 °C, 1 bar). Wang et al.⁵³ reported the synthesis of a series of porous carbons with adjustable high surface areas and narrow micropore size
- $_{\rm 50}$ distributions by activation of fungi-based carbon sources with KOH. The resulting porous carbons demonstrated both high CO₂ uptake (5.5 mmol g⁻¹) and high CO₂/N₂ selectivity (27.3) at 0 °C and 1 bar.

Many works have proven that the CO₂ capture capacity of ⁵⁵ activated carbons can be significantly increased by introducing

nitrogen functional groups into their structures.46, 54-60 Nitrogencontaining carbons can be prepared directly from the carbonization of nitrogen-rich chemical precursors, polymers, and ionic liquids, etc. Up to date, various N-doped carbons have been 60 prepared from nitrogen containing small molecules such as dicyandiamide,⁶¹ chitosan,⁶² and HNO₃,⁶³ with a CO₂ uptake of 3.2, 3.9, and 4.3 mmol/g, at 25 °C, 1 bar, respectively. In addition, some nitrogen containing polymers such as porous polyimine⁶⁴, polypyrrole⁶⁵⁻⁶⁷, and co-polymerized acrylonitrile and 65 acrylamide,⁶⁷ etc have also been used as precursors and the resulting N-doped carbons showed a CO_2 uptake of 5.3 mmol g⁻¹ (0 °C), 6.2 mmol g^{-1} (0 °C), and 3.8 mmol g^{-1} (25 °C) at 1 bar, respectively. Sethia et al.⁶⁸ synthesized N-doped carbon by carbonization of an ionic liquid and found that it possessed a CO₂ ⁷⁰ capture capacity of 3.2 mmol g⁻¹ at 25 °C and 1 bar. Furthermore, such N-doped porous carbons exhibited high CO₂ adsorption rates and good selectivity for CO₂/N₂ separation, and high feasibility for regeneration.69

Incorporation of amine groups is also widely used for surface 75 modification. Generally, the modification with amines can be carried out in two ways: (1) impregnation supports using a liquid amine polymer such as PEI, TEPA or DEA,⁷⁰⁻⁷⁶ and (2) grafting with amino groups.⁷⁷⁻⁸⁰ In these amine-supported systems, aminefunctionalities are dispersed inside the pores of a mesoporous ⁸⁰ support material, and thereby produce enhanced CO₂ capture performance relative to that of the bulk amines. Among all the studied amines, PEI, which was first used in CO₂ capture by Satyapal et al.⁷³ to improve CO₂ removal in space aircraft applications, seems to be the most effective one owing to its high ⁸⁵ adsorption capacity and good cycling stability.⁷³ For this reason, there are many reports on using PEI to modify carbon materials for enhanced CO₂ capture. ^{81, 82} For such amine loaded adsorbents, the total pore volume, especially the meso-plus-macro-pore volume, plays a crucial role in determining the CO₂ sorption ⁹⁰ capacity.⁸¹ In addition to nanoporous carbon, mesoporous carbon materials have also attracted great attention due to their suitability for surface amine doping.⁸³ Wang et al.⁸³ reported that, by loading PEI on a well-developed mesoporous carbon, the CO₂ uptake could be increased to 4.82 mmol g⁻¹ in 15% CO₂/N₂ at 75 ° 95 C.

Amine groups can also be chemically bound to carbon matrix via grafting. Comparing with those introduced by impregnation, the grafted functional groups are more stable or not desorbed during regeneration. For this reason, CO₂ capture on amine-group ¹⁰⁰ grafted carbons has been well studied, and most of relating works prior to 2011 were reviewed by Houshmand et al.⁸⁴ As reported, amino compounds such as diamines, polyamines, aminosilanes, halogenated amines, and polyaniline (PANI)⁸⁵ were grafted onto the surface of carbon materials. It was concluded that a suitable ¹⁰⁵ amine compound should be selected based on the type of porosity and type of functional groups most available on the surface. In the past 3 years, the studied amines grafted on carbons include diethylenetriamine, tris-(2mainly ethylenediamine, aminoethyl)amine, tri-ethylenetetramine,⁸⁶ 2-chloroethylamine,⁸⁷ 110 (3-aminopropyl)triethoxysilane,⁸⁸ etc.

Carbon

nanofibers

Nil

Apart from the above discussed nitrogen doping and amine modification, there are other treatments such as oxidation,⁸⁹ fluorination,^{90, 91} and modification with metal oxides, etc, for carbon materials. Oxygen functional groups, such as carbonyls 5 alcohols and ethers, contain an electron-dona that can also participate in electrostatic intera is thus expected that the presence of oxygen f the carbon surface will enhance CO₂ adsor selectivity.⁸⁹ Plaza et al.⁸⁹ found that the oxyge

- 10 significantly increased from 1.4 wt% up to and gas phase oxidation treatments, and result uptake. Oxidation treatment is therefore prop modification technique for developing easy-to adsorbents with enhanced CO₂ capture perform
- 15 method has received a substantial attention potential for uniform modification, short react and high efficiency. Fluorination causes defec properties, and increases the total number varying degrees of basicity on carbon mater
- 20 investigated the influence of oxyfluorination nanofibers for CO₂ storage and found that t efficiency of oxyfluorinated activated improved around 16 wt% due to the semi-ion of surface modificated oxygen functional
- 25 molecules. Up to date, many metal oxides CuO,93, 94 and MgO have been doped or materials to further improve the CO₂ capture one major problem for the metal oxides adsorbents is that the enhancement of CO₂ cap
- 30 too moderate, and it seems more works are conclusion whether this type of materials practical applications or not.

The third major method for improving performance of carbon-based materials 35 composites. Up to date, three types of hybrid reported, which are (1) carbon/MOF,⁹⁵ (2) ca carbon/carbon nitride,96 etc. For instance synthesized a composite by growing CNTs on chemical vapor deposition method, and the composite was further ⁴⁰ modified by branched PEI. The CO₂ adsorption tests proved that the micro-nano composite showed an equilibrium adsorption amount of 1.5 mmol g⁻¹, higher than that of pristine ACF (1.0

- mmol g⁻¹). It is believed that the combination of the unique hollow and tubular structure of the CNTs with the micro-nano ⁴⁵ phase of ACF contributed to the good CO₂ capture property.
- Carbon-based adsorbents and their CO₂ capture performance are summarized in Table 1.

Table 1. Summary of carbon-based adsorbents and their performance in CO2 50 capture.

Carbon type	Surface	CO ₂ uptake	Refere
	modificat		nce
	ion		

<i>dui onides, etc, ioi</i>			
, such as carbonyls, nating oxygen atom	Carbonaceous materials	Nil	6.6 mmol g^{-1} at 0 °C, 1 bar
actions with CO_2 . It	materiais		
functional groups on	Activated	Nil	5.68 mmol g^{-1} at 25 °C, 1 bar
rption capacity and	carbon fibers		U ,
gen content could be			
15.9 wt% by liquid	Carbon spheres	Nil	8.9 mmol g ⁻¹ at 0 $^{\circ}$ C, 1 bar
ted in a greater CO_2	Carbon aerogels	Nil	3.0 mmol g^{-1} at 25 °C, 1 bar
posed as a plausible to-regenerate carbon	-		-
mance. Fluorination	Porous carbons	KOH	5.5 mmol g ⁻¹ at 0 °C, 1 bar
ion because of its		activation	
ction time, low cost,			
ects, changes surface	N-doped	N-doped	3.2 mmol g ⁻¹ at 25 °C, 1 bar
of basic sites with	mesoporous		
erials. ⁹¹ Bai et al. ⁹⁰	carbons		
on activated carbon			
the CO_2 adsorption	N-doped porous	N-doped	3.86 mmol g ⁻¹ at 25 °C,1 bar
carbon nanofibers	carbons		
nic interaction effect	N-doped porous	N-doped	4.30 mmol g ⁻¹ at 25 °C, 1 bar
groups with CO_2	carbons	N-doped	4.50 minorg at 25 C, 1 bai
es including NiO, ⁹²	carbons		
loaded on carbon	N-doped porous	N-doped	5.60 mmol g ⁻¹ at 0 °C, 1 bar
capacity. However,	carbon	it doped	stoo minorg at o c, i bai
s modified carbon	Curbon		
pture capacity is still	N-doped porous	N-doped	5.26 mmol g ⁻¹ at 0 °C, 1 bar
e desired to draw a	carbons		
s is promising for			
s is promising for	N-doped porous	N-doped	6.2 mmol g ⁻¹ at 0 °C, 1 bar
	carbons		
g the CO ₂ capture			
is making hybrid	N-doped porous	N-doped	2 mmol g-1 at 25 °C, 1 bar
materials have been	carbons		
carbon/carbon,91 and	NT 1 1	NT 1 1	
ce, Kong et al. ⁹⁶	N-doped porous	N-doped	3.8 mmol g-1 at 25 °C, 1 bar
n the active ACF via	carbons		
omposite was further	a	DEI	

carbons			
N-doped porous carbons	N-doped	2 mmol g-1 at 25 °C, 1 bar	66
N-doped porous carbons	N-doped	3.8 mmol g-1 at 25 °C, 1 bar	67
Commercial carbon	PEI modified	3.5 mmol g ⁻¹ at 75 $^{\circ}$ C and 1 bar	81
Nanoporous carbon	PEI modified	1.09 mmol g^{-1} at 75 °C, 1 bar	82
Mesoporous carbons	PEI modified	4.82 mmol g^{-1} at 75 °C, 1 bar	83
Activated carbons	TREN, TETA modified	1.96 mmol g ⁻¹ at 25 °C, 1 bar	86
MWCNTs	APTES modified	1.7 mmol g^{-1} at 60 °C, 1 bar	88
MWCNTs	PANI	11.7 mmol.g ⁻¹ at 25 °C, 11	85

bar

modified

Energy & Environmental Science Accepted Manuscript

This journal is © The Royal Society of Chemistry [year]

47

48

49

50

52

53

61

62

63

97

64

65

16.36 mmol g⁻¹ at 26 °C, 8

bar

Phenolic-resin- derived carbon	oxidation	2.9 mmol.g ⁻¹ at 25 °C, 1 bar	89
Carbon nanofiber	oxyfluorin ation	3.68 mmol.g ⁻¹ at 0 $^{\circ}$ C and 1 bar	90
Porous carbon	loaded CuO	0.30 mmol g ⁻¹ at 25 $^{\circ}$ C and 1 bar	93
Activated carbon	loaded NiO	2.23 mmol g^{-1} at 25 °C, 1 bar	92
MWCNTs/MIL- 101	Nil	1.35 mmol g ⁻¹ at 25 °C, 10 bar	95
CNTs/phenolic resin	Nil	1.2 mmol g ⁻¹ at 25 °C, 1.5 bar	91
CNTs/ACF	PEI modified	2.75 mmol g ⁻¹ at 60 $^{\circ}$ C, 1 bar	96
Mesoporous carbon nitrides	Nil	2.35 mmol g ⁻¹ at 25 °C, 1 bar	97

2.3 Graphite/graphene-based adsorbents

Graphene is a type of synthetic carbon allotrope which has many superior properties and received tremendous attention in recent years. Although graphite/graphene is generally classified into 5 carbon materials, in order to highlight the rapidly growing research interests in graphite/graphene-based CO₂ adsorbents, we separately summarize the relating work as a new section in this review paper. Prior to 2011, there is no any report on using graphite/graphene for CO₂ capture. However, owing to the high 10 specific surface area and the lowered production cost, many efforts have been made to explore their application in CO₂ capture since 2012. In general, the studies on graphite/grapheme-based materials for CO₂ capture are mainly focused on three aspects, including (1) exfoliation or new structures, (2) surface or 15 edge functionalisation, and (3) synthesized hybrid materials.

To date, several methods have been used to obtain a high specific surface area for graphene, including heat treatment at high temperatures under vacuum condition.⁹⁸⁻¹⁰³ Modifications of graphene oxide layers with hydroxyl and epoxy surface ²⁰ functional groups employing both organic and inorganic compounds can increase the interlayer spacing of graphene oxide layers.¹⁰⁰ Although the chemical modification and reduction approach can remove most of the oxygen atoms from the surface of graphene oxide, some remaining oxygen atoms and additional

- ²⁵ functional groups introduced during the chemical modification or reduction may cause the scattering of electrons, which reduces the structural and thermal stability. In addition, these methods are highly costly and energy intensive for large-scale preparation. Meng et al.¹⁰⁴ found that exfoliated graphene nanoplate was
- $_{30}$ highly efficient for CO₂ capture. The exfoliated graphene nanoplates could be expanded from graphite oxide by a low-heat treatment at temperatures ranging from 150 to 400 °C under vacuum conditions. The effects of the interlayer spacing of the

graphene layers and pore structure on the CO_2 capture capacities ³⁵ were studied as a function of the processing conditions. The prepared graphene nanoplates exhibited high CO_2 capture capacities, up to 56.4 mmol g⁻¹, at 25 °C and 30 bar. The improved CO_2 capture capacity of the graphene nanoplates was attributed to the larger inter-layer spacing and higher interior void ⁴⁰ volume.¹⁰⁴

Graphene and graphitic nanoribbons possessing different types of carbon hybridizations exhibit different chemical activity. In particular, the basal plane of the honeycomb lattice of nanoribbons consisting of sp²-hybridizedcarbon atoms is ⁴⁵ chemically inert. Interestingly, their bare edges could be more reactive as a result of the presence of extra unpaired electrons, and for multilayer graphene nanoribbons, the presence of terraces and ripples could introduce additional chemical activity.¹⁰⁵ Asai et al.¹⁰⁵ observed a remarkable irreversibility in adsorption of ⁵⁰ CO₂ (0.26 mmol g⁻¹) on graphitic nanoribbons at ambient temperature, which is distinctly different from the behavior of nanoporous carbon and carbon blacks. The irreversible adsorption of CO₂ is due to the large number of sp³-hybridized carbon atoms located at the edges.

⁵⁵ Graphite has not only properties similar to that of carboneous adsorbents but also the economic advantage of low cost, thus it is considered as a potential CO₂ adsorbent. However, graphite has a weak affinity towards CO₂ and a low surface area, which limit the CO₂ adsorption ability.¹⁰¹ To overcome these limitations, Hong et ⁶⁰ al.¹⁰⁶ modified the surface of graphite with amine groups (3-aminopropyl-triethoxysilane, APTS) to increase the basicity, which is favorable for CO₂ adsorption. Graphite showed negligible adsorption ability for CO₂ gas, and graphite oxide had a very low adsorption uptake of 0.074 mmol g⁻¹. However, on the ⁶⁵ APTS-modified graphite oxide, the CO₂ uptake was significantly increased to 1.16 mmol g⁻¹. The increased basicity appears to be a major factor in enhancing the CO₂ uptake and is related to the amine molecules attached to the surface of the graphite.

Fabrication of graphene-inorganic hybrid materials is another 70 approach to enhancing the CO₂ uptake. Nanoparticles incorporated between graphene sheets effectively prevent the aggregation of the graphene sheets,¹⁰⁷ and the generated high porosity would increase their CO₂ capture performance. By graphene-Mn₃O₄,¹⁰⁸ graphene/chitosan,109 making 75 graphene/silica,¹¹⁰ hybrid porous materials, a CO₂ uptake of 2.5, 4.2, and 4.3 mmol g⁻¹ at 25 °C and 1 bar could be achieved, respectively. Mishra et al.¹¹¹ prepared Pd decorated graphite nanoplatelets and obtained a CO₂ uptake of 5.1 mmol g⁻¹ at 25 °C and 11 bar. It was concluded that the greater affinity of CO₂ 80 molecules towards Pd nanoparticles is responsible for the increased CO₂ adsorption capacity. Graphite/graphene-based adsorbents and their CO₂ capture performance are summarized in Table 2.

ss **Table 2.** Summary of graphite/graphene-based adsorbents and their performance in CO₂ capture.

Schemes	Materials	CO ₂ uptake	References
Exfoliation or	graphene	56.36 mmol g ⁻¹ at 25	104
new structures	nanoplate	°C, 30 bar	
Surface or edge functionalisation	graphitic nanoribbons	0.26 mmol g ⁻¹ at 30 °C, 1 bar	105
	graphite	1.16 mmol g ⁻¹ at 30 °C, 1 bar	106
Hybrid materials	graphene- Mn ₃ O ₄	2.50 mmol g ⁻¹ at 25 °C, 0.8 bar	108
	Palladium- graphite nanoplatelets	5.10 mmol g ⁻¹ at 25 °C, 11 bar	111
	graphene-based mesoporous silica	4.32 mmol g ⁻¹ at 75 °C, 1 bar	110
	chitosan- graphene oxide	4.15 mmol g ⁻¹ at 25 °C, 1 bar	109
	polyindole- reduced GO	3 mmol g ⁻¹ at 25 °C,1 bar	112

2.4 Zeolite-based adsorbents

The CO₂ adsorption mechanism on zeolites has been revealed that the physisorption of CO₂ by an ion–dipole interaction or strongly bound carbonate species by bi-coordination.⁹ Although ⁵ zeolites have shown promising results for separating CO₂ from gas mixtures and can potentially be used in the pressure swing adsorption (PSA) process, in general their selectivity for CO₂ over other gases (N₂, CH₄, H₂O, etc.) is still low, and their adsorption capacities rapidly decline with increasing temperature ¹⁰ above 30 °C and become negligible above 200 °C. Previously, we outlined the work on improving the CO₂ capture performance of

- the zeolite-based CO₂ sorbents in three aspects, including (1) changing the composition and structure of framework, (2) cationic exchange, and (3) zeolite purity. During 2011-2014, 15 more papers have been published in this field, and we noticed that
- the researches are more focusing on the former two aspects. There is no much work continued in zeolite purity. In addition, researchers started to modify the existing zeolites by either impregnating or grafting various amines to further increase the
- ²⁰ CO₂ capture capacity. Making zeolite-based hybrid materials is another research direction in this field. A brief summary of research activities of zeolite-based CO₂ sorbents is illustrated in Figure 3.

25 Figure 3. A brief summary of research activities on zeolite-based CO₂ adsorbents.

Prior to 2011, zeolites that were studied included X,¹¹³⁻¹¹⁵ Y,^{116,} 117 A, 118 B, 119 ZSM, $^{120,\ 121}$ CHA, 122 FER, 123 and natural zeolites (e.g. ZAPS, ZNT, ZN-19).¹²⁴ Among them, zeolite 13X attracted 30 more attention than others.¹²⁵⁻¹²⁷ In addition, some new zeolites have also been studied, e.g., SAPO-34,128,129 SSZ-13,130 and Rho,¹³¹ etc. For instance, Hudson et al.¹³⁰ reported both acidic and copper exchanged forms of SSZ-13, a zeolite containing an 8-ring window, as CO₂ adsorbents. The maximum CO₂ uptake at 35 1 bar for Cu-SSZ-13 and H-SSZ-13 was 3.75 mmol g⁻¹ and 3.98 mmol g⁻¹, respectively. At low CO₂ loadings, the gas molecules preferentially occupy the A-sites located in the center of the 8ring window (Figure 4). With increasing the CO₂ loading per Cu^{2+} , the CO_2 molecules start to take the end-on CO_2 ⁴⁰ coordination with Cu²⁺ and occupy at B-sites. Such CO₂ binding mode is believed to be the reason for its high selectivity of CO_2/N_2 . Besides the synthesis of novel zeolites for CO_2 capture, methods including controlling the Al distribution¹³² and expanding the pore size,¹³³ etc. are also used to improve the CO₂ ⁴⁵ capture performance. Nachtigall et al.¹³² proved that not only the accessibility of Bronsted sites but also the homogeneity of Al distribution in the FER zeolite could be tuned, which resulted in a new zeolite adsorbent exhibiting a constant heat of CO₂ adsorption. Loganathan et al.133 reported that the average pore 50 size could be expanded from conventional values of 9-10 nm to as large as \sim 30 nm, which is favorable for amine tethering.

Another important strategy for improving the CO₂ capture performance of zeolite is cationic exchange. The cations influence the electric field inside the pores as well as the available ⁵⁵ pore volume, and provide a convenient mean for tuning adsorptive properties of these porous materials. Both Walton et al.¹³⁴ and Ridha et al.¹³⁵ reported that Li⁺ provides the highest CO₂ capture capacity among all the univalent cations. Very recently, Lozinska et al.¹³⁶ performed a comprehensive study by ⁶⁰ preparing a series of univalent cation forms of zeolite Rho (M_{9.8}Al_{9.8}Si_{38.2}O₉₆, M = H, Li, Na, K, NH₄, Cs) and ultrastabilized zeolite Rho (US-Rho). The highest uptakes at 0.1 bar, 25 °C for both Rho and ZK-5 were obtained on the Li-forms

Page 8 of 46

(Li-Rho, 3.4 mmol g⁻¹; Li-ZK-5, 4.7 mmol g⁻¹). Besides univalent cations, some divalent cations such as Mg²⁺, Ca²⁺, Sr²⁺ exchanged zeolites have also been investigated. Bae et al.¹³⁷ compared a series of Na⁺, Mg²⁺, and Ca²⁺ exchanged A and X 5 zeolites, and found that Ca-A exhibited the highest CO₂ uptake (3.72 mmol g⁻¹) together with an excellent CO₂ selectivity over N₂. A detailed study of CO₂ adsorption kinetics further showed that the performance of Ca-A was not limited by the slow CO₂ diffusion within the pores. Lee et al.¹³⁸ compared the Mg²⁺ and

- ¹⁰ Ca²⁺ exchanged 13X with the Li⁺ and K⁺ exchanged samples, and found that the CO₂ capture capacity followed the order of Ca²⁺ > Mg²⁺ > Li⁺ > K⁺. Arévalo-Hidalgo et al.¹³⁹ reported that by cation exchanging of SAPO-34 with Sr²⁺, the overall CO₂ adsorption performance could be improved in a remarkable fashion as well.
- ¹⁵ Recently, Hong et al.¹⁴⁰ studied the CO₂ capture performance of cationic exchanged CHA and 13X under high pressure and moderate temperature conditions. The CO₂ adsorption capacity increased in the following order: CaCHA > LiCHA > 13X > NaCHA > MgCHA at 200 °C. The introduction of mesopores in
- ²⁰ CHA was effective in increasing the CO₂ capture capacity under high pressure conditions. Zeolite 13X was effective as a support material for Mg(OH)₂ used in CO₂ capture via carbonation under pre-combustion conditions (20 bar and 200 °C), leading to the full utilization of Mg(OH)₂ for CO₂ capture approaching the description in M_2 (OH)₂ for CO₂ capture approaching the

²⁵ theoretical maximum (1.42 mmol g^{-1}).

Figure 4. (a) CO₂ adsorption site of Cu-SSZ-13 at 4 K for one complete CHA cage. (b) Cut-away view of the CHA cage showing the primary (A) and secondary (B) CO₂ adsorption sites ³⁰ (black, carbons; yellow, oxygens) for the highest CO₂ dosing. ¹³⁰

Recently, one of the active research activities with zeolite is modification with amine groups, either by co-condensation, impregnation or grafting. The amine modified zeolites for CO₂ ³⁵ adsorption had been earlier reported by impregnation method such as zeolite Y,¹⁴¹ 13X,¹⁴² ZSM-5,¹⁴³ A,¹⁴⁴ and SBA-15.¹⁴⁵ Singh et al.¹⁴⁶ observed that the increasing number of nitrogen in the alkyl chain amine group led to the enhanced CO₂ absorption

capacity, and the highest absorption capacity was found for ⁴⁰ TEPA modified zeolite. Su et al.¹⁴¹ showed that the CO₂ uptake of TEPA treated Zeolite Y was 2.61 mmol g⁻¹ at 60 °C. However, due to the small pores of zeolite, it is generally difficult to load large amount of amines using impregnation method. Kim et al.¹⁴⁴ reported a new route to produce TEPA modified zeolite A by ⁴⁵ embedding method, in which TEPA molecules were directly introduced into the zeolite A precursor gel. The optimum CO₂ adsorption capacity was found in the case of 7.5% TEPA embedded zeolite A, which was 3.75 mmol g⁻¹, much higher than neat zeolite A (2.88 mmol g⁻¹).

To overcome the low thermal stability problem of the 50 adsorbents impregnated with amine, grafting aminosilanes through silvlation onto the intrachannel surface of the mesoporous silica has been proposed. In general, the aminegrafted adsorbents exhibited a comparatively higher adsorption 55 rate and higher stability in cyclic runs than the amineimpregnated adsorbents.¹⁴⁷ Chang et al.¹⁴⁸ investigated 3aminopropyltriethoxysilane (APS) grafted MCM-41, SBA-15, and pore expanded-SBA-15, and found that SBA-15 was the most appropriate support because its pore size could accommodate 60 more amines and avoid blocking CO2 adsorption. Moreover, its high pore surface area provided a large number of silanol groups, which was more beneficial for aminosilane grafting. Serna-Guerrero et al.149, 150 synthesized amine-modified MCM-41 and pore-expanded MCM-41 (PE-MCM-41) for CO₂ capture and 65 demonstrated that the larger pore diameter and pore volume of PE-MCM-41 resulted in a higher CO₂ adsorption capacity and greater dynamic adsorption performance than those of MCM-41. The loading and distribution of the introduced amines in zeolites are the two key parameters determining the CO₂ capture 70 performance. Since they are often influenced by the synthesis method, Sanz et al.¹⁵¹ prepared amino-functionalized SBA-15 materials via co-condensation, grafting and impregnation method respectively, and found that a considerable organic loading was achieved for the grafted sample, in which amino groups were 75 mainly located inside pore channels, thus favouring CO₂ diffusion through the whole structure.¹⁵¹ Recently, Jing et al.¹⁴⁵ prepared a series of SBA-15 adsorbents grafted with dendritic polyamine including melamine-based ethylene diamine (ED) dendrimers, diethylenetriamine (DETA) dendrimers, 80 triethylenetetramine (TETA) dendrimers, and acrylate-based ED dendrimers. They found that the primary amines were the active groups within all adsorbents and the branched dendrimers could weaken diffusion resistance of CO₂ adsorption. Zeolite-based hybrid material such as SBA-3/cotton fiber composite has also 85 been studied for enhanced CO₂ capture.¹⁵²

As discussed in our previous review paper, in practical applications, moisture is another challenge to zeolite-based adsorbents, since it may compete with CO₂ for the active adsorption sites. Gallei et al.¹⁵³ reported that the physical ⁹⁰ adsorption of CO₂ on CaY- and NiY-zeolite is scanty in the presence of water, because water is preferentially adsorbed onto these surfaces. Later Rege et al.¹⁵⁴ and Brandani et al.¹⁵⁵ observed that H₂O has a strong effect on CO₂ adsorption of CO₂ in the

presence of H₂O is not favored.¹⁵⁶ However, Diaz et al.¹¹⁶ found that the CO₂ adsorption on Cs- and Na-treated Y zeolites was increased after water treatment, and believed that it was due to the enhanced Brønsted acidity in zeolites after treatment with s alkali. In addition, H₂O may have a detrimental effect on the stability of zeolite frameworks. In the presence of CO₂, the acidic conditions may cause dealumination of the zeolite structures, leading to a partial or total destruction of the framework.^{157, 158} In general, it is accepted that moisture in the gas flow causes ¹⁰ significant decreases in CO₂ adsorption capability as well as in

the lifetime of the adsorbents. Zeolite-based adsorbents and their CO_2 capture performance are summarized in Table 3.

Table 3. Summary of zeolite-based CO_2 adsorbents and their performance in 15 CO_2 capture.

Schemes	Materials	CO ₂ uptake	Refere nces
Structure and	Cu-SSZ-13	$3.8 \text{ mmol g}^{-1} \text{ at } 25 ^{\circ}\text{C}, 1 \text{ bar}$	130
composition adjustment	H-SSZ-13	4.0 mmol g ⁻¹ at 25 °C, 1 bar	130
		1.2 mmol g ⁻¹ at 30 °C, 1 bar	133
Cation exchange	Li-Rho	3.4 mmol g^{-1} at 25 °C, 0.1 bar	136
	Li-ZK-5	4.7 mmol g^{-1} at 25 °C, 0.1 bar	136
	Ca-A	$3.7 \text{ mmol g}^{-1} 40 ^{\circ}\text{C} 0.15 \text{ bar}$	137
	Zeolite Ca	1.6 mmol g ⁻¹ at room temperature, 1 bar	138
	Sr ²⁺ -SAPO-34	3.0 mmol g ⁻¹ at 25 °C, 1 bar	139
	CHA and 13X	1.4 mmol g ⁻¹ at 200 °C, 20 bar	140
Amine modification	TEPA modified zeolite Y	2.6 mmol g^{-1} at 60 °C, 1 bar	141
	TEPA modified zeolite A	3.8 mmol g^{-1} at 25 °C, 1 bar	144
	G-SBA-15- NNN-(10)	2.2 mmol g^{-1} at 40 °C, 4.5 bar	151
Hybrid materials	SBA-3/cotton fiber	2.4 mmol g^{-1} at 75 °C, 1 bar	152

2.5 MOF-based adsorbents

Metal organic frameworks (MOFs), which are constructed from transition metal ions and bridging organic ligands, are a new family of porous materials.¹⁵⁹ Great progress in MOFs-based CO₂ adsorbents has been achieved during the past several years, but new discoveries are still being made constantly as the field is growing quickly.¹⁶⁰⁻¹⁶⁴ Liu et al.¹⁶⁰ wrote a nice review paper on the recent advances in CO₂ adsorption, storage, and separation by

This journal is © The Royal Society of Chemistry [year]

MOF. They also discussed some of the important properties of ²⁵ MOF adsorbents that may be crucial for practical applications but are largely overlooked by researchers so far. Zhang et al.¹⁶⁵ briefly reviewed the effect of multifunctional sites on the adsorption capacity and selectivity. Prior to 2011, most efforts were made to increase their CO₂ capture capacity and selectivity ³⁰ by modifying the metal ions and/or organic linkers in MOFs.⁹ In the past three years, continuous efforts have been paid to MOFs based-CO₂ adsorbents. However, apart from the modification of metals sites and organic linkers in MOFs, it seems more attention has been paid to (1) novel MOF structures, (2) metal ions doping, ³⁵ (3) functionalization, (4) hybrid materials, and (5) water effect on the structure and stability, etc. More details will be given below.

One important strategy for enhancing the CO_2 capture capacity and selectivity of MOFs is to remove the terminal bound solvent molecules to make the coordinately-unsaturated metal centres 40 exposed. These coordinately unsaturated metal centres act as physisorptive sites for CO₂ molecules enhanced by ion induced dipole interactions,¹⁶⁶ thus efforts have been made to understand the effect of various metals. Caskey et al.¹⁶⁷ studied a family of materials known as MOF-74:M₂(DOBDC) (M = Mg, Co, Ni; $_{45}$ DOBDC = 2,5-dioxy-1,4-benzenedicarboxylate). It was found that the coordinately-unsaturated metal centres within the framework of Mg₂(DOBDC) and Ni₂(DOBDC) were the initial sites of interaction with CO₂, and the CO₂ adsorption isotherms measured at different temperatures revealed that the strength of $_{50}$ the initial interaction followed the order of Mg > Ni > Co. Wade et al.¹⁶⁸ investigated $M_3(BTC)_2$ isostructural series (M = Cr, Fe, Ni, Zn, Ni, Cu, Mo) and gained insight into the impact of CO₂metal interactions on CO₂ storage/separation. It was found that in this series the heat of adsorption varied as Ni > Ru > Cu > Mo \approx 55 Cr. The difference observed among various metals of the series supports the notion that metal identity affects the strength of the initial framework-CO2 interaction. Notably, [Ru3(BTC)2]-[BTC]_{0.5}, which bears a higher formal charge on the dimetal unit than the other isostructural MOFs, exhibited a slightly higher CO₂ 60 adsorption enthalpy than the Cr, Cu, and Mo analogues. It was attributed to the formation of stronger electrostatic interactions between CO2 and the Ru25+ sites. Similarly, Cu-based MOFs (Cu₂(dhtp)), which are structurally homologous to the honeycomb-like M₂(dhtp) series and lanthanide MOFs 65 (La(BTB)(H₂O)·3DMF)_n have also been prepared for CO₂ capture.169, 170

The CO₂ capture performance of MOFs can also be improved by selecting proper organic linker, which can either increase the porosity and specific surface area or provide extra adsorbing sites. ⁷⁰ For instance, recent studies showed that replacing the phenyl spacers of organic linkers with triple-bond spacers could effectively boost the molecule-accessible surface areas of MOFs and related high-porosity materials.^{171, 172} Zheng et al.¹⁷³ designed an expanded 4,4-paddlewheel-connected porous MOF-505 ⁷⁵ analogue from a nanosized rectangular diisophthalate linker containing alkyne groups. The synthesized NJU-Bai12 exhibited excellent CO₂ uptake capacity (23.83 and 19.85 mmol g⁻¹ at 20 Energy & Environmental Science Accepted Manuscript

bar for 0 and 25 $^{\circ}$ C, respectively) and selective gas adsorption property with a CO₂/CH₄ selectivity of 5.0 and CO₂/N₂ selectivity of 24.6 at room temperature. Park et al.¹⁷⁴ constructed a multifunctional MOF PCN-124 from Cu paddle wheel motifs and a

- ⁵ judiciously designed novel ligand bearing carboxylate, pyridine, and amide groups.¹⁷⁴ The open metal sites and amide groups were expected to increase the interaction between the adsorbed CO₂. It has been reported that MOFs constructed from flexible organic components, even if they do not adsorb N₂ and H₂ gases due to
- ¹⁰ the smaller pores of the activated samples than the kinetic diameters of these gases, often selectively adsorb CO₂ since they open the gates for CO₂ that has much higher polarizability (2.51 Å³) and quadrupole moment (1.4×10^{-39} C m²) than other gases.¹⁷⁵, ¹⁷⁶ Hong et al.¹⁷⁷ constructed a MOF (SNU-110) from an organic
- ¹⁵ ligand with flexible joints and found that it exhibited selective CO₂ adsorption over N₂, O₂, H₂, and CH₄ gases. Masoomi et al.¹⁷⁸ synthesized two new three-dimensional porous Zn(II)-based MOFs, containing azine-functionalized pores by using a nonlinear dicarboxylate and linear N-donor ligands. The use of
- ²⁰ nonfunctionalized and methyl-functionalized N-donor ligands led to the formation of frameworks with different topologies and metal-ligand connectivities and therefore different pore sizes and accessible volumes.

The synthesis of MOFs with different microstructures and ²⁵ morphologies such as 1D tubular,¹⁷⁹ 2D,¹⁸⁰ 3D,¹⁸¹ and core-shell MOFs,¹⁸² etc. have also attracted great attention for CO₂ capture. Bataille et al.¹⁷⁹ prepared a novel porous tubular 1D-MOF from Cu(II), 1,2-bis(4-pyridyl)ethane and P,P'-diphenyl-diphosphinate by an easy and direct self-assembly process in either needle

- ³⁰ microcrystal or nanorod form depending on the synthesis conditions. This 1D-MOF compound is comprised of single walled tubules, held together by soft van der Waals interactions (Figure 5). The CO₂ absorption kinetics drastically increased from the micrometric crystals to the nanorods. Yan et al.¹⁸⁰ prepared
- ³⁵ functionalized 2D MOFs in a tandem manner, which displayed a high thermal stability and moisture resistance. Although their surface areas were moderate, they still had good CO₂ adsorption capacity of 2.9 and 1.9 mmol g⁻¹ at 1 bar and 0 and 25 °C, respectively, comparable to that of previously reported MOFs
- ⁴⁰ with much higher surface areas. Li et al.¹⁸² designed a core–shell MOF comprising a porous bio-MOF-11/14 mixed core and a less porous bio-MOF-14 shell. The resulting core–shell material exhibited 30% higher CO₂ uptake than bio-MOF-14 and low N₂ uptake in comparison to the core. When the core–shell
- ⁴⁵ architecture was destroyed by fracturing the crystallites via grinding, the amount of N_2 adsorbed was doubled but the CO_2 adsorption capacity remained the same. Finally, the more water stable bio-MOF-14 shell serves to prevent the degradation of the water-sensitive core in aqueous environments.
- ⁵⁰ The nonframework ions in an ionic MOF can be exchanged with other metal ions. In order to know how different nonframework ions would affect gas adsorption and separation, a molecular simulation study was performed for CO₂ adsorption in rho-ZMOF exchanged with a series of cations (Na⁺, K⁺, Rb⁺, Cs⁺,

 55 Mg^{2+} , Ca^{2+} , and Al^{3+}). The isosteric heat and Henry's constant at infinite dilution increases monotonically with increasing chargeto-diameter ratio of cation ($Cs^+ < Rb^+ < K^+ < Na^+ < Ca^{2+} < Mg^{2+}$ $< Al^{3+}$). At low pressures, cations act as preferential adsorption sites for CO₂ and the capacity follows the charge-to-diameter 60 ratio. However, the free volume of framework will become predominant with increasing pressure and Mg-rho-ZMOF appears to possess the highest saturation capacity. Furthermore, the adsorption selectivity of CO₂/H₂ mixture will increases as Cs⁺ < $Rb^+ < K^+ < Na^+ < Ca^{2+} < Mg^{2+} \approx Al^{3+}$. This work suggests that the 65 performance of ionic rho-ZMOF can be tailored by cations. Xiang et al.¹⁸³ also demonstrated that the CO₂ capture capacity of MOF can be improved by doping certain amount of Li⁺. Recently. Li et al.¹⁸⁴ prepared a Zn doped Ni-ZIF-8 nanocomposite with high stability and good CO₂ capture performance (4.25 mmol g^{-1} 70 at 0 °C and 1 bar).

Figure 5. (a) Schematic drawing of the P,P9-diphenyldiphosphinic acid (H₂ pcp); (b) view of the tubes of 1 packing ⁷⁵ perpendicular to the c axis (right). Solvent water molecules have been removed for the sake of clarity. The separation of the tubes is enhanced with respect to the real crystal structure in order to highlight the discrete 1D units; (c) a portion of the structure of 1 showing the copper coordination and the pcp bridging mode; (d) ⁸⁰ schematic representation of the building up of the tube where the blue lines are the pillar $[Cu(pcp)]_n$ polymer connected by bipyridines(green segments). Color code: Cu = light blue, P = purple, O = red, N =blue; (e) a single tube viewed along the c axis. The yellow surface inside is the solvent accessible volume.¹⁷⁹

55 oxide¹⁹⁶ or carbon¹⁹⁷ has also been explored.¹⁹⁶

Another practical issue for MOF-based CO₂ adsorbents is the effect of water. It is generally accepted that both the CO₂ adsorption and the selectivity of MOFs decrease in the presence of water, because water molecules compete with CO₂ for the 60 adsorption sites. Barbarao et al.¹⁹⁸ reported that even with 0.1% water in the CO2/CH4 mixture the CO2/CH4 selectivity in rho-ZMOF decreases by 1 order of magnitude. Yu et al.¹⁹⁹ evaluated the effect of water on Mg-MOF-74 and found that the CO₂ adsorption capacity decreased by the presence of water molecules 65 linked to coordinatively unsaturated metal sites. In order to improve the water-resistant property, Yang et al.²⁰⁰ synthesized a water-stable Zr-based MOF containing two carboxylic functions grafted on the organic linkers, which showed great promises for CO₂/N₂ gas mixture separation. It not only showed a very good 70 selectivity, relatively high working capacity, but also high water stability. MOF-based adsorbents and their CO₂ capture performance are summarized in Table 4.

Table 4. Summary of MOF-based CO₂ adsorbents and their performance in 75 CO₂ capture.

Schemes	Materials	CO ₂ uptakes	Refer ences
Modification of metal sites	Ni ₃ (BTC) ₂	3.0 mmol g ⁻¹ at 40 °C, 1 bar	168
Selecting proper organic linker	NJU-Bai12	23.8 mmol g^{-1} at 0 °C, 20 bar	173
linker	PCN-124	9.1 mmol g^{-1} at 0 °C, 1 bar	174
	SNU-110	6.0 mmol g ⁻¹ at -78 °C, 1 bar	177
Novel structures	1D-MOF	4.0 mmol g ⁻¹ at -78 °C, 1 bar	179
	2D-MOF	2.9 mmol g^{-1} at 0 °C, 1 bar	180
	A core-shell MOF	4.1 mmol g ⁻¹ at 0 °C, 1 bar	182
Metal ions doping	Zn(II)-based MOFs	9.2 mmol g ⁻¹ at -78 °C, 1 bar	178
Functionalisat ion	MOF with PEI	4.2 mmol g ⁻¹ at 25 °C, 0.15 bar	189
	MIL-53 with BNH _x	4.5 mmol g^{-1} at 0 °C, 1 bar.	179
	MIL-101-DETA	3.6 mmol g $^{-1}$ at 23 °C, 1 bar	193
	UMCM-1-NH ₂ - MA	19.8 mmol g ⁻¹ at 25 °C, 18 bar	194
Hybrid	MOF-5/graphite oxide	$1.1 \text{ mmol g}^{-1} \text{ at } 25 ^{\circ}\text{C}, 4$ bar	196

- amine-functionalized MOFs are not very successful in CO_2 capture. It is believed that the covalent grafting of amine groups onto the aromatic rings in MOFs cannot significantly enhance the affinity of amino groups to CO_2 because of the electron
- ¹⁵ withdrawing effect of benzene ring; while the incorporation of diamine to the open metal sites of MOFs provides a much better CO₂ capture performance at low pressures. ^{190, 191} The open metal sites can anchor one end of the diamine groups and leave the other end (alkylamines) available to capture CO₂. Believing that
- ²⁰ impregnation of poly-alkylamines onto MOFs might afford more active amine groups than diamines and maintain the strong interaction between CO₂ and alkylamine groups, Lin et al.¹⁸⁹ studied the PEI incorporated MOF for CO₂ capture. At 100 wt% PEI loading, the CO₂ adsorption capacity at 0.15 bar reached a
- ²⁵ very competitive value of 4.2 mmol g⁻¹ at 25 °C, and 3.4 mmol g⁻¹ at 50 °C, with a high CO₂/N₂ selectivity up to 770 at 25 °C, and 1200 at 50 °C.¹⁸⁹ Si et al.¹⁹² reported that the structure transition of flexible MOF (MIL-53) could be adjusted by confinement of BNH_x into MIL-53 channels, which yielded a CO₂ adsorption
- $_{30}$ capacity of 4.5 mmol g⁻¹ at 0 °C and 1 bar. Recently, Hu et al.¹⁹³ synthesized a series of alkylamine tethered MIL-101. Grafting alkylamine onto the exposed Cr_{III} centers offered new binding sites and strong interaction with CO₂ molecules and endowed MIL-101 with dramatically enhanced CO₂ uptake capacity and
- $_{35}$ significantly lowered N_2 uptake capacity at low pressures. The trend of enhancement in CO_2 uptake in terms of tethered alkylamine is DETA > ED \approx 3,3'-diaminodipropylamine > 1-(2-aminoethyl)piperazine whereas the pristine MIL-101 has the lowest CO₂ uptake at 1 bar. MIL-101-DETA has the highest CO₂
- ⁴⁰ adsorption capacity of 3.56 mmol g⁻¹ at 23 °C and 1 bar. Xiang et al.¹⁹⁴ incorporated carboxyl groups into the MOF framework by the post-synthetic modification approach. All the obtained MOFs exhibited high CO_2 uptake, e.g., 19.8 mmol g⁻¹ at 18 bar. The First-principles calculations validated the experimental
- ⁴⁵ observation, suggesting that the polar carboxyl group may outperform aromatic amine functionalities for CO₂ sorption at low pressure. The data also indicated that the aromatic imino group loses affinity toward CO₂ significantly, compared with the aromatic amino group. It was believed that, besides the amino ⁵⁰ groups, incorporating polar acidic¹⁹⁴ or N-containing^{184, 195}
- functionalities into the porous materials might provide an alternative approach for enhancing CO_2 capture. To fully utilize the MOF pore space effectively and improve gas adsorption capacity, incorporation of some other materials such as graphite

HCM-Cu ₃ (BTC) ₂ -3	2.8 mmol g^{-1} at 25 °C, 1 bar	197
Zn doped Ni-ZIF-8	4.3 mmol g ⁻¹ at 0 °C, 1 bar	199

2.6 Silica-based adsorbents

Owing to its high surface area, large pore volume, narrow pore size distribution, and excellent regeneration stability, silica received considerable research interest on CO_2 capture.

- ⁵ According to literature, silica is mainly used as support, on which amines are added for capturing CO₂. Therefore, the research activities on silica-based CO₂ adsorbents are mainly focused on making different types of silicas (silica nanoparticles, silica hollow sphere, silica nanotube, silica fume, mesocellular silica
- 10 foam, macroporous silica, aerogel, etc.) and choosing proper amine groups.

Because substrates often account for above 90% of the absolute sorbent preparation cost²⁰¹⁻²⁰³ and are commercially unavailable, the cost-effective, porous and commercially ¹⁵ available silica materials thus have been intensively studied for CO₂ capture in these years. Leal et al.²⁰⁴ functionalized the surface of silica with aminosilane for CO₂ adsorption. After that, adsorption of CO₂ on the surface of amine-functionalized materials using various techniques, amine molecules and silicas, ²⁰ was conducted.²⁰⁵ Recently, Du et al.²⁰⁶ reported that rich amine loaded nano-silica adsorbents could be prepared by using polyacrylic acid (PAA) as a multi-functional bridge, which was firstly immobilized onto the surface of silica nanoparticles. Each carboxylic acid group was subsequently reacted with an amine ²⁵ group of alkylamines, hence plenty of remained amines groups availed be conted onto the surface.

- could be coated onto silica nanoparticles. The result indicated that SiO₂-PAA-PEI adsorbent possessed a remarkably high CO₂ uptake of approximately 3.8 mmol g⁻¹ at 1 bar and 40 °C. Goeppert et al.²⁰⁷ reported PEI impregnated fumed silica as a ³⁰ promising candidate for capturing CO₂ from dilute sources,
- including the air, with a CO_2 capture capacity of 2.4 mmol g⁻¹.

Bai et al.²⁰⁸ and Yu et al.²⁰⁵ reported the silica hollow spheres are promising support for loading amines for CO₂ capture as well. By loading 50 wt% of TEPA, a high CO₂ adsorption amount of 35 4.4 mmol g⁻¹ was achieved with bimodal meso-/macroporous SiO₂ hollow sphere. Ko et al.²⁰⁹ prepared various amines (e.g. primary, secondary, tertiary, di-, and tri-amines) immobilized double-walled silica nanotubes (DWSNTs) for CO2 capture (Figure 6)²⁰⁹. The amines on modified DWSNTs showed high ⁴⁰ CO₂ capture capacity in the order of tri-, di-, primary, secondary, and tertiaryamines, with the maximum capacity of 2.3 mmol g⁻¹. Liu et al.²¹⁰ reported the use of amino-modifed silica fume as CO₂ adsorbent. However, its CO₂ capture capacity was not high, only ca. 1.3 mmol g⁻¹. Zhang et al.²¹¹ prepared PEI loaded 45 mesocellular silica foams with a wide range of pore volumes and pore sizes, which achieved a CO_2 capture capacity of 6 mmol g⁻¹ at 85 °C and 1 bar.

For amine-functionalized CO_2 adsorbents, the thermal stability is a severe issue that should be considered for practical 50 applications, especially at high temperatures (>135 °C). To have a clear understanding of the thermal stability and cyclic adsorption capacity of PEI and TEPA loaded silica adsorbents, a detailed study was performed by Zhao et al.¹⁹⁶ At the regeneration temperature of 105 °C over 10 cycles, the CO₂ 55 capacities of four types of amine-functionalized sorbents remained stable, and the masses of the sorbents decreased by 5.1%, 0.6%, 0.2%, and 0.1% with increasing molecular weight of amine, indicating that the PEI-based sorbents had excellent thermal stability. The thermal stability was also studied in a 60 fluidized bed at 140 °C for 100 h. The results indicated that the thermal stability was much improved in the fluidized bed because the atmosphere in the fluidized bed contained amine vapor, thus inhibiting amine evaporation. This effective and simple method was first proposed by Zhao et al.¹⁹⁶ to solve amine evaporation 65 issue by entraining some amine vapor into the reactor.

Another method for improving the thermal stability is to introduce the amine groups via chemical grafting. Leal et al.²⁰⁴ first reported the chemisorption of CO₂ on APS grafted silica gel. However, the sorbent's CO₂ adsorption capacity was low. Yao et ⁷⁰ al.²¹² synthesized APS or 3-(2-aminoethylamino)-propyldimethoxymethylsilane (APMS) grafted mesocellular silica foams, which achieved a CO₂ adsorption capacity of 1.54 mmol g⁻¹ with 10% (v/v) CO₂ in N₂ at 60 °C. Liu et al.²¹³ synthesized new covalently tethered CO₂ adsorbents through the in situ ⁷⁵ polymerization of N-carboxyanhydride of L-alanine from aminefunctionalized macroporous silica. This adsorbent showed a high CO₂ adsorption capacity of 3.86 mmol g⁻¹ at 50 °C and 1 bar, and good stability over 120 adsorption-desorption cycles. Silica-based adsorbents and their CO₂ capture performance are summarized in ⁸⁰ Table 5.

Figure 6. Schematic of primary, secondary, tertiary, di-, and triaminosilanes immobilized DWSNTs and their nomenclature.²⁰⁹

Silica types	Surface modifications	CO ₂ uptakes	Refer ences
Convention al silica	PAA modified	3.8 mmol g ⁻¹ at 40 $^{\circ}$ C, 1 bar	206
	PEI modified	2.4 mmol g ⁻¹ at 25 $^{\circ}$ C, 1 bar	207
Silica hollow	TEPA modified	4.4 mmol g ⁻¹ at 110 °C, 1 bar	205
sphere	APTES & BTME modified	1.7 mmol g ⁻¹ at 0 °C, 1 bar	208
	MCFs PEI modified	6.0 mmol g ⁻¹ at 85 °C, 1 bar	211
Silica nanotube	Tertiaryamines modified	2.3 mmol g ⁻¹ at 25 $^{\rm o}{\rm C}$, 1 bar	209
Silica fume	Amino-modified	1.3 mmol g ⁻¹ at 30 °C, 1 bar	210
Chemical	APS grafted	0.7 mmol g ⁻¹ at 27 °C, 1 bar	204
grafting	APMS grafted	2.0 mmol g^{-1} at 60 °C, 1 bar	212
	APTMS and poly-L- alanine co-grafted	3.9 mmol g ⁻¹ at 50 $^{\circ}$ C, 1 bar	213

Table 5. Summary of silica-based CO_2 adsorbents and their performance in CO_2 capture.

2.7 Polymer-based adsorbents

Porous polymers, which combine high internal surface area with 5 the synthetic diversity of polymers, have gained an enormous and increasing interest because of their flexibility in structural modification, light weight and high thermal stability. Particularly, porous polymers are promising alternative to the extensively investigated porous inorganic and hybrid materials for CO₂ 10 capture. High CO₂ gas uptakes and good CO₂ selectivities under ambient conditions in a reversible adsorption process are characteristic features for several porous polymers.²¹⁴ Up to date, the porous polymers that have been studied for CO₂ capture can be generally categorized into eight groups, which are (1) porous ¹⁵ melamine formaldehyde (MF),²¹⁵ (2) hypercrosslinked polymers (HCPs),²¹⁶⁻²¹⁹ (3) conjugated microporous polymers (CMPs),²²⁰⁻ ²²³ (4) polymers with intrinsic microporosity (PIMs),²²³⁻²²⁶ (5) polymer with porous aromatic framework (PAF),²²⁷⁻²³⁰ (6) covalent organic polymers (COP),^{216, 231, 232} (7) polymer with 20 covalent triazine-based framework (CTF),^{214, 233} and (8) molecularly imprinted polymer (MIP),²³⁴ and so on. The synthesis and CO₂ capture behaviors of all the above mentioned porous polymers will be discussed in detail below.

Melamine-formaldehyde (MF) resins, a type of well-known ²⁵ and large scale produced product, has been regarded as cheap and easily available materials for CO₂ adsorption. To fully utilize the surface functional groups of MF, the creation of pores in MF is highly desired. Wilke et al.²¹⁵ reported that meso- and microporous melamine resins can be synthesized via hard ³⁰ templating of silica nanoparticles. Porosities of up to 61% and

This journal is © The Royal Society of Chemistry [year]

specific mesopore surface areas up to 250 m² g⁻¹ were achieved, with a CO_2 uptake of 1.6 mmol g⁻¹ at 0 °C.

HCPs represent a family of robust microporous organic materials that can exhibit high surface areas up to 2000 m² g⁻¹.²³⁵, 35 236 These materials show excellent chemical robustness and scalability. Moreover, they are quite readily produced on a large scale. Comparing with other materials, the relative low heat of adsorption is another distinct advantage of HCPs. The most extensively studied HCPs are based on a polystyrene network. 40 Hyper-cross-linked polystyrene has shown high CO2 adsorption capacity (ca. 1.6 mmol g⁻¹) at low pressures which renders it a promising material for selective CO2/CH4 separation.²¹⁶ Martin et al.²¹⁶ prepared a series of HCPs by copolymerisation of pdichloroxylene and 4,4'-bis(chloromethyl)-1,1'-biphenyl,which 45 constitute a family of low density porous materials with excellent textural development. The maximum CO₂ capture capacity of these materials at 25 °C was 1.7 and 13.4 mmol g⁻¹ at 1 and 30 bar, respectively. This type of material was believed to be superior to zeolite-based materials (zeolite 13X, zeolite NaX) and 50 commercial activated carbons.²¹⁶ In addition, these polymers have low isosteric heats of CO2 adsorption and good selectivity towards CO2. Luo et al.²¹⁸ prepared microporous heterocyclic polymers via crosslinking the aromatic heterocyclic molecules. Compared to the other CO₂ capture materials, these microporous 55 materials are more economical at larger scale production and show a remarkable CO₂ adsorption capacities (2.9 mmol g^{-1} at 0 °C and 1 bar.), which are comparable or even higher than those of amine- or carboxylic acid-functionalized materials.

CMPs are a new class of porous materials possessing extended 60 π -conjugation in an amorphous organic framework. Owing to the high flexibility in the selection and design of building blocks and the available control on pore parameters, these polymers can be tailored for use in various applications, such as gas storage, electronics and catalysis.²²¹ The porous structures of CMPs can 65 be incorporated with a range of chemical functionalities including carboxylic acids, amines, hydroxyl groups, and methyl groups, enabling these materials suitable for CO_2 capture.^{221, 223} For instance, Dawson et al.²²³ synthesized carboxylic acid- and amine-functionalized CMP networks, CMP-1-COOH and CMP-70 1-NH₂, and found that CMP-1-COOH showed a higher CO₂ uptake than the non-functionalized sample. The experimental isosteric heats showed the following order in terms of the appended functional groups: $-COOH > (OH)_2 > NH_2 > H >$ (CH₃)₂. Chen et al.²²⁰ designed a novel kind of functional organic 75 microporous polymers by introducing polar organic groups (P=O and P=S) and electron-rich heterocyclic into the framework to obtain high CO₂ capture capacity. The measured specific surface areas of these polymers were about 600 m² g⁻¹ and the highest CO_2 uptake was 2.26 mmol g⁻¹ (0 °C and 1.0 bar). Interestingly, ⁸⁰ the polymer containing P=O groups shows greater CO₂ capture capacity than that containing P=S groups at the same temperature. In addition, these polymers show high isosteric heats of CO₂ adsorption (28.6 kJ mol⁻¹), which are competitive to those of some nitrogen-rich networks. Xie et al.²²¹ synthesized a new 85 porous organic polymer, SNU-C1, by incorporating two different CO₂-attracting groups, namely, carboxy and triazole groups. By

activating SNU-C1 with two different methods, vacuum drying and supercritical-CO₂ treatment, the guest-free phases, SNU-C1va and SNU-C1-sca, respectively, were obtained. At 25 °C and 1 bar, SNU-C1-va and SNU-C1-sca had high CO₂ uptakes of 2.31 ⁵ mmol g⁻¹ and 3.14 mmol g⁻¹, respectively, probably due to the

- s minor g and 3.14 minor g, respectively, probably due to the presence of abundant polar groups (carboxy and triazole) exposed on the pore surfaces. Recently, Xie et al.²²¹ reported a novel class of cobalt/aluminium-coordinated CMPs that exhibited not only outstanding CO₂ capture capacity, but also CO₂ conversion
 performance at atmospheric pressure and room temperature. The
- measured CO₂ adsorption capacities of these polymers were ~1.8 mmol g⁻¹ at 25 °C and 1 bar comparable to those of MOFs. The cobalt-coordinated conjugated microporous polymers can also simultaneously function as heterogeneous catalysts for the
- ¹⁵ reaction of CO_2 and propylene oxide at atmospheric pressure and room temperature, in which the polymers demonstrate better efficiency than a homogeneous salen-cobalt catalyst. By combining the functions of gas storage and catalysts, a direction cost-effective CO_2 reduction processes becomes possible.
- ²⁰ Among microporous polymers, PIMs are of great interest because of their relatively slow physical aging, good solubility, high gas permeability and selectivity.^{237, 238} Generally, PIMs have a structural combination of rigid ladder-like backbones with sites of contortion, which prevent intra- and/or inter-chain packing and ²⁵ create a large amount of free-volume elements at the same time.
- Luo et al.²²⁶ synthesized a series of porous polyimides with relatively high BET surface area and a CO₂ uptake of 1.7 mmol g⁻¹ at 0 °C and 1 bar by polycondensation of melamine and several readily available dianhydride monomers.²²⁶ The relatively low ³⁰ price and nontoxic nature make this material promising for CO₂ capture.

Owing to the ultrahigh surface area and high physicochemical stability, PAFs are amongst the main candidate materials for gas storage and capture. In CO₂ capture, there is inevitably the ³⁵ presence of water or water vapor, thus the hydrothermal stability of a CO₂-sorbent is essential for its large-scale application. Ben et al.²²⁸ reported a series of PAFs, which maintained their original porosity even after boiling in water and 1M HCl for 7 days. PAF-1 showed a high CO₂ uptake of 29.5 mmol g⁻¹ at 25 °C and 40 bar.

- ⁴⁰ Later on, a series of PAFs were prepared by a Yamamoto-type Ullmann reaction containing quadricovalent Si (PAF-3) and Ge (PAF-4).²²⁸ These materials are thermally stable up to 465 °C for PAF-3 and 443 °C for PAF-4. Gas uptake experiments at low pressure showed that PAF-3 has the highest heat of adsorption of
- ⁴⁵ CO₂ (19.2 kJ mol⁻¹).²³⁰ Recently, the same group reported a series of carbonized PAF-1s with enhanced gas storage capacities and isosteric heats of adsorption. Especially, PAF-1-450 showed an adsorption capacity of 4.5 mmol g⁻¹ at 0 °C and 1 bar. Moreover, it also exhibited excellent CO₂/N₂ and CO₂/CH₄ adsorption
- ⁵⁰ selectivity. In addition, these carbonized PAF-1s possess high physicochemical stability. Practical applications in capture of CO₂ lie well within the realm of possibility.²³⁰ By reaction with chlorosulfonic acid, PPN-6 was modified to give PPN-6-SO₃H, which was further neutralized to produce PPN-6-SO₃Li by Lu et ⁵⁵ al.²²⁸. At 22 °C and 1 bar, the measured CO₂ uptakes of PPN-6-
- SO₃H (3.6 mmol g^{-1}) and PPN-6-SO₃Li (3.7 mmol g^{-1}) were

much higher than that of nongrafted PPN-6 (1.2 mmol g⁻¹). Compared with that of PPN-6-SO₃H, the initial CO₂ uptake for PPN-6-SO₃Li is more pronounced; the Li⁺ cation in -SO₃Li has ⁶⁰ up to three open coordination sites after full activation, which results in stronger interactions with CO₂ molecules.²²⁸ Li et al.²³⁹ explored the performance of designed PAFs using grand canonical Monte Carlo simulations and ab initio calculations, and the results showed that pyridine with one nitrogen atom can ⁶⁵ provide a strong physisorption site for CO₂, whereas more nitrogen atoms in heterocycles will reduce the interaction, especially at relatively low pressure. It was found that the -COOH group in PAFs plays a key role in holding CO₂ rather than the -NH₂ group.

- ⁷⁰ COPs are another group of porous polymers that show promising potential for CO₂ capture due to high hydrothermal stability and BET specific surface area. Xiang et al.²³¹ synthesized a series of COPs for the adsorption of H₂, CO₂, CH₄, N₂ and O₂. The CO₂ takeup reached 13.5 mmol g⁻¹ at 25 °C and
- ⁷⁵ 18 bar. COP-1 also exhibited significantly higher selectivity than COP-2, 3 and 4, due to its smaller pore size. Furthermore, these COPs also showed robust capabilities for the removal of CO₂ from natural gas. In order to enhance the gas adsorption properties of the COP-1 material, Xiang et al.²⁴⁰ proposed a novel lithium-decorating approach in which the alkynyl functionalities in COP-1 were postsynthetically converted to lithium carboxylate groups with the aid of dry ultrapure CO₂. After such modification, the CO₂ uptake in Li@COP-1 was increased from 4.4 to 5 mmol g⁻¹ at 25 °C and 18 bar.
- Additionally, some other types of porous materials such as triazine-based and molecularly imprinted polymers, etc., are also promising for CO₂ capture. Liebl et al.²¹⁴ synthesized seven triazine-based porous polyimide (TPI) polymer networks for CO₂ capture. A high CO₂ uptake of 2.45 mmol g⁻¹ was obtained at 0 90 °C and 1 bar. It was found that the high degree of functionalization led to comparatively high CO₂ adsorption heats for TPI polymer networks between 29 and 34 kJ mol⁻¹. As a result, the TPI networks showed high CO2 uptakes relative to their moderate BET equivalent surface areas. Zhao et al.234 95 synthesized a series of molecularly imprinted adsorbents for CO₂ capture by molecular self-assembly procedures. Among them, the sample with higher amine content exhibited the highest CO₂ capacity, which maintained steady after 50 adsorption-desorption cycles. The CO₂ adsorption mechanism of molecularly imprinted 100 adsorbents was determined to be physical sorption according to the adsorption enthalpies integrated from the DSC heat flow profiles. The calculated separation factors of CO₂ under 15%

 $CO_2/85\%$ N₂ atmosphere were above 100 for all these adsorbents.

^{14 |} Journal Name, [year], [vol], 00-00

Figure 7. A summary of all the studied porous polymers and the possible modifications for CO_2 capture.

- In short, porous polymers have attracted great attention for the low temperature CO_2 capture/separation mainly due to their high surface area and synthetic diversity. All the efforts made to improve the related to porous polymer-based CO_2 adsorbent can be briefly summarized in Figure 7, which can be divided into three main parts: (1) the major one is to change the compositions
- of polymer framework including HCP, CMP, COP, PAF, PIM, CTF, MF, and so on, (2) the second one is to tune the pore size and specific surface area of the obtained porous polymers, and (3) the third one is to do surface modifications with various groups
- ¹⁵ including COOH, NH₂, P=O, P=S, SO₃Li, SO₃H, Li⁺, etc. For the further work, two technical problems should be overcome. One is hydrothermal stability of the adsorbents, and the other one is the adsorption/desorption cyclability. Polymer-based adsorbents and their CO₂ capture performance are summarized in Table 6.

20

Table 6. Summary of polymer-based CO_2 adsorbents and their performance in CO_2 capture.

Polymer types	Materials	CO ₂ uptakes	Refer ences
MF	Meso- and microporous MF resins	1.6 mmol g^{-1} at 0 °C, 1bar	215
HCPs	HCPs	13.4 mmol g ⁻¹ at 25 °C, 1bar	216
	Microporous heterocyclic polymers	2.9 mmol g $^{-1}$ at 0 $^{\rm o}C$, 1bar	218

CMPs	CMP-1-COOH, CMP-1-NH ₂	1.2 mmol g ⁻¹ at 25 °C, 1 bar	223
	CMP with P=O and P=S groups	2.3 mmol g^{-1} at 0 °C, 1 bar	220
	SNU-C1-va, SNU- C1-sca	3.1 mmol g ⁻¹ at 25 °C, 1 bar	221
	Co or Al coordinated CMPs	1.8 mmol g ⁻¹ at 25 $^{\circ}$ C, 1 bar	241
PIMs	Porous polyimide	1.7 mmol g ⁻¹ at 0 °C, 1 bar	226
PAFs	PAF-1	29.5 mmol g ⁻¹ at 25 °C, 40 bar	242
	PAF-1	4.5 mmol g ⁻¹ at 0 °C, 1 bar	230
	PPN-6-SO ₃ Li	3.7 mmol g ⁻¹ at 22 °C, 1 bar	243
	PAF-N4	60.0 mmol g ⁻¹ at 25 $^{\circ}$ C, 11 bar	239
COPs	COP-1	13.5 mmol g ⁻¹ at 25 $^{\circ}$ C, 18 bar	231
	Li@COP-1	5 mmol g^{-1} at 25 °C, 18 bar	240
CTFs	TPI	2.45 mmol g^{-1} at 0 °C, 1 bar	214
MIPs	MIP1b	0.48 mmol g^{-1} at 60 °C, 1 bar	234

2.8 Clay-based adsorbents

Clay is a general term for a single clay mineral or combination ²⁵ containing one more clay minerals with trace amounts of metal oxides and organic matter.²⁴⁴ Geologic clay deposits are mostly composed of phyllosilicate minerals containing variable amounts of water trapped in the mineral structure. Acting as a solid sorbent, clay has many advantages: low cost, high surface area,²⁴⁵ ³⁰ high mechanical and chemical stability, relative easiness in availability, regeneration and production in large enough quantities. The use of clay for CO₂ capture has also attracted some attention recently. Up to date, there are mainly two main kinds of clays, montmorillonite and bentonite, that have been ³⁵ studied for CO₂ capture.

Montmorillonite is a natural inorganic material with a general chemical structure of (OH)₄Si₈(Al_{4-x}Mg_x)O₂₀. The crystal structure of montmorillonite consists of two-dimensional layers formed by an octahedral sheet sandwiched between two opposing 40 tetrahedral sheets. As a kind of clay, it has all the merits of clay and is widely studied as an adsorbent or catalyst support.²⁴⁵ In order to be used for CO₂ capture, the montmorillonites have to be modified with amines, diamines, polyamines or polyoldendrimers, etc. When CO₂-containing gas is passed through a bed of this 45 adsorbent, the immobilized amine reacts with CO₂ forming carbamates, resulting in CO₂ capture.²⁴⁶ Stevens et al.²⁴⁷ synthesized diamine modified montmorillonite via water aided exfoliation and grafting route. The material achieved a CO₂ adsorption capacity of 2.4 mmol g⁻¹ at 100 °C in pure CO₂ which 50 is predominately associated with chemisorption. The maximum CO_2 adsorption capacity in 15% CO_2 in N₂ was 1.8 mmol g⁻¹ at 95 °C. Roth et al.248 treated montmorillonite nanoclay with

aminopropyltrimethoxysilane (APTMS) and PEI for CO_2 capture. The untreated nanoclay had very low CO_2 capture, but it was considerably increased after doping with amines, particularly with both APTMS and PEI. CO_2 sorption tests showed fast s sorption kinetics and capture capacities as high as 1.7 mmol g⁻¹ at 1 has and about 2.0 mmol c^{-1} at an 20 has in the temperature

- 1 bar and about 3.9 mmol g⁻¹ at ca. 20 bar in the temperature range of 75-85 °C. The regeneration of these nanoclays could be achieved using nitrogen at 100 °C or CO₂ (dry or humid) at 155 °C as the sweep gases. Furthermore, pressure swing
- ¹⁰ operation, employing vacuum at 85 °C, was proven effective in regenerating the adsorbent. This work showed that amine-modified montmorillonite nanoclay has the potential to be a high performing solid adsorbent for CO_2 capture. Azzouz et al.²⁴⁹ studied the CO_2 capture capacity of montmorillonite intercalated
- ¹⁵ with three soya oil-derived polyglycerol dendrimers with average molecular weights of 500, 1100, and 1700, respectively. It was concluded that intercalation of montmorillonite with polyglycerol dendrimers provided expanded effective adsorbents acting via weak base-like character for the reversible retention of CO₂. This
- $_{20}$ behavior was similar to that observed with polyol-intercalated montmorillonite, confirming once again that the OH groups grafted on the dendritic moiety act as the main adsorption site. In the absence of diffusion hindrance, all organoclays displayed affinity toward CO₂ with adsorption capacity of up to 0.012-
- ²⁵ 0.016 mmol g⁻¹, but with much lower desorption temperatures as compared to amine-based adsorbents. As a common feature of polyalcohol-montmorillonites, these adsorbents exhibited optimum adsorptive properties resulting from a judicious compromise between the highest adsorption capacities and the
- ³⁰ lowest desorption temperatures. It opens a new prospect in reducing the greenhouse effect by valorizing natural and ecofriendly materials as valuable adsorbents with high levels of regeneration ability and re-usability.
- Bentonite is another common raw clay material that has been ³⁵ studied for CO₂ capture. The inner layer is composed of one octahedral alumina sheet placed between two tetrahedral silica sheets. Due to the isomorphous substitutions within the layers of Al³⁺ for Si⁴⁺, the surface of bentonite is negatively charged.²⁵⁰ The sorption features over clay are believed to be related to the ⁴⁰ nature of the parent clay, and an attempt to rationalize the fact
- was made by considering the Si/Al ratio, together with textural characteristics.²⁵¹ Chen et al.²⁵² studied the CO₂ capture capacity of PEI modified bentonite. The results showed that bentonite in its natural state showed negligible CO₂ uptake. After amine ⁴⁵ modification, the CO₂ uptake increased significantly from 0.14 to
- 1.1 mmol g⁻¹. The PEI-modified bentonites showed high CO_2 capture selectivity over N₂, and exhibited excellent stability in cyclic CO_2 adsorption runs. However, owing to smaller pore volume, the CO_2 uptake of PEI-modified bentonite was lower
- ⁵⁰ than those usually achieved by PEI-impregnated mesoporous silicas. In order to deal with this problem, Wang et al.²⁵³ used sulfuric acid treatment, the textural properties, in particular, pore volume and surface area of bentonite, were significantly improved. With the maximum TEPA loading of 50 wt%, the ⁵⁵ maximum CO₂ breakthrough sorption capacity reached 3 mmol g⁻
- ¹ at 75 °C under a dry condition. With the addition of 18% moisture to the simulated flue gas, the CO_2 sorption capacity

could be increased to 3 mmol g⁻¹ due to the bicarbonate formation under a wet condition. In addition, these adsorbents showed a 60 good regeneration ability and thermal stability below 130 °C.

2.9 Alkali metal carbonate-based adsorbents

With both high sorption capacity and low cost, it is not strange that alkaline metal carbonate solids such as K_2CO_3 and Na_2CO_3 have been paid with attention for CO_2 capture application in the ⁶⁵ last several years.²⁵⁴⁻²⁵⁷ Alkali metal carbonates are suitable for the treatment of flue gases at temperatures below 200 °C.^{258, 259} Typically their CO₂ capture takes place within the temperature range of 50–100 °C, while regeneration occurs in the range of 120–200 °C, enabling them potentially applicable to the capture

⁷⁰ of CO₂ from existing fossil fuel-fired power plants. However, as pointed out in our previous review paper,⁹ the main problems for this type sorbents are the slow carbonation reaction rate, poor durability, and temperature limitation, etc.

Prior to 2011, many attempts have been made to resolve the 75 above mentioned problems by dispersing active Na₂CO₃/K₂CO₃ on supports such as Al₂O₃, active carbon, TiO₂, SiO₂, MgO, ZrO₂, etc., so as to enhance the adsorption rate and provide the required attrition resistance in the fluid-bed or transport reactors.²⁶⁰⁻²⁶⁶. In the past three years, similar research efforts have been continued. ⁸⁰ Wu et al.²⁶⁷ investigated the CO₂ capture performance of K₂CO₃/Al₂O₃ in a continuous CO₂ sorption-desorption system equipped with three fluidized-bed reactors (two carbonation reactors and one regeneration reactor). The first step of CO₂ removal was higher than 75%, and the total CO₂ removal reached 85 96% after further sorption in the second step, and it finally reached a fairly constant state. In addition, the CO₂ removal increased with the increase in regeneration temperature, H₂O concentration, and solid circulation, but opposite effect was observed with the increase in carbonation temperature, CO_2 90 concentration, and fluidization number. After optimizing the operation parameters, the CO₂ removal could reach above 85%. Dong et al.²⁶⁸ found that both the adsorption capacity and rate can be improved by doping 1-3 wt% of TiO₂ on K₂CO₃/Al₂O₃. Wu et al.²⁶⁸ found that adding Ca(OH)₂ to K₂CO₃/Al₂O₃ can not only 95 increase the CO₂ capture capacity, but also improve its SO₂ resistance. Derevschikov et al.²⁶⁹ reported that Y₂O₃ could be used as potential support instead of Al₂O₃ for dispersing K₂CO₃.

In order to further improve the durability, Kondakindi et al.²⁷⁰ proposed a method of coating Na₂CO₃/Al₂O₃ sorbents on metal foils. The results indicated that Na₂CO₃/Al₂O₃ powders showed better performance compared to those of foil samples, but 35 wt% Na₂CO₃/Al₂O₃ sorbent coated on foil showed the highest performance (7.7 mmol g⁻¹). Several foil samples were run through durability tests and showed a loss of about 15% of their capacity through the first 15–20 cycles, and 40–50% loss through 500 cycles. Even after 500 cycles, the coated foil sorbent still showed CO₂ capture performance that could be economically competitive with the current existing methods. For alkali carbonate sorbents, the kinetics of CO₂ sorption and desorption has also been investigated.^{271, 272} In addition to alkali carbonates, NaOH was investigated for CO₂ capture as well.²⁷³ The results revealed that for the high CO₂ removal rate, there was an optimal

Energy & Environmental Science Accepted Manuscrip

temperature range of 30–45 $^{\circ}$ C. Cyclic tests for fine and coarse particles indicated a reduction in reaction rate order after each cycle due to an increase in the reaction product layer thickness, formed on the sorbent.

5 2.10 Immobilized ionic liquid-based adsorbents

Ionic liquids (ILs) are salts that consist exclusively of ions and short-lived ion pairs, and have a melting points lower than 100 °C.²⁷⁴ Because ILs have negligible volatility, nonflammable ability, high thermal stability, virtually unlimited chemical ¹⁰ tenability and high CO₂ solubility, they have been proposed as attractive alternatives for CO₂ capture.²⁷⁵⁻²⁷⁷ Blanchard et al.²⁷⁸ first observed that significant amounts of CO₂ could be dissolved in imidazolium-based ILs to facilitate the extraction of a dissolved product, without contaminating the product with IL, ¹⁵ because IL was insoluble in CO₂. Their study initiated an explosion of interest on CO₂ absorption with ILs, leading to a rapid growth of research activities on this specific topic.²⁷⁹ The

- concept of absorption of CO₂ in ILs based on their unique properties providing extra advantages over the traditional ²⁰ processes, including a high level of CO₂ absorption, while the coabsorption of hydrocarbons and corrosion problems are significantly minimized. However, there are two major problems associated with the use of neat ILs for CO₂ capture, which are the
- cost and the relatively high viscosity. The later will result in low ²⁵ sorption and desorption rates and might limit their eventual use in large-scale CO₂ gas removal ^{12, 278, 280, 281} In addition, IL is liquid, lack of mechanical strength. To overcome the above mentioned difficulties, several strategies have been explored, including (1) supporting ILs (SILs) on a solid porous support such as ³⁰ membranes, metal organic frameworks (MOFs), and nanoporous polymers, etc, (2) pyridine-containing anion-functionalization, and (3) making ILs in the polymeric form.

One of the innovative developments is new types of membrane systems such as immobilized ionic liquid membranes or ³⁵ supported ionic liquid membranes (SILMs). SILMs consist of an ionic liquid immobilized in a supporting porous membrane by capillary forces.²⁸² Gas transport in supported liquid membranes occurs through the dissolution-diffusion mechanism. Gas molecules on the inlet absorb into the liquid, diffuse across the ⁴⁰ membrane, and desorb at the permeate site.²⁸³ Moreover, thermal stability, low volatility and high surface tension make membranes containing ILs more stable than supported liquid membranes.

- And they also can be regenerated and reused. Hence, the SILMs have been regarding as a promising material for CO₂ capture.^{284,} ⁴⁵ Compared to neat ILs, SILMs not only reduce the cost and
- ⁴⁵ Compared to near LS, SELVS not only reduce the cost and viscosity of ILs, but also enhance mechanical strength and separation efficiency.²⁸⁶ For immobilization purposes, not only traditional ionic liquids²⁸⁷ but also amine-terminated ILs can be applied.²⁸⁸ Particularly, the amine moiety of these task-specific
- ⁵⁰ ILs facilitates selective transport of CO₂.²⁸⁸ Bara et al.²⁸⁹ prepared a membrane using gemini ILs and demonstrated several gas separations. The ability to functionalize ILs and modify their properties was further demonstrated by the incorporation of polar substituents that provide enhanced interactions with CO₂.
- 55 MOFs seem to be promising supports for ILs because their

This journal is © The Royal Society of Chemistry [year]

pore size, volume, and functionality of MOFs are readily tunable in a rational manner,²⁹⁰ which lead to their wider application and increased efficiency for CO₂ capture. Chen et al.²⁹¹ first studied MOF-supported ILs by means of computational methods. It was 60 observed that with increasing the concentration of ILs, the molecules in pores were more uniform and ordered. Therefore, the amount of ionic absorption sites and selectivity could be increased with the increase in IL:MOF ratio. Since a great number of ILs as well as MOFs exist, this research area has a 65 great potential in terms of identifying a proper CO₂ capturing adsorbent.^{292, 293} Some nanoporous polymer microspheres have also been used as support for ILs. For example, Wang et al.²⁹⁴ synthesized three 1-ethyl-3-methylimidazolium amino acide ([EMIM][AA])-type amino acid ILs (AAIL) and immobilized 70 them into nanoporouspoly(methyl methacrylate) (PMMA) microspheres (see Figure 8(a)) for CO₂ removal. The sorbents retained the highly porous structures after AAIL loading and exhibited fast kinetics as well as reasonably high sorption capacity, and could be easily regenerated and reused. As shown 75 in Figure 8(b), the resultant [EMIM][AA]-PMMA sorbents could overcome the high viscosities of the [EMIM][AA]s such that the resultant sorbents exhibited a dramatically enhanced sorption rate (CO₂ adsorption equilibriums could be reached in less than 15 min) due to the high mass transfer area of AAILs after ⁸⁰ immobilization. When exposed to CO₂ at 40 °C, the adsorption capacity of [EMIM][Arg], [EMIM] [Ala], and [EMIM][Gly] was 1.01, 1.38, and 1.53 mmol g⁻¹, respectively. And they also synthesized 1-ethyl-3-methylimidazoliumlysine ([EMIM][Lys]) and immobilized it in a porous PMMA microsphere support for 85 post-combustion CO₂ capture, exhibited a high CO₂ capacity of 1.67 mmol g⁻¹.²⁹⁴

Luo et al.²⁹⁵ developed a new method for capturing CO₂ using several pyridine-containing anion-functionalized ILs, which include two kinds of interacting sites, by cooperative interactions. ⁹⁰ A high capacity up to 1.60 mol CO₂ per mol IL and excellent reversibility were achieved by introducing a nitrogen-based interacting site on the phenolate and imidazolate anion. It was found that the multiple site cooperative interaction between two kinds of interacting sites in the anion resulted in superior CO₂ ⁹⁵ capacities, which originated from the π-electron delocalization that increased Mulliken atomic charge of the nitrogen atom.

Figure 8. (a) Diagram of synthesis and immobilization of functional[EMIM][AA] for CO₂ capture. (b) CO₂ adsorption/desorption of three different sorbents [EMIM][AA]– ⁵ PMMA (with an [EMIM][AA] loading of 50 wt% in the sorbents). The inset shows the photo-image of as-prepared [EMIM][AA]– PMMA sorbents.²⁹⁴

- It is discovered that conversion of ionic monomers into ¹⁰ polymeric forms could increase the CO₂ capture efficiency as compared to the room-temperature ILs. Over these poly(ionic liquid)s (PILs), the sorption-desorption rates become faster and the processes are completely reversible.^{292, 296-298} Moreover, comparing to the corresponding monomers, both the CO₂ ¹⁵ sorption capacity^{298, 299} and the selectivity in terms of separation of CO₂ from mixtures of N₂/CO₂, CH₄/CO₂ and O₂/CO₂²⁹⁸⁻³⁰¹ are improved. Further fabrication of the membranes made of PILs can lead to much enhanced mechanical strength as compared to SILMs. For example, the CO₂ sorption capacities of
- ²⁰ tetraalkylammonium-based ILs polymers are 6.0–7.6 times higher than that of the room-temperature ILs, which are also significantly higher than those of the polymer solids such as polymethacrylates, polystyrene and polycarbonates.³⁰²⁻³⁰⁴ In addition, it has be experimentally proved that the desorption of CO₂ from
- ²⁵ PILs is also fast. Privalova et al.²⁹⁶ studied the imidazolium-based PILs that consist of poly[2-(1-butylimidazolium-3-yl)ethyl methacrylate] (BIEMA) cation coupled with different counter anions as CO₂ sorbents. An increase in the molecular weight slightly enhanced the CO₂ capture capacity, and the only
- ³⁰ exception was observed for Br–containing PILs. Moreover, as CO₂ capture and release can be performed at room temperature, no additional heat supply is required for the process. This study

uncovers new opportunities for developing alternative CO₂ capture materials with tunable properties and recyclability, which ³⁵ can be considered as additional options for CO₂ mitigation methods.

2.11. Other low-temperature adsorbents

There are some other novel low-temperature adsorbents such as boron nitride (BN), alkali metasilicate, magadiite, which have not 40 been reported prior to 2011.9 Based on the fact that nitrogen atoms incorporated in a system can act as Lewis base sites for CO₂ chemisorption, the potential application of boron nitride for CO₂ capture and storage thus has gained attention recently.³⁰⁵⁻³⁰⁸ In 2011, Jiao et al.³⁰⁵ and Choi et al.³⁰⁹ almost simultaneously ⁴⁵ reported the CO₂ capture by boron nitride materials. Jiao et al.³⁰⁵ studied the CO₂ capture and activation over graphene-like boron nitride (g-BN) with boron vacancy using density functional theory (DFT), and found that CO₂ can be captured and activated by g-BN with a boron vacancy, followed with dissociation to 50 produce lattice-embedded carbon and surface-adsorbed molecular oxygen. From ab initio calculations, Choi et al.³⁰⁹ reported strong CO₂ adsorption on boron sites in boron-rich boron nitride nanotube and found it could capture CO₂ effectively at ambient conditions. Sun et al.³⁰⁶ first demonstrated that by modifying the 55 charge state of the BN nanomaterials, adsorption/desorption of CO2 on BN nanosheets and nanotubes can be controlled and reversed. Although many works have been performed on boron nitride as CO₂ adsorbents, almost all of the reports, up to now, are still based on theoretical calculations or simulations. To move 60 ahead, a proper design of suitable boron nitrides and the evaluation of their CO₂ capture capacity experimentally are highly demanded.

Although alkali silicates are generally regarded as hightemperature CO₂ sorbents in the temperature range of 500–700 °C. 65 one special kind of alkali silicate, alkali metasilicate (M2SiO3 where M is Li, Na, K) has been demonstrated to adsorb CO₂ at low temperatures (30–130 °C).³¹⁰⁻³¹² Kalinkin et al.³¹⁰ studied the CO₂ sorption over M₂SiO₃ (where M is Li, Na, K) in an atmosphere of CO₂. With identical amounts of energy supplied, 70 the CO₂/M₂SiO₃ molar ratio in the samples activated in the medium of CO_2 increased in the order of Li < Na < K. Rodríguez et al.³¹¹ performed a thermo-kinetic analysis of CO₂ sorption over Na₂SiO₃ between room temperature and 130 °C. It was concluded that the quantity of CO_2 absorbed is not high enough to utilize it ⁷⁵ as CO₂ adsorbent. For alkali metalsilicates, the major problem is that their CO_2 capture capacity is still too low to be practically utilized at present. Vieira et al.³¹³ prepared a novel adsorbent through the impregnation of PEI into the interlayer space of layered silicate type magadiite and organo-magadiite. Magadiite 80 has an interlayer space that may be modified to diminish diffusional restrictions and the host variable concentration of PEI. These sorbents showed maximum adsorption capacity of 6.11 mmol g⁻¹ at 75 °C using 25 wt% impregnated PEI. Clay-based, alkali carbonate-based, and some other types of adsorbents and ⁸⁵ their CO₂ capture performance are summarized in Table 7.

Table 7. Summary of all clay-based, alkali carbonate-based, immobilized ionic liquid-based, and some other types CO_2 adsorbents and their performance in CO_2 capture.

Adsorbent types	Materials	CO ₂ uptakes	Refer ences
Clay-based adsorbents	Diamine modified montmorillonite	2.4 mmol g ⁻¹ at 100 °C, 1 bar	247
	APTMS and PEI modified montmorillonite	3.9 mmol g ⁻¹ at 85 °C, 20 bar	248
	Polyglycerol dendrimers modifired montmorillonite	0.02 mmol g^{-1} at room temperature, 1 bar	249
	PEI modified bentonite	1.1 mmol g ⁻¹ . at 75 °C, 1 bar	252
	TEPA modified bentonite	3.0 mmol g ⁻¹ at 75 °C, 1 bar	253
Alkali			267
carbonate- based adsorbents	TiO ₂ -Doped K ₂ CO ₃ /Al ₂ O ₃	2.5 mmol g ⁻¹ at 60 °C, 1 bar	268
	$K_2CO_3/Ca(OH)_2/\gamma\text{-}Al_2O_3$	2.0 mmol g ⁻¹ at 60 °C, 1 bar	314
	K_2CO_3/Y_2O_3	0.6 mmol g ⁻¹ at room temperature, 1 bar	269
	Na ₂ CO ₃ /Al ₂ O ₃ coated on foil	7.7 mmol of CO ₂ per g of Na ₂ CO ₃ at 150 °C, 1 bar	270
	NaOH	2.5–3 mmol g ⁻¹ at 25 °C, 1 bar	315
Immobilized ionic liquid-	[EMIM][Gly]-PMMA	1.7 mmol g ⁻¹ at 25 °C, 1 bar	294
based adsorbents	[EMIM][Lys]-PMMA	1.7 mmol g ⁻¹ at 40 °C, 1 bar	316
	Pyridine-containing anion-functionalized ILs	1.6 mol CO ₂ per mol IL at 20 °C, 1 bar	295
	Imidazolium-based PILs	0.3 mmol g ⁻¹ at 25 °C, 1 bar	296
Other adsorbents	PEI modified Magadiite	6.1 mmol g ⁻¹ at 75 °C, 1 bar	313
	Boron nitride	Not mentioned	305
	Boron nitride nanotube	Not mentioned	309
	Boron nitride	Not mentioned	306

3. Intermediate-temperature solid CO₂ sorbents

5 3.1 LDHs-based sorbents

LDHs derived mixed oxides have been recognized as the important intermediate-temperature CO₂ sorbents.³¹⁷⁻³¹⁹ In general. LDHs derived mixed oxides possess both high surface area and abundant basic sites, favorable for absorbing acidic CO₂ 10 at 200-400 °C.³²⁰⁻³²² Potentially LDHs-based CO2 sorbents can be used in the sorption enhanced water gas shift and biomass reforming processes. Previously a lot of efforts were made to improve the CO₂ capture capacity and the long-term stability of LDHs-based sorbents. For Mg-Al-CO₃ LDH, the research focus ¹⁵ was on the synthetic conditions, ³²³ presence of SO_x and H_2O , ³²⁴ operation pressures, ^{319, 325, 326} alkali (K, Cs) doping, ³²⁷⁻³³⁰ particle size,³³¹ and the uploading of LDHs on supports.^{332, 333} Later it was shifted to modify the composition of Mg-Al-CO₃ LDH by substituting either the CO₃²⁻ anion, or the divalent and trivalent 20 cations of Mg²⁺ and Al³⁺ with some other anions or cations.⁹ In the period of 2011 to 2014, the research activities mainly include the following five aspects: (1) the intercalation of organic anions, (2) the preparation of LDH based hybrid materials, (3) the control of LDH particle size, (4) the method for alkali (Na, K, Cs) doping, 25 and (5) mechanism study.

Recently, Wang et al.³³⁴ demonstrated that the anions affect the thermal stability and morphology, as well as the surface area of LDHs, consequently influencing the CO₂ sorption capacity. Among various LDHs, Mg₃Al₁-CO₃ showed the highest CO₂ ³⁰ sorption capacity of 0.53 mmol g^{-1} , which was much higher than those of other LDHs with HCO₃⁻, NO₃⁻, SO₄²⁻, and Cl⁻ anions (~0.2 mmol g⁻¹). Following this finding, Wang et al.³³⁵ first reported the synthesis of highly efficient intermediatetemperature CO₂ sorbents from organic anion-intercalated LDHs 35 (organo-LDHs). By intercalating long carbon-chain organic anions (e.g. stearate) into LDHs, the CO₂ capture capacity was markedly increased to 1.25 mmol g⁻¹, which is 2.5 times higher than that of traditional LDH-based sorbents (0.5 mmol g⁻¹). The schematic illustration of the structural changes and the CO₂ 40 capture by Mg₃Al₁-CO₃ and Mg₃Al₁-stearate are shown in Figure 9. It is believed that the improved CO_2 capture capacity is due to the following reasons: (1) the decomposition of long carbonchain anions cracks and splits the LDH plates and creates more surface basicity (O^{2-}) sites; (2) the produced mixed metal oxide 45 mixture has a lower degree of crystallinity; and (3) the formed guasi-amorphous structure is more stable than that from Mg₃Al₁-CO₃. Later Li et al.³⁰⁶ synthesized the LDH-based precursor by combining both long-carbon-chain stearic anion intercalation and K surface promotion, and obtained a CO₂ capacity up to 1.93 ⁵⁰ mmol g⁻¹ at 300 °C, 1.7 times higher than that of the conventional K₂CO₃-promoted hydrotalcite sorbent (1.11 mmol g⁻¹). The K ion may enter the more spatial interlayer spacing of the stearatepillared LDH, leading to a better promotion effect of K by forming weak surface chemical bonds.306 These increased K-55 species locate on all accessible precursor surfaces forming denser and better dispersed basic sites that can react with CO₂ after calcination.

Garcia-Gallastegui et al.³³⁶ synthesized LDH/GO hybrid for CO₂ capture, and improved both the CO₂ sorption capacity and ⁶⁰ recyclability. In particular, the absolute CO₂ capture capacity of the LDH was increased by over 60% using only 7 wt % GO as

the support. The synthesis and structure of LDH/graphene oxide (GO) are illustrated in Figure 10. During the precipitation of positively charged Mg-Al LDHs onto negatively charged GO, the mutual electrostatic interactions drive the self-assembly of

- ⁵ heterostructured nanohybrids in a "layer-by-layer" fashion.³³⁷ The resultant LDH serves as a spacer to prevent aggregation of individual graphene sheets, particularly after washing out the highly oxidized debris in the GO sample by aqueous base. On the other hand, the GO supports the LDH, improving its dispersion
 ¹⁰ and generating more active sites. Furthermore, based on the compatible degree of surface charge, an in situ LDH precipitation
- onto base-washed, oxidized, multi-walled carbon nanotubes (MWNTs) was developed to fabricate hybrid materials.³³⁶ MWNTs have an inert nanostructured network, which provides a ¹⁵ high surface area that can maximize the gas accessibility,
- minimize the coarsening effects, and significantly increase the stability of the LDH materials.

Figure 9. The general schemes of the structural changes of (a) Mg_3Al_1 -CO₃ and Mg_3Al_1 -stearate into amorphous mixed oxides, (b) Comparison of the CO₂ capture capacity of Mg_3Al_1 -CO₃ and Mg_3Al_1 -stearate derived CO₂ sorbent.

LDHs have been extensively investigated for decades, and ²⁵ many methods including co-precipitation,³³⁸ urea hydrolysis,³³⁹ structure reconstruction,³⁴⁰ sol-gel,³⁴¹ ion exchange,³⁴² and reverse microemulsion³⁴³ have been employed. To increase the

20 | *Journal Name*, [year], [vol], 00–00

crystalline degree or to control the morphology of LDHs, the aging process can be further assisted by either hydrothermal ³⁰ treatment,³⁴⁴ sonication,³⁴⁵ or microwave irradiation.³⁴⁶ However, due to the layered structural feature of LDH, it generally prefers to form either "sand rose"³⁴⁷ or "platelet-like"³⁴⁸ morphologies. Recently, Wang et al.³⁴⁹ first synthesized nano-sized spherical Mg₃Al₁-CO₃ LDHs with an average particle size of ca. 20 nm by 35 employing the isoelectric point (IEP) concept. Although the nanospherical LDH only showed a slightly increase in CO2 capture capacity (0.58 mmol g⁻¹) compared to the "sand rose" LDH (0.53 mmol g^{-1}), the result clearly suggest that the mesoporous structure and big pores of nanospherical LDHs are 40 favorable for the dispersion of doped K₂CO₃ species. After doping K₂CO₃, a much higher CO₂ capture capacity of 1.21 mmol g^{-1} than that of the conventional LDH (0.91 mmol g^{-1}) was obtained.

For the alkali metal carbonate promoted LDHs, most of the 45 previous work used K₂CO₃ as K precursor and H₂O as the solvent. In a recent work, Wang et al.³⁵⁰ systematically investigated the promoting effect of different alkali metal carbonates such as Li₂CO₃, Na₂CO₃, Rb₂CO₃, and Cs₂CO₃, and of the solvents. The sample doped with Li2CO3 showed the highest CO2 capture ⁵⁰ capacity (1.05 mmol g^{-1}) at 400 °C and 1 bar, followed by K₂CO₃ (0.96 mmol g⁻¹), Na₂CO₃ (0.83 mmol g⁻¹), Rb₂CO₃ (0.79 mmol g⁻¹) ¹), and Cs_2CO_3 (0.75 mmol g⁻¹) doped samples, suggesting that, with the same weight loading, Li₂CO₃ has an even better promotion effect than K₂CO₃. In addition, the solvent has a big 55 impact on CO₂ capture. Besides H₂O, some organic solvents including methanol, ethanol, 1-butanol, and 2-propanol were also used to dissolve K₂CO₃ during the preparation of K₂CO₃/LDH. The results indicated that the capacity was greatly increased when organic solvents were used. The capacity at 400 °C was increased 60 from 0.96 mmol g⁻¹ with H₂O to 1.09 mmol g⁻¹ with methanol, 1.25 mmol g⁻¹ with ethanol, 1.22 mmol g⁻¹ with 1-butanol, and 1.33 mmol g⁻¹ with 2-propanol. With H₂O as the solvent, the amorphous MgAlO_x mixed oxide was transformed back to LDHs structure again during the preparation. This is reasonable due to $_{65}$ the presence of both H₂O and CO₃²⁻ in the mixture. However, with organic solvents, there was no change in the amorphous structure, and this probably results in a better dispersion of K⁺ during the impregnation.

⁷⁰ Figure 10. The structure of the LDH–GO hybrid material.³³⁶

Page 22 of 46

The CO₂ adsorption sites and formation mechanism of LDHderived metal oxides were investigated by Gao et al.351, who found that when LDH is optimally calcined there are two 5 mechanisms for the formation of active Mg-O species. One is that the active Mg-O species can be generated by substitution of Mg^{2+} by AI^{3+} in the periclase MgO lattice, as shown in Figure 11(a). To compensate for the positive charge generated by Al^{3+} , the adjacent oxygen anions will become coordinatively 10 unsaturated.³⁵² With insertion of one Al³⁺ into the periclase MgO lattice, there will be generation of two active Mg-O species. The other one is that a portion of the inserted Al^{3+} might diffuse out of the octahedral sites and become tetrahedrally coordinated in the interlayer. The site formerly occupied by Al³⁺ is left vacant, 15 which consequently produces three active Mg-O species around it, as shown in Figure 11(b). Therefore, the calcination temperature is one of the key parameters that determine the number of active Mg-O species. If it is too low, the Mg-O bonds cannot be broken

and the hydroxide phase remains; however, if it is too high, the ²⁰ Mg and Al will start to react and form the MgAl₂O₄ spinel oxide. Since each LDH has a different thermal stability, their optimal calcination temperature is different. In addition, this explains why the quasi-amorphous phase obtained by thermal treatment at the lowest possible temperature gives the highest CO_2 capture

25 capacity.

Figure 11. The proposed mechanisms for the formation of active Mg-O species induced by (a) the substitution of Mg by Al and (b) the diffusion of Al atoms out of the octahedral brucite layers.³⁵¹

30

3.2 MgO-based sorbents

Considering the abundant surface basic sites of the metal oxides and the acidic nature of CO_2 , it is expected that some metal This journal is \bigcirc The Royal Society of Chemistry [year]

oxides can act as CO2 sorbents. Among various metal oxides, 35 MgO is potential for both carbon capture and long-term CO₂ fixation. Chemically, CO2 reacts with MgO to form thermodynamically stable MgCO₃ (\triangle H \approx 1100 kJ mol⁻¹). However, we noticed that there were only few reports using MgO as CO₂ sorbent three years ago. In recent years, much attention 40 has been gained over MgO based sorbents. MgO absorbs CO2 in the temperature range of 200-400 °C and can be regenerated at relatively low temperatures (~500 °C) compared to CaO-based sorbents,9, 353 and has a low energy requirement for regeneration.³⁵³⁻³⁵⁵ However, because of its moderate CO₂ 45 sorption capacity, relative slow sorption kinetics and easiness to lose its surface area during regeneration, the practical application of MgO as a CO₂-sorbent is quite limited.⁹ The adsorption sites for CO₂ on MgO are associated with low coordinated Mg²⁺-O²⁻ sites. $^{333,\ 356\text{-}358}$ The acidic CO_2 reacts with basic $O^{2\text{-}}$ sites 50 depending on their coordination. Oxygen atoms located at edges and corners of the crystal surfaces have stronger basicity than those in the basal planes.³³³ CO₂ adsorbs as monodentate on the edge sites and bidentate on the corner sites. 359 The CO_2 adsorption capacity of commercially available MgO is fairly ss small (0.5 mmol g^{-1}).³⁶⁰ In order to enhance the CO₂ capacity of MgO-based sorbents, improvement are mainly focused on (1) decreasing the particle size and synthesis of porous MgO, (2) dispersing MgO nanoparticles on porous supports, (3) modifying MgO with alkali carbonates, and (4) preparation of MgO-based 60 mixed oxides.

An effective method to enhance the efficiency of CO₂ absorption on metal oxide is to decrease the particle size to have more exposed active sites.³⁶¹ Bian et al.³⁶¹ reported a thermal decomposition method to synthesize mesoporous MgO with high 65 surface area and a narrow pore size distribution, and obtained enhanced CO₂ adsorption capacity as compared with commercially available MgO nanoparticles. Ruminski et al.362 also proved that the CO₂ sorption capacity of MgO is highly related to surface area. In general, the accessibility of sorption 70 sites and synergistic porous support are crucial for efficient capture sorbate molecules in a gas stream.^{363, 364} For this reason, dispersing MgO onto a porous support is intensively investigated.³⁶⁵⁻³⁷¹ Liu et al.³⁷² prepared MgO nanoparticles (MgO NPs) stabilized by mesoporous carbon (mPC-MgO) 75 through a fast pyrolysis of the MgCl₂-loaded waste biomass.³⁷³ The obtained mPC-MgO showed excellent performance in the CO₂ capture process with the maximum capacity of 5.45 mmol g ¹, much higher than many other MgO based CO₂ sorbents. The CO₂ capture capacity of the mPC-MgO material kept almost 80 unchanged in 19 runs, and could be regenerated at low temperature. Kim et al.³⁷⁴ prepared multi-core MgO NPs@C core-shell nanospheres. 3 nm MgO NPs were embedded discretely in the carbon shell, which showed high selectivity for CO₂ over N₂. This composite also showed a high CO₂ uptake 85 capacity (5.3 mmol CO₂ per g MgO) as well as high recyclability.

In addition, much attention has been paid to alkali metal promoted MgO. Potassium carbonate supported on MgO³⁷⁵ has been reported to be capable of capturing CO_2 at elevated temperatures with good cycling stability. Webley et al.³⁷⁶

synthesized K₂CO₃ promoted MgCO₃ with a CO₂ uptake of 1.8 mmol g⁻¹ at 375 °C and 1 bar. Liu et al.³⁷⁷ synthesized Cs₂CO₃ doped MgO sorbent, and obtained the maximum CO₂ uptake of 1.9 mmol g⁻¹ at 300 °C. The results suggested that the CO₂ s chemisorption on Cs₂CO₃-doped MgO formed a mixed Mg–Cs carbonate phase with undetermined stochiometry, and the activation energy of this reaction route was lower than that of the carbonation of MgO at moderate temperatures. The formation of this mixed phase is the reason why Cs₂CO₃-doped MgO shows an

- ¹⁰ improved CO₂ sorption capacity compared to pure MgO sorbent. The activity of MgO can also be improved via mixing with some other metal oxide such as TiO₂,^{378, 379} and Al₂O₃,³⁸⁰ etc. Han et al.³⁸⁰ prepared nano-structured MgO-Al₂O₃ aerogel adsorbents with different Mg/Al molar ratios. The crystalline structure of
- ¹⁵ MgO-Al₂O₃ aerogel adsorbents was transformed in the sequence of Al₂O₃ \rightarrow MgAl₂O₄ \rightarrow MgO-MgAl₂O₄ with increasing Mg/Al molar ratio from 0 to 3. The sorbents with Mg/Al = 0.5 with the highest medium basicity showed the best CO₂ capture capacity of 0.5 mmol g⁻¹. Although intensive efforts have been made to
- ²⁰ improve the capacity of MgO, the reported absorption capacities of MgO-based systems are still not high enough, which is likely to limit its wide use for CO₂ capture.³⁸¹ LDH-based and MgObased adsorbents and their CO₂ capture performance are summarized in Table 8.

25

Table 8. Summary of LDH-based and MgO-based CO_2 adsorbents and their performance in CO_2 capture.

Adsorbent types	Schemes	Materials	CO ₂ uptakes	Refer ences
LDH-based adsorbents	Intercalation of organic anions	Mg ₃ Al ₁ - stearate LDHs	1.3 mmol g ⁻¹ at 200 °C, 1 bar	335
	Hybrid materials	MgAl-CO ₃ LDH/GO	0.5 mmol g ⁻¹ at 300 °C, 1 bar	336
	Control of particle size	nano-sized spherical Mg ₃ Al ₁ -CO ₃ LDHs	0.6 mmol g ⁻¹ at 200 °C, 1 bar	349
	Alkali doping	Mg ₃ Al ₁ - stearate LDHs + K ₂ CO ₃	1.9 mmol g ⁻¹ at 300 °C, 1 bar	382
		nano-sized spherical Mg3Al ₁ -CO3 LDHs + K ₂ CO3	1.2 mmol g ⁻¹ at 200 °C, 1 bar	349
MgO-based adsorbents	Dispersing on supports	mPC-MgO	5.5 mmol g ⁻¹ at 80 °C, 1 bar	372
		MgO NPs@C	7.7 mmol g ⁻¹ at 27 °C, 1 bar	374
	Alkali doping	MgCO ₃ + K ₂ CO ₃	1.8 mmol g ⁻¹ at 375 °C, 1 bar	376

	$MgO + Cs_2CO_3$	1.9 mmol g ⁻¹ at 300 °C, 1 bar	377
Preparation of mixed oxides	MgO/TiO ₂ (4:6)	0.5 mmol g ⁻¹ at 25 °C, 1 bar	378, 379
	MgO-Al ₂ O ₃ aerogel	0.5 mmol g ⁻¹ at 200 °C, 1 bar	380

4. High-temperature solid CO₂ sorbents

4.1 CaO-based sorbents

30 Calcium oxide (CaO) based materials are a type of hightemperature CO₂ sorbents with high theoretical sorption capacity and low cost. It has attracted tremendous attention owning to a number of its advantages.³⁸³ A very nice review paper on the calcium looping cycle for large-scale CO₂ capture has been ³⁵ published by Blamey et al.³⁸⁴ CaO-based sorbents can be used in both pre-combustion and post-combustion processes, which follow similar principles.³⁸⁵⁻³⁸⁸ The whole CO₂ sorption process can be divided into two distinct steps. In the first step, CO₂ is chemically adsorbed on the surface of the sorbent; and in the ⁴⁰ second step, CO₂ diffuses into the bulk of the sorbent.³⁸⁹ Thus, the exothermic carbonation reaction is characterized by two stages: (1) an initial fast surface reaction controlled by the reaction kinetics, and a (2) slower reaction restricted by the diffusion of CO₂ in the CaCO₃ product. In our previous review 45 paper, we have pointed out that the main problem for calciumbased materials is the low reversibility of the carbonation reaction due to the sintering of sorbent particles. We noticed that, in the past three years, great efforts have been devoted to the improvement of sintering-resistant properties of CaO-based 50 sorbents, which include (1) improving the synthesis method, (2) changing morphology and microstructure, (3) surface modification, (4) synthesis of CaO-based mixed oxides, (5) increasing attribution resistance, (6) reactivating the degraded sorbents, and (7) influence of SO₂, etc.

Various methods have been employed to decrease the particle 55 size and increase the surface area of CaO, including precipitation reaction, bubble templating, interfacial reaction, ion liquidassisted hydrothermal and solvothermal processes, etc.³⁹⁰ For instance, with coprecipitation method, different calcium 60 precursors could lead to CaO samples with different properties. Karami et al.³⁹¹ prepared CaO sorbents from CaCl₂ and Ca(NO₃)₂ respectively, and concluded CaCl₂ is a better precursor. The solgel method is well explored to produce reactive CaO sorbents. 392-³⁹⁴ Xu et al.³⁹³ synthesized CaO-based sorbents composed of 65 active CaO and inert Ca₉Al₆O₁₈ (acted as the support matrix) by a sol-gel method. In comparison with pure CaO, the sol-gel-derived sorbents had smaller grain sizes, larger surface areas, and highly interconnected pore networks as well as uniform distribution of CaO and Ca₉Al₆O₁₈. The synthetic sorbents exhibited high 70 reactivity and stability in 35 carbonation-calcination cycles. With the CaO content of 70, 80, and 90 wt %, the CO₂ capture capacity at the 35th cycle was 11.4, 11.8, and 13.4 mmol g⁻¹, respectively. Similar results were also observed by Santos et al.³⁹² and Luo et al.³⁹⁴. Moreover, López-Periago et al.³⁹⁵ reported that the

performance of CaO-based sorbents could be improved via preparation under supercritical condition.

Moreover, it is possible to obtain CaCO₃ with different degrees of purity and textural properties by utilizing various solvents, ⁵ surfactants or organic additives.³⁹⁰ Recently, Liu et al.³⁹⁶ reported that the performance of CaO was enhanced by forming novel mesoscopic hollow spheres of CaO/Ca₁₂Al₁₄O₃₃ with tunable cavity size (Figure 12). It was believed that the void space in the hollow structures can buffer against the local large volume

- ¹⁰ change during carbonation/calcination cycles, and is able to alleviate the pulverization and aggregation problem of the sorbent material, hence improving the cycling performance. Contrary to the microporous sorbents (< 2 nm), the mesoscopic sorbents (2– 50 nm) are less susceptible to pore blockage and plugging
- ¹⁵ through the increase of volume, while still retain a large surface area to ensure rapid kinetics. Furthermore, the inert $Ca_{12}Al_{14}O_{33}$ binders can effectively separate the CaO particles and thus act as a physical barrier to prevent sintering and aggregation of the CaO nanoparticles. The CO₂ capture capacity of the hollow sorbents
- ²⁰ was only slightly decreased after 30 cyclic runs, with remaining of about 91–98% adsorption capacities, which was much higher than that (23%) of the CaO sorbent calcined from a commercial CaCO₃ precursor.³⁹⁶

²⁵ Figure 12. Diagram of the formation mechanism of the CaO/Ca₁₂Al₁₄O₃₃ hollowspheres.

To minimize the loss of activity and improve the life cycle performance of limestone, one method is to treat limestone with ³⁰ organic acids (acetic acid, formic acid, oxalic acid, etc)³⁹⁷ or mineral acids (HCl, HBr, HI, and HNO₃)³⁹⁸ to increase the sorbent porosity thus enhance the CO₂ capture capacity.^{379, 399} Ridha et al.^{397, 400} carried out a comprehensive assessment of the treatment on limestone with various organic acids to explore ³⁵ feasibility of this approach for modifying sorbents. The results showed that after 20 cycles, the carbonation conversion of limestone treated with acetic acid, vinegar, formic acid, and oxalic acid was 33.1%, 21.1%, 31%, and 35.2%, respectively, in contrast to 18.9% of the untreated limestone, clearly proving that

⁴⁰ the treatment with organic acids improved the sintering-resistance properties of the modified sorbent. However, the activities of these sorbents were declined in a similar fashion to that of untreated limestone. Moreover, the treated sorbents which performed well for CO₂ capture also performed well for SO₂ ⁴⁵ capture, leading their CO₂ capture capacity to decline at least as rapidly as the untreated natural sorbent or even more. Al-Jeboori et al.³⁹⁸ studied the effects of mineral-acid (HCl, HBr, HI, and ⁵⁰ concentrations of a dopant led to a significant improvement in long-term carrying capacity, whereas doping to a greater extent yielded a marked reduction in capacity. It was proposed that the doping could shift the pore sizes in the calcined limestone to those of approximately the optimal diameter for repeated reaction.

For pure CaO sorbent, although its CO₂ capture capacity can 55 be somehow improved by utilizing different synthesis methods, alerting the morphologies, crystal structures and porosities, or pretreatment with organic acids etc, the enhancement is still too marginal in most cases. Recently, it has been well established that 60 the performance of CaO based sorbent can be significantly improved by the physically or chemically modification of pure CaO. As pointed out in our previous review paper,9 a feasible way to enhance the stability of the CaO-based sorbents is to incorporate CaO particles into inert materials, which acts as 65 structural supports or matrices. These inert materials include $\begin{array}{l} Al_2O_3, ^{401-405} \quad MgO, ^{406, \ \ 407} \quad TiO_2, ^{408} \quad KMnO_4, ^{409} \quad SiO_2, ^{410} \\ Ce_xZr_yO_z, ^{411} \ La_2O_3, ^{412} \ LaAl_xMg_yO_3, ^{411} \ CaZrO_3, ^{413} \ etc. \ Among \ all \end{array}$ the studied CaO-based mixed oxides sorbents, the most investigated is aluminum-containing material.401, 402, 414 70 Martavaltzi et al.415 prepared CaO-Ca12Al14O33 sorbents by using different calcium precursors, Ca(OH)2 and Ca(CH3COO)2, and found that the sorbent derived from Ca(CH₃COO)₂ exhibited higher CO₂ uptake ability, because the low tortuosity in its pores allowed easy access of CO₂ to the active sites of the sorbent. Liu 75 et al.⁴⁰⁶ developed a simple wet-mixing method to prepare sintering-resistant CaO-based sorbents using calcium L-lactate and aluminum lactate, and found that the support was not Ca₁₂Al₁₄O₃₃ but Ca₉Al₆O₁₈. Zhou et al.⁴¹⁶ synthesized a series of CaO-based CO₂ sorbents from various calcium and aluminum 80 precursors by a wet-mixing method. The as-prepared sorbents consisted of active CaO and inert support materials that could be Al2O3, Ca12Al14O33 or Ca9Al6O18, depending on calcium and aluminum precursors used in the preparation process. Compared to pure CaO, most of the synthetic CaO-based sorbents showed 85 much higher CO₂ capture capability and stability over multiple carbonation/calcinations cycles, which was ascribed to the relatively high specific surface area of the sorbents, the bimodal pore-size distribution with a fair number of small pores, and the inert support material that can effectively prevent or delay 90 sintering of CaO particles. Among these synthetic sorbents the CaO-Ca₉Al₆O₁₈ sorbent with a CaO content of 80 wt% derived from calcium citrate and aluminum nitrate exhibited the best performance for CO₂ capture. Its CO₂ capture capacity decreased from 0.59 at the first cycle to 0.51 at the 28th cycle and 95 correspondingly, the carbonation conversion reduced from 0.94 to 0.81, demonstrating high reactivity and stability of this sorbent over long-term cyclic operation.⁴¹⁶ Recently, Amos et al.⁴¹⁷ reported that the stability of CaO supported on mesoporous Ca_xAl_yO_z is superior to that supported on macro/mesoporous ¹⁰⁰ hierarchical Ca_xAl_yO_z, and it was believed that the formed CaO layer might be too on the surface of macro/mesoporous structure.

MgO is another well studied supporting material for enhancing the sintering-resistant properties of CaO.^{406, 418} Mabry et al.⁴¹⁹ revealed that the best MgO:CaO ratio was 0.6, which maintained ¹⁰⁵ its capacity at 86% of its original uptake even after 50 cycles. Wu

HNO₃) doping on the long-term reactivity of limestone-based

low

et al.⁴¹² reported that TiO_2 can also be used for the improvement of sorption properties of CaO-based sorbent. Li et al.⁴⁰⁹ demonstrated that the addition of KMnO₄ improved the long-term performance of CaCO₃, resulting in directly measured conversion as high as 0.35 after 100 cycles, while the untreated CaCO

- ⁵ as high as 0.35 after 100 cycles, while the untreated CaCO₃ retained conversion less than 0.16 under the same reaction conditions. Huang et al.⁴¹⁰ reported that the sorption capacity and long-term durability can be enhanced by using highly ordered mesoporous SBA-15 molecular sieves as carriers. Durability tests
- ¹⁰ showed that the CO₂ adsorption ratio remained at 80% after 40 cyclic runs. Similar results have also been reported by Sanchez-Jimenez et al.⁴²⁰ The silica supported CaO exhibited a stable CaO conversion under Ca-looping conditions. A 10 wt% CaO impregnated sorbent reached a stable conversion above 0.6,
- ¹⁵ which was much larger than the residual conversion of CaO derived from natural limestone (between 0.07 and 0.08). Zhao et al.⁴¹³ synthesized CaO sorbent modified with CaZrO₃ which was in the form of \leq 0.5 µm cuboid and 20–80 nm particles dispersed within the porous matrix of CaO/CaCO₃. The sample of 10 wt%
- ²⁰ CaZrO₃/90 wt% CaO showed an initial rise in CO₂ uptake capacity in the first 10 carbonation-decarbonation cycles, increasing from 7.0 mmol g⁻¹ in cycle 1 to 8.4 mmol g⁻¹ in cycle 10 and stabilizing at this value for the remainder of the 30 cycles tested, with carbonation at 650 °C in 15% CO₂ and calcination at 25 800 °C in air.

In addition to dispersing the CaO on inert supports, another scheme is to make CaO@porous metal oxides core@shell composite adsorbents. Li et al.⁴²¹ prepared CaCO₃@mesoporous silica in a core-shell structure (denoted as CaCO₃@mSiO₂) as a ³⁰ high-performance CO₂ sorbent. The improved carbonation

- conversion retention of the (CaCO₃@5.6 wt% mSiO₂)-based pellet sorbent was around 25% after 50 cycles of decarbonation/carbonation, which was higher than that of the CaCO₃-based sorbent (13%). It was believed that the mesoporous ³⁵ silica can serve as a stable framework structure and diffusion
- barrier for the improvement of the stable reversibility of the cyclic reaction.

It is well known that limestones are quite fragile, but the main factors and the mechanism on their attrition have not been well ⁴⁰ clarified, especially during calcination/carbonation for CO₂ capture.⁴²² Recently attempts have been made to improve the attrition resistance and CO₂ uptake of the Ca-based sorbent by making pellets with aluminate cement. Chen et al.⁴²³ investigated the effects of various factors on attrition, and found they follow

- ⁴⁵ the order of temperature > superficial gas velocity > exposure time > pressure. CO₂ release during calcination of sorbents is the main reason for sorbent attrition and comminution. A slow decay in CO₂ capture capacity was observed for the pellets during cycling, because of the exposure of inner core of CaO sorbents by
- ⁵⁰ attrition and enhanced sintering resistance by adding the aluminate cement in the sorbent during pelletization. Chen et al.⁴²⁴ further demonstrated that a much slower decay during multiple cycles could be obtained by adding 5–10 wt% pores forming agent. This was attributed to the large number of
- 55 mesopores generated by the use of chemical agents and the exposure of inner core of CaO sorbents due to the attrition, which

are in favor of CO₂ capture.

One important issue for CaO based sorbents for practical applications is how to reactivate the degraded sorbents.^{425, 426} The 60 reactivation of CaO using steam hydration has been widely reported in the literature, and there is an agreement on the fact that the positive effect of hydration is due to the improved morphology of the sorbent.427, 428 It is suggested that the hydration causes the formation of cracks in the CaO particles, 65 creating channels extending to the interior of the particles and, thus, improving CO₂ capture.⁴²⁹ The formation of larger pores because of hydration also improves the performance of the sorbents because they become less susceptible to pore blockage.430 Yin et al.431 found that the water hydration of 70 calcined limestone was independent of the factors, such as particle size, hydration duration, hydration temperature, and precalcination temperature. Also the conversion of hydrated limestone could not be further enhanced by ultrasonic hydration. In contrast, the synthetic CaO/cement sorbent showed strong 75 dependence on those factors. In addition, the CaO conversion of the synthetic CaO/cement sorbent could be recovered to more than 80% by ultrasonic hydration. Li et al.432 and Chen et al.423, modified the CaO derived from limestone in water with addition of ethanol and calcium lignosulfonate respectively and ⁸⁰ improved the conversion of CaO to nearly 60% after 15 cycles. Martínez et al.⁴³⁴ found that if the reactivation of the sorbent by hydration was carried out at every cycle, the residual carrying capacity of the sorbent can be increased by a factor of 6.6. However, the steam consumption in these conditions may be 85 unacceptably high (estimated over 1.2 mol of H₂O/mol of CO₂) captured). They also suggested that the reactivation by hydration may not be attractive in systems operating with particles that have moderate life spans.

Considering the fact that SO₂ is also produced from fossil fuel ⁹⁰ combustion, and can be captured by the Ca-based sorbents, it is necessary to investigate the effect of SO₂ on CO₂ capture behavior.^{435, 436} Unfortunately, it is found that SO₂ in calcium looping systems decreases sorbent activity, as SO₂ irreversibly forms CaSO₄.⁴³⁷⁻⁴⁴⁰ Sun et al.⁴⁴¹ reported that SO₂ impeded cyclic ⁹⁵ CO₂ capture because of pore blockage by sulfate products, resulting primarily from direct sulfation during the later stage of each cycle. This adverse effect of SO₂ was confirmed by Ryu et al.⁴⁴² and Lu and Smirniotis.⁴⁴³ Therefore, despite the fact that sorbent performance can be influenced to some extent by altering ¹⁰⁰ carbonation and calcination conditions, the presence of SO₂ must be avoided if the objective is CO₂ capture from flue gas. Symonds et al.⁴⁴⁴ suggested that the best way to avoid the effect of SO₂ is to desulfurize the flue gases in a separate reactor.^{444, 445}

Up to date, all the research efforts regarding to CaO-based CO₂ ¹⁰⁵ sorbents can be briefly summarized in Figure 13. By utilizing different synthesis methods or pretreating limestone with acids, pure CaO particles with higher specific surface areas and smaller particle size, or special microstructures (e.g. hollow CaO, mesoporous CaO, etc) can be obtained. In order to further ¹¹⁰ improve its performance, a more feasible approach is to make CaO-based mixed oxides type CO₂ sorbents. By incorporating

CaO particles into inert materials that act as structural supports or matrices, the durability can be significantly improved. Since CaO based CO₂ sorbents is very promising for practical applications, some other important issues have also been investigated, for 5 instance the attribution, degraded sorbent reactivation, and the effect of SO₂, etc.³⁸⁵ CaO-based adsorbents and their CO₂ capture performance are summarized in Table 9.

¹⁰ Figure 13. A brief summary of all efforts for improving the CO₂ capture capacity and sintering-resistant properties of CaO based sorbents.

Table 9.	Summary	of	CaO-based	sorbents	and	their	performance	in	CO_2
15 capture.									

Schemes	Materials	CO ₂ uptakes at 1 bar	Refer ences
Improving synthesis method	CaO by coprecipitation	15.9 mmol g ⁻¹ after 17 cycles, sorption: 700 °C, desorption: 850 °C, 35% CO ₂ in N ₂	391
	CaO by sol-gel	5.5 mmol g ⁻¹ after 70 cycles, sorption: 700 °C, desorption: 800 °C, 15% CO ₂ in N ₂	392
	CaO by sol-gel	13.4 mmol g ⁻¹ after 35 cycles, sorption: 650 °C, desorption: 800 °C, 15% CO ₂ in N ₂	393
	CaO by sol-gel	11.6 mmol g ⁻¹ after 20 cycles, sorption: 650 °C, desorption: 800 °C, 15% CO ₂ in N ₂	394
	Synthetic CaO	14.8 mmol g ⁻¹ after 25 cycles, sorption: 750 °C, desorption: 900 °C, 20% CO ₂ in N ₂	395
Changing morphology and microstructure	CaO- Ga ₁₂ Al ₁₄ O ₃₃ hollow sphere	14.1 mmol g ⁻¹ after 30 cycles, sorption: 650 °C, desorption: 900 °C, 100% CO ₂	396

Surface modification	Organic acids modified CaO powder	5.7 mmol g ⁻¹ after 20 cycles, sorption: 650 °C, desorption: 850 °C, 15% CO ₂ in N ₂	397
	Organic acid modified CaO pellets	2.3 mmol g ⁻¹ after 20 cycles, sorption: 650 °C, desorption: 850 °C, 15% CO ₂ in N ₂	446
	Mineral acids modified CaO powders	6.8 mmol g ⁻¹ after13 cycles, sorption: 700 °C, desorption: 900 °C, 15% CO ₂ in N ₂	398
	Formic acid modified	7.0 mmol g ⁻¹ after 20 cycles, sorption: 650 °C, desorption: 850 °C, 15% CO ₂ in N ₂	400
Synthesis of mixed oxides	CaO- Ga ₉ Al ₆ O ₁₈	13.4 mmol g^{-1} at 650 °C, 1 bar	416
	CaO/CaxAlyO z	9.8 mmol g ⁻¹ after 30 cycles, sorption: 700 °C, desorption: 850 °C, 15% CO ₂ in N ₂	417
	CaO/meso- SiC	3.0 mmol g ⁻¹ after 30 cycles, sorption: 690 °C, desorption: 850 °C, 15% CO ₂ in N ₂	417
	CaO/Ca12Al14 O33	7.3 mmol g ⁻¹ after 30 cycles, sorption: 690 °C, desorption: 850 °C, 15% CO ₂ in N ₂	415
	CaO/Ca12Al14 O33 nanospheres	13.9 mmol g ⁻¹ after 30 cycles, sorption: 650 °C, desorption: 900 °C, 15% CO ₂ in N ₂	447
	CaO-MgO	15.9 mmol g ⁻¹ after 50 cycles, sorption: 750 °C, desorption: 750 °C, 100% CO ₂	419
	CaO-SiO ₂	2 mmol g ⁻¹ after 50 cycles, sorption: 650 °C, desorption: 850 °C, 15% CO ₂ in N ₂	420
	CaO-CaZrO ₃	8.4 mmol g ⁻¹ after 30 cycles, sorption: 650 °C, desorption: 800 °C, 15% CO ₂ in N ₂	413
	CaCO ₃ @meso porous silica	8.6 mmol g ⁻¹ after 50 cycles, sorption: 650 °C, desorption: 850 °C, 15% CO ₂ in N ₂	421

4.2 Alkali zirconates-based sorbents

Alkali zirconates such as Li₂ZrO₃ is another group of well-studied high-temperature CO2 sorbents. The main obstacle for the ²⁰ practical application of Li₂ZrO₃ is its kinetic limitation. Previous efforts were made to improve its CO_2 capture performance via (1) changing the crystal structures, and (2) substituting partially substituting Li⁺ with Na⁺ or K⁺. However, during the past three years, it seems the research activities with this type of materials 25 were somehow declined, with only few papers published.

Previously, Li₂ZrO₃ was often prepared using solid-state

70

reaction method by mechanically mixing the starting materials of ZrO₂ and Li₂CO₃ and heating the mixture at high temperatures for a long time. Consequently, sintering at high temperatures normally results in large particle sizes of Li₂ZrO₃. To synthesize s Li₂ZrO₃ sorbents with fine particle size, a liquid phase method

- has been applied.^{448, 449} But the prepared Li₂ZrO₃ sorbents didn't possess the desired CO₂ capture properties due to a heterogeneous distribution of Li and Zr species in it. Alternatively, a citrate method was developed to synthesize ¹⁰ Li₂ZrO₃ sorbents with improved CO₂ capture properties, which
- exhibited a faster CO_2 uptake rate and a higher, nearly stoichiometric absorption capacity at 550 °C and a CO_2 partial pressure of 0.5 bar. However, at lower CO_2 partial pressures, the sorbents still showed relatively lower uptakes.⁴⁵⁰ Xiao et al.⁴⁵⁰
- ¹⁵ synthesized K-doped Li₂ZrO₃ sorbents with excellent CO₂ capture properties via a citrate route, better than the Li₂ZrO₃-based ones, especially at low CO₂ partial pressures. At 550 °C and a CO₂ partial pressure of 0.25 bar, the CO₂ uptake in the K-doped Li₂ZrO₃ with an optimized molar ratio of K : Li : Zr at ²⁰ 0.2:1.6:1 reached 5.2 mmol g⁻¹ within 15 min.

In addition to the synthesis work, some kinetic studies and modeling have also been performed to obtain a clearer understanding to the CO₂ sorption and desorption processes. Jiménez et al.⁴⁵¹ investigated the CO₂ sorption kinetics ²⁵ parameters including the reaction order, rate constant, apparent, intrinsic and diffusional activation energies on Na₂ZrO₃. A global reaction rate of first order in CO₂ and a strong dependence on temperature was found. The approximate solution to the shrinking core model was used to fit the data. Modeling results

- ³⁰ indicated the surface reaction as the main resistance to the reaction rate, controlling reaction kinetics with only a minor contribution of the product layer diffusion resistance toward the end of the reaction. Duan et al.⁴⁵² investigated the structural, electronic, and phonon properties of Li₈ZrO₆ using density ³⁵ functional theory and lattice phonon dynamics. The results
- indicated that the lithium zirconate with a lower Li_2O/ZrO_2 ratio has a lower turnover temperature. Hence, by mixing or doping two or more materials to form a new composite, it is possible to find or synthesize CO_2 sorbents that can fit the industrial needs
- ⁴⁰ for optimal performance. In short, the main problem for alkali zirconates-based CO₂ sorbents is still the slow kinetics and severely sintering during sorption/desorption cycles, and more works are highly desired for their practical applications.

4.3 Alkali silicates-based sorbents

- ⁴⁵ In our previous review paper, alkali silicates were only briefly mentioned without a deep discussion.⁹ However, tremendous efforts have been paid to this type of materials in the last few years. Up to date, a series of alkali silicates including Li₄SiO₄,⁴⁵³ Li_{4-x}Na_xSiO₄,⁴⁵⁴ Li_{4+x}(Si_{1-x}Al_x)O₄,⁴⁵⁴ Li_{4-x}(Si_{1-x}Al_x)O₄,⁴⁵⁴ Li_{4-x}(Si_{1-x}Al_x)O₄,⁴⁵⁵
 ⁵⁰ Li₈SiO₆,^{455, 456} Li₆Si₂O₇,⁴⁵⁶ Li₂Si₂O₅,⁴⁵⁶ Li₂Si₃O₇,⁴⁵⁶ CaSiO₃,⁴⁵⁷
- $(OH)_3Al_2O_3SiOH^{458}$ have been studied for CO_2 absorption at high temperatures. The first alkali silicate that was reported for high-temperature CO_2 capture is Li_4SiO_4 .⁴⁵⁹⁻⁴⁶¹ Since Li_4SiO_4 is synthesized from SiO₂, instead of ZrO₂ as for Li_2ZrO_4 , it has been
- $_{55}$ expected to be a promising CO₂ absorbent in the range of $_{500-850}$ °C. The main advantages of these materials are their

high CO₂ capture capacity and relative lower regeneration temperatures (<750 °C) as compared to other high-temperature CO₂ sorbents such as CaO, and their excellent stability that allow ⁶⁰ operations over a significant number of cycles without losing their sorption capacity. Furthermore, Li₄SiO₄ shows lower costs of the raw materials involved comparing the expensive ZrO₂ with the cheaper SiO₂.⁴⁶² The absorption is ascribed to the mechanism whereby lithium oxide (Li₂O) in the Li₄SiO₄ crystal structure ⁶⁵ reacts reversibly with CO₂ as shown in Figure 14⁴⁶³ and equation (1). Since Li₄SiO₄ has a considerably lower temperature for CO₂ emission in comparison with the CaO absorbent, the reaction between Li₄SiO₄ and CO₂ is easily reversible.

$$Li_4SiO_4 + CO_2 \rightarrow Li_2SiO_3 + Li_2CO_3$$
(1)

Figure 14. Reaction model of CO₂ absorption and emission by lithium silicate.⁴⁶³

⁷⁵ The theoretical maximum CO₂ absorption is 1 mole for every mole of Li₄SiO₄. As a result, a capacity of more than 8.2 mmol g⁻¹ should be possible. In practice, absorption up to around 8.0 mmol g⁻¹ could be obtained at a temperature of 700 °C followed by complete release at 850 °C. In a typical measurement, Li₄SiO₄

⁸⁰ absorbed CO₂ at a rate > 50 mg g⁻¹ min⁻¹ at 500 °C (which was roughly 30 times faster than Li₂ZrO₃ as reported by Kato et al.⁴⁶⁴) with a feed gas containing 20% CO₂. When the CO₂ concentration was lowered to 2% in the feed gas, the rate of CO₂ absorption by Li₂ZrO₃ became extremely low (< 0.23 mmol g⁻¹ stabsorption after 50 min), while that of Li₄SiO₄ was 7.5 mg g⁻¹ min and more than 5.7 mmol g⁻¹ absorption could be achieved within 50 min. Therefore, the replacement of ZrO₂ with SiO₂ not only reduces the absorbent weight by 23%, but also significantly improves the CO₂ absorption property of Li₄SiO₄ pellets was

- ²⁰ found that the CO₂ absorption property of L1₄SIO₄ pellets was strongly affected by the absorption temperature. With 10% CO₂, the fastest CO₂ absorption was observed at the temperature between 550 and 600 °C. Only a very small amount of CO₂ absorption was observed at temperatures higher than 600 °C.
- ⁹⁵ In most reports the studies were carried out in CO₂ atmospheres without the use of steam. The typical steam content during sorption enhanced hydrogen production processes is higher than 30%. Therefore, it is necessary to know the effect of

steam addition on the capture and regeneration properties and stability of these materials is important. Ochoa-Fernández et al.⁴⁶⁶ observed that the presence of water in the form of steam could enhance the capture and regeneration rates. However, a large ⁵ decay in the capacity was observed when compared to the performance of the sorbents in dry conditions. Another influencing parameter is the concentration of SO₂. Pacciani et al.⁴⁶⁷ studied the influence of SO₂ on CO₂ absorption over Li₄SiO₄ and demonstrated that the presence of SO₂, even at ¹⁰ concentrations as low as 0.002% resulted in an irreversible reaction with the absorbent and a decrease in CO₂ capacity. Analysis of SO₂-exposed samples revealed that the absorbent reacted chemically and irreversibly with SO₂ at 550 °C forming Li₂SO₄. It was thus suggested that industrial applications of

¹⁵ Li₄SiO₄ should require desulfurization of flue gas prior to contacting the absorbent.

In order to further improve the CO₂ capture performance of Li₄SiO₄ sorbents, improvements have been made in several aspects, including (1) microstructural modification, (2) alkali 20 promotion, (3) transition metal doping, (4) Li substitution by Na, etc. Romero-Ibarra et al.⁴⁶⁸ proved ball milling could significantly increase the surface area (by 10 times) and enhance CO₂ uptake and durability. Seggiani et al.462, 469 modified Li4SiO4 with different alkali carbonates $(K_2CO_3,$ $Na_2CO_3)$, binary 25 (K₂CO₃/Li₂CO₃, Na_2CO_3/Li_2CO_3) and ternary $(K_2CO_3/Na_2CO_3/Li_2CO_3)$ eutectic mixtures, and found that all the promoters noticeably improved the CO₂ uptake rate and sorption capacity. At the optimum absorption temperature of 580 °C, Li₄SiO₄ added with 30 wt% of K₂CO₃ or Na₂CO₃ showed the best 30 CO₂ absorption proprieties with a sorption capacity of 5.2 mmol $g^{-1}_{sorbent}$ corresponding to a Li₄SiO₄ conversion of about 80%. However, the addition of Na₂CO₃ caused sintering during multiple sorption/desorption cycles reducing significantly the sorption capacity within the defined sorption time. Whereas, the 35 sample added with 30 wt% K2CO3 maintained its original capacity during 25 CO₂ sorption/desorption cycles, showing an much higher cyclic stability.

Since the reaction of Li₄SiO₄ with CO₂ is assumed to occur at the outer surface of the crystal grain, ion diffusion of Li⁺ and O²⁻ 40 is required to facilitate the reaction with CO₂ to form lithium carbonate (Li₂CO₃).⁴⁷⁰ Hence, generating defects in crystalline Li₄SiO₄ by appropriate doping of foreign elements is likely to improve the reactivity. This can be concluded from studies where interstitial Li⁺ are created due to substitution of Si⁴⁺ by Al³⁺ or 45 where vacancies originate from replacement of Li⁺ by Al³⁺. In both cases, Li⁺-mobility and conductivity are increased as compared to that in non-modified Li₄SiO₄.^{471, 472} However, since Li⁺ is much smaller compared to O²⁻, diffusion of the latter should be the limiting part of ion availability at the reaction 50 surface. Hence doping vacancies into the Li₄SiO₄ lattice, which is assumed to facilitate O²⁻ hopping, is intended to improve reactivity substantially.⁴⁷³ Gauer et al.⁴⁷³ investigated doping of Li₄SiO₄ with hetero elements such as aluminum (Al) or iron (Fe)

to improve its CO₂ capture capacity. An obviously higher ss reactivity of Li_{3.7}Al_{0.1}SiO₄ compared to Li_{4.1}Al_{0.1}Si_{0.9}O₄ proved the vacancy doping to be superior to interstitial doping regarding

absorption of CO₂. The use of Fe instead of Al in Li_{3.7}Fe_{0.1}SiO₄ seems to be further advantageous since CO_2 is desorbed easier. In comparison, K-doped Li₄SiO₄ reveals problems with CO₂ 60 emission even if absorption can be performed at slightly lower temperatures. Anyway, Fe doped Li₄SiO₄ should be recognized as a very promising modification for improved CO₂ absorption from about 500 °C. Ortiz-Landeros et al.474 investigated the structural and thermochemical chemisorption of CO₂ on Li_{4+x}(Si_{1-x}Al_x)O₄ 65 and $Li_{4-x}(Si_{1-x}V_x)O_4$ solid solutions, and found that the addition of Al and V had significant but differently influence on the CO₂ chemisorption process. On Li_{4-x}(Si_{1-x}V_x)O₄ samples, the CO₂ chemisorption is considerably diminished, while on Li_{4+x}(Si_{1-x}Al_x)O₄ samples, the CO₂ capture is markedly improved. 70 In these two solid solutions, the product external shell is composed of Li₂CO₃ and Li₂SiO₃ in both cases, and the unique difference is the presence of Li₃VO₄ or LiAlO₂. Since Li₃VO₄ has a smaller lithium diffusion coefficient than Li₂CO₃, Li₂SiO₃ and LiAlO₄, the presence of Li₃VO₄ on the external shell must reduce $_{75}$ the CO₂ chemisorption by decreasing the lithium diffusion.

It has been well demonstrated that some alkaline solid solutions, such as lithium-sodium zirconates (Li_{2-x}Na_xZrO₃) and lithium-potassium zirconates (Li_{2-x}K_xZrO₃), present better CO₂ capture properties than the pure lithium or sodium zirconates.⁴⁷⁵⁻⁴⁷⁷ Moreover, it has been reported that even small quantities of a doping component, such as potassium, enhances the CO₂ capture capacity of lithium ceramics.⁴⁷⁸ For this reason, Mejia-Trejo et al.⁴⁵⁴ studied the synthesis of Li_{4-x}Na_xSiO₄ solid solutions and its performance for CO₂ capture. The Li_{3.85}Na_{0.15}SiO₄ sample s showed a significant improvement on the CO₂ absorption, getting a total CO₂ absorption equal to 4.4 mmol g⁻¹. Also, the absorption seemed to be faster in this sample.

Apart from Li₄SiO₄ based sorbents, other lithium silicates have also been investigated as high-temperature CO2 sorbents. Durán-90 Muñoz et al.455 explored the CO2 capture properties of a high lithium-content silicate (Li₈SiO₆) and found that it absorbed CO₂ over a wide range of temperatures. A CO2 uptake of 11.8 mmol g ¹ was achieved. The CO₂ chemisorption in the Li₈SiO₆ sample occurs via a two-step mechanism depending on the temperature 95 range. Initially, the Li₈SiO₆ chemisorbs 2 moles of CO₂ to produce Li_4SiO_4 , which subsequently traps a third mole of CO₂ to produce Li₂SiO₃ and an additional Li₂CO₃. However, the second reaction process only occurs at T \leq 550 °C. Later on, Duan et al.⁴⁵⁶ investigated CO₂ capture properties of lithium silicates with 100 different ratios of Li2O/SiO2 via an ab initio thermodynamic and experimental approach. By increasing the Li₂O/SiO₂ ratio (from $Li_2Si_3O_7$ up to Li_8SiO_6), the corresponding lithium silicates were found to have higher CO2 capture capacities, higher turnover temperatures, and higher heats of reaction. Obviously, the lithium 105 silicate with higher Li₂O/SiO₂ ratio will require more energy input to be regenerated at higher temperature. For the Li₂Orichlithium silicates (Li₈SiO₆, Li₄SiO₄, Li₆Si₂O₇), when the capture temperature is lower than the turnover temperature of Li₂SiO₃, they can absorb CO₂ to form Li₂CO₃ and SiO₂ with high 110 CO₂ capture capacity. However, if the capture temperature is above the turnover temperature of Li₂SiO₃, the products will be Li₂CO₃ and Li₂SiO₃ with low CO₂ capture capacity. The SiO₂-

rich lithium silicates (Li₂Si₂O₅, Li₂Si₃O₇) can thermodynamically absorb CO₂ at relatively low temperature with low capture capacity. However, if the temperature is too low, the kinetics of CO₂ capture reaction is too slow. Wang et al.⁴⁵⁷ reported the ⁵ absorption of CO₂ on CaSiO₃ at high temperatures and realized that CaSiO₃ commenced to absorb CO₂ at 400 °C and ended at 800 °C with about 28.72% CO₂ absorption efficiency while using 15% CO₂. CO₂ sorption-desorption cycles were also stable. Alkali silicates-based adsorbents and their CO₂ capture ¹⁰ performance are summarized in Table 10.

Table 10. Summary of alkali silicates-based sorbents and their performance in CO₂ capture.

Schemes	Materials	CO ₂ uptakes	Refer ences
Microstructure modification	Li ₄ SiO ₄	6.3 mmol g ⁻¹ at 500 °C, 20% CO ₂	464
mouncation	Li ₄ SiO ₄ pellet	6.3 mmol g ⁻¹ at 600 °C, 15% CO ₂	465
	${\rm Li}_4{\rm SiO}_4$	6.6 mmol g $^{\text{-1}}$ at 525 °C, 10% CO $_2$	466
	Li ₄ SiO ₄ pellet	$6.8~mmol~g^{-1}$ at 550 $^{\rm o}C,~14.7\%$ CO_2	479
	Li ₄ SiO ₄	6.3 mmol g ⁻¹ after 16 cycles, sorption: 700 $^{\circ}$ C, desorption: 700 $^{\circ}$ C, 50% CO ₂	480
	Li ₄ SiO ₄	3.5 mmol g ⁻¹ after 10 cycles, sorption: 550 °C, desorption: 550 °C, $^{\circ}$ C, 100% CO ₂	468
Alkali promotions	Li ₄ SiO ₄ + K ₂ CO ₃ /Na ₂ CO ₃	5 mmol g ⁻¹ after 20 cycles, sorption: 580 °C, desorption: 700 °C, 4% CO ₂	462
	$\begin{array}{l} Li_4SiO_4+\\ K_2CO_3 & +\\ Li_2TiO_3 \end{array}$	5.7 mmol g ⁻¹ at 650 °C, 15% CO ₂	467
Transition metal doping	Al and Fe doped Li ₄ SiO ₄	5 mmol g ⁻¹ at 650 °C, 100% CO ₂	473
	Li _{4+x} (Si _{1 –} _x Al _x)O ₄	3.9 mmol g $^{-1}$ at 700 °C, 100% $\rm CO_2$	474
Li substitution by Na	Li ₄₋ _x Na _x SiO ₄	$4.4~mmol~g^{\text{-1}}$ at 680 $^{\circ}\text{C},~100\%$ CO_2	454
	Li ₈ SiO ₆	11.6 mmol g $^{\text{-1}}$ at 650 °C, 100% CO_2	455
	Li ₈ SiO ₆	7.0 mmol g $^{-1}$ at 600 $^{\rm o}C,$ 100% $\rm CO_2$	456
	CaSiO ₃	3.5 mmol g ⁻¹ after 10 cycles, sorption: 700 °C, desorption: 800	457

°C, 15%

5. Solid CO₂ sorbents from waste resource

15 Current waste management practices involving landfill contribute toward climate change, and may lead to water and soil contamination, and local air pollution. To minimize or address the growing environmental concerns associated with increasing amounts of waste being landfilled, many research activities are 20 focusing on the development of new waste management strategies such as the preparation of useful materials from wastes. With the demand of huge amount of solid CO₂ sorbents, the development of low-cost materials that can sorb CO₂ efficiently will undoubtedly enhance the competitiveness of adsorptive ²⁵ separation for CO₂ capture in flue gas applications.⁴⁸¹ In 2012, Olivares-Marin et al.⁴⁸¹ published the first review paper on the preparation and application of CO2 sorbents from waste precursors, including coal by-products, biomass products, water treatment by-products, household residues, and some other 30 wastes, etc. Since then, there has been evidenced with active research activities in this area. To emphasize the importance, here we separately set a section to update the CO₂-sorbents from waste resource, although some of the CO₂-sorbents are discussed in the previous sections but obtained with different resources.

35 5.1 Carbon based CO₂ adsorbents from waste resource

According to United Nation Environment Programme (UNEP), globally 140 billion metric tons of biomass is produced per year from agriculture.⁴⁸² To fully resource these biomass wastes, one promising approach is to convert them into functional materials, ⁴⁰ such as carbon based CO₂ adsorbents. Up to date, various biomass wastes have been studied for the preparation of carbonbased CO₂ adsorbents, which can be categorized into four groups: (1) nut shells including almond shell,^{483, 484} coconut shell,⁴⁸⁵ palm shell,⁴⁸⁶ (2) wood processing residues including sawdust,⁴⁸ chips ⁴⁵ and barks,⁴⁸⁷ and poplar anthers,⁴⁸⁸ etc, (3) food residues including coffee grounds,⁴⁸⁹ bagasse,⁴⁹⁰ celtuce leaves,⁴⁹¹ (4) marine macroalgae,⁴⁹² and (5) pitch, etc.

Nut shells are available in large quantities and contain high content of carbon element, which should be an ideal precursor for 50 preparation of carbon-based CO₂ adsorbents. Plaza et al.^{493, 494} prepared a series of carbon adsorbents from olive stones and almond, with a CO₂ capture capacities of 2.7 mmol g^{-1} at 25 °C, which are even higher than that of commercial activated carbons. The basic surface oxides formed during the carbonisation and 55 activation processes have a beneficial effect on the CO₂ adsorption, and the pore size distribution also plays an important role in it, especially at low partial pressures.^{483,484} Vargas et al.⁴⁸⁶ prepared activated carbon honeycomb-monoliths with different textural properties from African palm shells, which achieved a $_{60}$ CO₂ sorption capacity of 5.8 mmol g⁻¹ at 0 °C and 1 bar. Ello et al.⁴⁸⁵ prepared microporous carbon from coconut shell and its maximum CO_2 uptake at 1 bar reached 3.9 and 5.6 mmol g⁻¹ at 25 and 0 °C, respectively.

Another type of common biomass precursor for the preparation ⁶⁵ of carbon-based CO₂ adsorbents is wood processing wastes, such

as substandard kraft cellulose, hydrolysis lignin, chips, bark, and sawdust, etc. Dobele et al.⁴⁸⁷ and Sevilla et al.⁴⁸ reported that the porous carbons obtained from solid waste of birch wood and sawdust could achieve a high CO₂ uptake of 3.6 and 4.8 mmol g⁻¹ ⁵ at 25 °C and 1 bar. Every spring innumerable brown granular poplar anthers fall on the land, and most of them are directly burnt as waste, which causes environmental pollution as well. Song et al.⁴⁸⁸ synthesized nitrogen-containing granular porous carbons with developed porosities and controlled surface ¹⁰ chemical properties from poplar anthers, and a CO₂ capture capacity as high as 51.3 mmol g⁻¹ was achieved at 25 °C and 50 bar.

The third kind of biomass precursor for making carbon based CO₂ adsorbent is food residues such as coffee grounds,⁴⁸⁹ ¹⁵ bagasse,⁴⁹⁰ and celtuce leaves,⁴⁹¹ etc. Coffee grounds can be considered as pollutant due to its high carbon content, which will consume large amount of oxygen for their degradation.⁴⁹⁵ Plaza et al.⁴⁸⁹ produced the microporous carbons from coffee grounds, which presented CO₂ adsorption capacities up to 4.8 mmol g⁻¹ at ²⁰ 0 °C, and 3.0 mmol g⁻¹ at 25 °C. Wang et al.⁴⁹¹ reported that porous carbons could be prepared from waste celtuce leaves, as shown in Figure 15(a).⁴⁸⁷ The as-prepared porous carbon had a very high specific surface area of 3404 m² g⁻¹ and a large pore volume of 1.88 cm³ g⁻¹. The porous carbon exhibited an excellent

 $_{25}$ CO₂ adsorption capacity at ambient pressures of up to 6.04 and $_{25}$ CO₂ and $_{25}$ compatingly $_{25}$ compatingly

4.36 mmol g^{-1} at 0 and 25 °C, respectively.

The fourth approach for the preparation of carbon based CO₂ adsorbents is from ocean pollutant. Enteromorpha prolifera is a marine macroalgae that is becoming more common due to 30 eutrophication and sequentially forms green tides, which impact ocean transportation, tourism and water quality. It is believed that the potentiality and feasibility for preparation of carbon-based CO₂ adsorbent from ocean pollutant is high if this kind of biomass can be utilized effectively.⁴⁹² Zhang et al.⁴⁹² synthesized 35 nitrogen-containing porous carbon from enteromorpha prolifera with as much as 2.6% nitrogen in the as-prepared state, and it had a hierarchical structure with interconnected microporosity, mesoporosity and macroporosity. The inorganic minerals in the carbon matrix contributed to the development of mesoporosity 40 and macroporosity by functioning as an in situ hard template. These carbons featured with high CO₂ capacity (2.4 mmol g^{-1} at 0 °C) and facile regeneration at room temperature (recovered 89% at 25 °C after eight cycles).

The fifth approach is for the preparation of carbon based CO_2 ⁴⁵ adsorbents is from pitch, which has been proposed by Wahby et al.⁴⁹⁶ Recently, both Casco et al.⁴⁹⁷ and Lee et al.⁴⁹⁸ reported the synthesis of porous carbon by chemical activation of pitch using KOH. They found that such obtained carbon materials are good candidates for CO_2 capture, with a capacity of ca. 3.8–4.6 mmol ⁵⁰ g⁻¹.

5.2 Silica-based CO₂ adsorbents from waste resource

Besides carbon, solid waste is often used to make silica. Lin et al.⁴⁹⁹ prepared silica spherical particles (MSPs) using sodium silicate extracted from TFT-LCD industrial waste powder

⁵⁵ inorganic acids including hydrochloric acids and nitric acids were employed to acidify the silicate supernatant to form activated silica precursors. The MSPs (HNO₃), which was synthesized in the presence of nitric acids exhibited high surface area (776 m² g⁻¹), mesopore size (5.3 nm) as well as large pore volume (1.15 cm³ cg⁻¹), and it was further applied as a support of adsorbent for CO₂ capture. It was demonstrated that TEPA-impregnated MSPs (HNO₃) adsorbent presented high adsorption performance (2.77 mol g⁻¹), superior to those of TEPA-SBA-15 and TEPA-MCM-41 manufactured from pure silica chemicals under the same test cs conditions. The results suggested that low-cost MSPs (HNO₃)

prepared using silicate solution from TFT-LCD waste powder via spray approach is a promising CO_2 adsorbents.

5.3 CaO-based CO₂ sorbents from waste resource

For the preparation of CaO-based CO₂ sorbents, generally two 70 types of wastes have been used, which are (1) eggshells and mussel shell,⁵⁰⁰ shell fish, and cuttle fishbones,⁵⁰¹⁻⁵⁰³ and (2) paper industrial solid waste.⁵⁰⁴ It is estimated that more than 45 million kg of eggshell waste are produced annually in the United States.⁵⁰⁵ Eggshell waste is a serious concern for food industry 75 due to the cost and environmental problems associated with their landfill, as each shell has adhered protein-rich membrane which attracts rats and other vermin.⁵⁰⁶ However, eggshell waste, which contains 95% calcium carbonate (CaCO₃), presents itself as inexpensive calcium-based CO₂ sorbent. Ives et al.⁵⁰⁰ found that 80 the performance of eggshells and mussel shells derived CaObased sorbents over the course of up to \sim 50 cycles of calcination and carbonation was significantly superior to limestone derived CaO sorbent. Sacia et al.⁵⁰¹ tested the eggshell waste for CO₂ capture via cyclic carbonation-calcination reactions. The 85 regeneration of spent sorbents with acetic acid provided a 38% improvement in CaO conversion over untreated shells after ten cycles. The eggshell membrane contains highly valuable Type X collagen, which can be recovered through the course of shell pretreatment to increase process feasibility (Figure 15(b)). This 90 scheme allows for sustainable generation of CaO sorbents while also transforming a current waste material into a value-added product. CaO sorbent has also been prepared from high calcium content alimentary wastes including egg shells, shellfish shells and cuttlefish bones by Castilho et al.⁵⁰² These results indicate 95 that alimentary wastes with high calcium content can be used to produce CO₂ sorbents thus contributing to mitigate the anthropogenic carbon and the environment contamination with alimentary wastes.502

Figure 15. (a) The synthesis scheme of porous carbon from waste celtuce leaves.⁴⁸⁷ (b) The synthesis scheme of CaO based CO_2 sorbents from eggshells.⁵⁰¹

Every year, very large amounts of calcium-based solid wastes such as carbide slag (from the chlor-alkali industry), red mud (from the aluminum industry), and lime mud (from the paper industry) containing Ca(OH)₂ or CaCO₃ are produced. Lime mud ¹⁰ is a solid waste produced as part of the process that turns wood

- chips into pulp for paper. Li et al.⁵⁰⁴ investigated the sequential SO_2 and CO_2 capture behaviour of lime mud in the calcium looping process. In order to minimize the unfavorable effects of impurities such as Na and Cl on CO_2 and SO_2 capture by lime ¹⁵ mud, the lime mud was prewashed with distilled water. The
- carbonation conversions of the raw lime mud and treated lime mud were stable with the number of cycles, and were about 0.21 and 0.36 after 100 cycles, respectively. Compared with the natural limestone, the treated lime mud exhibited a lower
- ²⁰ carbonation conversion during the first five cycles; however, it showed a higher carbonation conversion after five cycles. The ultimate carbonation conversions of the treated lime mud and the raw one were 4.8 and 2.8 times greater than that of the limestone, respectively.

25 5.4 Alkali silicate-based CO₂ sorbents from waste resource

For the synthesis of alkali silicate based CO_2 sorbents, three types of wastes have been utilized, which include (1) fly ash (FA),⁵⁰⁷ (2) rice husk ash,^{488, 508} and (3) diatomite,^{480, 509} etc. FA is the finely divided mineral residue resulting from the ³⁰ combustion of ground or powdered coal in power plants. The disposal of FA causes significant economic and environmental problems all over the world. Olivares-Marin et al.⁵⁰⁷ synthesized several Li₄SiO₄-based sorbents from FAs for CO₂ capture at high temperatures. Under the optimal experimental conditions (600 °C ³⁵ and 40 mol% K₂CO₃), the maximum CO₂ sorption capacity for the sorbent derived from FA was 2.4 mmol g⁻¹. The Li₄SiO₄-based sorbents could maintain its original capacity during 10 cycle processes and reach the plateau of maximum capture capacity in less than 15 min, while pure Li₄SiO₄ presented a ⁴⁰ continual upward tendency in the 15 min of the capture stage but didn't achieve the equilibrium capacity.

Table 11. Summary of solid sorbents synthesized from waste resource and their performance in CO_2 capture.

Sorbents	Waste type	CO2 uptake	Reference
Carbon	Olive stones	2.43 mmol g ⁻¹ at 25 $^{\circ}$ C, 1 bar	<u>506</u>
	Almond shell	2.66 mmol g ⁻¹ at 25 °C, 1 bar	<u>507</u>
	African palm shells	5.8 mmol g^{-1} at 0 °C, 1 bar	486
	Coconut shell	5.6 mmol g^{-1} at 0 °C, 1 bar	485
	Birch wood	15.91mmol g ⁻¹ at 25 °C, 20 bar	487
	Starch and cellulose, sawdust	4.8 mmol g ⁻¹ at 25 °C, 1 bar	48
	Coffee grounds	4.8 mmol g ⁻¹ at 0 °C, 1 bar	489
	Bagasse	$0.2 \text{ mmol g}^{-1} 75 ^{\circ}\text{C}, 1 \text{ bar}$	490
	Celtuce leaves	6.04 mmol g ⁻¹ at 0 $^{\circ}$ C, 1 bar	491
	Enteromorpha prolifera	2.40 mmol g $^{-1}$ at 0 °C, 1 bar	492
Silica	Industrial waste powder Inorganic acids	2.77 mol g ⁻¹ at 25 °C, 1 bar	499
CaO	Eggshell waste	14.29 mmol g ⁻¹ at 700 °C, 1 bar	501
	Egg shells	6.82 mmol g ⁻¹ at 700 °C, 1 bar	502
	Scallops	6.36 mmol g ⁻¹ at 700 °C, 1 bar	502
	Cuttlefish bones	4.09 mmol g ⁻¹ at 700 °C, 1 bar	502
	Lime mud	7.14 mmol g ⁻¹ at 700 °C, 1 bar	504
Alkali	Fly ash	2.40 mmol g ⁻¹ at 600 °C, 1	507

Page	32	of	46
------	----	----	----

silicate		bar	
	Rice husk ash	7.36 mmol g ⁻¹ at 710 °C, 1 bar	510
	Diatomite	6.50 mmol g ⁻¹ at 620 °C, 1 bar	480

Compared with FA, rice husk ash has higher amorphous SiO₂ content. Moreover, it also contains some metals, which may generate high-performance Li₄SiO₄-based sorbents for CO₂ capture. Wang et al.⁵⁰⁸ synthesized highly efficient Li₄SiO₄-based ⁵ sorbents for CO₂ capture from rice husk ash. At 650 °C, the sorption of CO₂ increased to 4.1 mmol g⁻¹ within 2.5 h. More importantly, the CO₂ uptake remained almost unchanged even after 15 cycles. It seems that the presence of metals in the Li₄SiO₄-based sorbents promoted the reaction kinetic of the CO₂ sorption when compared with pure Li₄SiO₄. Isothermal analysis further indicated the activation energies of the Li₄SiO₄-based sorbents prepared from rice husk ash are smaller than that of pure Li₄SiO₄. Later on, its CO₂ capture capacity was further increased to 6.92 mmol g⁻¹ via citric acid pretreatment of rice husk ash by ¹⁵ the same group.⁴⁸⁸

Taking into account the significant content of SiO₂ in diatomite, the synthesis of Li₄SiO₄-based CO₂ sorbent from diatomite has also been proposed, with the aim to further decrease the cost of Li₄SiO₄. Shan et al.⁴⁸⁰ demonstrated that the SiO₂ source has an ²⁰ important influence on CO₂ sorption properties. The sample with diatomite had higher sorption capacity and sorption rate than that with pure SiO₂ at the same retaining time. The maximum sorption capacity of the sample with diatomite reached 6.5 mmol g⁻¹, being 78% of the theoretical sorption capacity. In addition, lower ²⁵ activation energies of the sample with diatomite for the chemisorption process and diffusion process were also observed,

which was attributed to the structural differences caused by the aluminum and other elements present on the diatomite. Solid CO₂ sorbents synthesized from waste resource and their performance of for CO₂ conture are summarized in Table 11

³⁰ for CO₂ capture are summarized in Table 11.

6. Techno-economic assessment of CO₂ sorbents in real applications

For the research of CO₂ capture, besides the development of efficient CO₂ sorbents, another important and urgent issue is the ³⁵ techno-economic assessment of these sorbents/technologies in real applications. However, we will not give too much detail due to the limited length allowed for this review.^{511, 512} Recently, Zhao et al.⁵¹¹ performed a critical review of the techno-economic models for the retrofitting of conventional pulverised-coal power

- ⁴⁰ plants for post-combustion CO₂ capture. They compared four promising technologies for the post-combustion CO₂ capture that can be retrofitted to a conventional pulverised-coal power plant. By comparing the efficiency penalty and cost indicators of CO₂ capture using (i) chilled ammonia, (ii) alkali-metal carbonates, (iii)
- ⁴⁵ membranes or (iv) calcium looping to the benchmark MEA scrubbing process, it was found that calcium looping technology resulted in the lowest efficiency penalty (4.6%-points) and cost of

post-combustion CO₂ capture (36.3% increase in levelised cost of electricity). In addition, the cost of CO₂ avoided by employing ⁵⁰ calcium looping for post-combustion CO₂ capture can be as low as 29 USD₂₀₁₀ per tCO₂. On these three criteria, calcium looping performs more than twice as well as the benchmark MEA post-combustion CO₂ capture process.⁵¹¹

Hurst et al.⁵¹² examined the lifecycle greenhouse gas emissions 55 of a 500 MW_e pulverised coal-fired power plant with postcombustion calcium looping and off-shore geological storage. calcium looping uses solid CO2-sorbent derived from abundant and non-toxic limestone and is currently being piloted at the 1-2 MW_{th} scale in Europe (Spain and Germany). This technology 60 promises to be very competitive with the more mature chemical absorption processes, with the potential to reduce the efficiency and cost penalties of CO₂ capture. It has been demonstrated that the emission intensity of a coal-fired power plant with calcium looping is at least comparable with one using MEA-solvent 65 technology (i.e., ~229 gCO₂e/kWh vs. 225 gCO₂e/kWh). However, there is significant potential for additional emissions reduction when considering the recarbonation of exhausted sorbent in landfill.⁵¹² Dean et al.⁵¹³ have demonstrated that it is possible to use the spent sorbent from a promising CO₂ capture 70 process, the calcium looping cycle, for cement production, which might be able to further reduce the cost of CO_2 capture.

To have a thorough understanding to the impact of site-specific factors on the feasibility of CO₂ capture at industrial plant level, Berghout et al.⁵¹⁴ did a techno-economic analysis and made an 75 inventory of potential implementation or operational challenges related to the precombustion, postcombustion, and oxyfuel CO₂ capture technologies applied to five industrial plants from various industrial sectors. The results showed that CO₂ capture at the boilers, furnaces, catalytic crackers and gasifier of the refineries 80 resulted in CO₂ reductions of 64-75% for oxyfuel and precombustion technology. For the post-combustion configurations, CO₂ was also captured from the hydrogen plants, combined heat and power plants and gas turbine, resulting in CO2 reductions of 81-87%. By combining oxyfuel and pre-combustion with post-85 combustion technology for the hydrogen plants and utilities, significantly higher CO₂ reductions (80-96%) were calculated for the refineries. While combining oxyfuel and postcombustion technology resulted in higher CO₂ avoidance costs, the combination of pre- and post-combustion technology showed 90 slower CO₂ avoidance costs (6–17%), due to economies of scale of shared absorbers and strippers. The study also suggests that CO₂ avoidance costs also depend significantly on industrial plants, not only because of the difference in economies of scale, but also in CO2 concentrations in flue gases. Implementation issues 95 associated with short term configurations revolve mainly around retrofitting process units. Although retrofitting is technically feasible for all three capture technologies, it still should be proved on a commercial scale. The long term results are more indicative than the short term results, due to cost data uncertainty 100 and the long time frame in which possible plant layout changes may take place. Expectations for the long term are that the focus will shift from retrofit issues to the replacement of old process units with new-built capture-ready process units. Furthermore,

long term configurations will probably have minimal spatial constraints in (new-built) plant lay outs, capture technologies that are highly integrated with core processes, and optimized utility plants. These factors are expected to have a damping effect on the ⁵ projected long term CO₂ avoidance costs.⁵¹⁴

The cement industry is a significant industrial greenhouse gas (GHG) emitter, and the emission reduction is expected to be achieved via application of CCS technologies. However, the successful implementation of CO_2 capture technologies in the ¹⁰ cement industry will depend not only on the technical performance, but also on the assessment of energy recovery potential. Hence, Vatopoulos et al.⁵¹⁵ assessed the viability of three CO_2 capture technologies for the cement manufacturing process. Post-combustion absorptive capture (MEA) and oxy-¹⁵ combustion options are concepts already used by other industries

- and currently explored by the power sector; calcium looping postcombustion capture technology (CL) is an emerging technology that has not been assessed before in a comparative manner. The comparison was carried out in terms of specific energy
- $_{20}$ consumption, CO₂ footprint, CO₂ capture energy penalty, raw material consumption and energy recovery potential, by modeling of the integration of these process concepts with a reference cement plant. The results showed that for the same capture efficiency (85%), calcium looping has an advantage as the
- 25 specific energy consumption increases by 18%. In the case of MEA the increase is 45%. CL also has considerably higher energy recovery potential, which can also further reduce its CO₂ footprint. However, chemical looping demonstrates a higher complexity of integration with an existing cement plant. Oxy-
- ³⁰ combustion, though showing lower capture efficiency (60%), results in lower specific energy consumption than the base case cement plant, which causes a negative CO_2 capture penalty. These results contribute to the identification of the most suitable CO_2 reducing strategy for the cement industry.⁵¹⁵
- The technical and economic assessment of sorption enhanced water gas shift (SEWGS) as an innovative technology for CO₂ capture has been well investigated. In this process, CO₂ capture or removal of CO₂ from the products of WGS reaction is expected to shift the reaction to the desired direction for H₂ production and 40 CO reduction. Gazzani et al.⁵¹⁶ evaluated the thermodynamic
- ⁴⁰ CO reduction. Gazzani et al. evaluated the thermodynamic performances of CO_2 capture in natural gas combined cycle with SEWGS. The SEWGS working conditions were optimized in terms of carbon capture ratio and purity of the CO_2 separated as well as number of vessels adopted. Moreover, two different types
- ⁴⁵ of sorbent, Sorbent Alfa and Sorbent Beta, were considered in order to evaluate the impact of sorbent cyclic capacity on system performances. Results showed that SEWGS with Sorbent Alfa could avoid 91% of CO₂ emissions and reduce the efficiency penalty of amine scrubbing technologies from 8.4% to 7.2%.
- ⁵⁰ However, no significant impact of CO_2 purity on system performances was determined. While for the adoption of Sorbent Beta, which has an improved capacity of 60% than Sorbent Alfa, further reduction in specific primary energy consumption for CO_2 avoidance together with vessel number were observed. The best
- ⁵⁵ overall performance in terms of specific primary energy consumption for CO₂ avoided had a net electrical efficiency of

51.93 % and CO₂ avoidance of 86%. Manzolini et al.⁵¹⁶ did the economic assessment for CO2 capture in natural gas combined cycle with SEWGS. Results showed that with reference sorbent ⁶⁰ performances the calculated cost of CO₂ avoided is about 58 \in t⁻¹ CO₂, which is lower than reference MDEA (64 \in t⁻¹ CO₂) but higher than MEA (48.5 \in t⁻¹CO₂). The adoption of a sorbent with improved performances brings down the cost of CO₂ avoided down to $49 \notin t^{-1} CO_2$, which is comparable to post combustion 65 technology. This is a consequence of reforming sections costs which penalizes pre-combustion technologies: specific investment costs for SEWGS cases are 15% higher than MEA. Finally, as far as SEWGS working conditions are concerned, the optimal CO₂ capture rate depends on the sorbent cyclic capacity ⁷⁰ ranging from 90% to 95%, while the selected CO₂ purity is 99%. Knoope et al.⁵¹⁷ investigated the technological and economic prospects of integrated gasification facilities for power (IGCC) and Fischer-Tropsch (FT) liquid production with and without CCS over time. For this purpose, a component based experience 75 curve was constructed and applied to identify the potential performance improvement of integrated gasification facilities. The results also indicated that substantial cost reductions and performance improvements are possible, especially for IGCC with CCS. Afterwards, Chen et al.⁵¹⁸ investigated the IGCC 80 process incorporated with CaO sorbent by modeling and simulating using Aspen Plus software. The results showed IGCC with CaO sorption-enhanced process has a satisfactory system performance. Even though the net electricity efficiency was not as high as expected, just around 30-33%, the system had a high 85 CO₂ capture efficiency of ca. 97% and low pollutant emissions. Moreover, compared with conventional IGCC-CCS, the

Conclusions

In this paper, the most recent research progress in solid CO_2 90 capture materials has been thoroughly reviewed. All the materials are divided into three main groups according to their working temperature ranges, which are (1) low temperature CO₂ adsorbent (< 200 °C), (2) intermediate temperature CO_2 sorbents (200–400 °C), and high temperature CO₂ sorbents (> 400 °C). The low 95 temperature CO₂ sorbents can be further classified into two groups. The first group includes carbon-based (including graphite/graphene-based), zeolite-based, MOF-based, silica-based, polymer-based, and clay-based, etc, which adsorb CO₂ mainly by physical interaction. The second group includes solid amine-100 based, alkali metal carbonate-based, immobilized ion liquidbased, and alkali metasilicates, etc, which capture CO₂ mainly by chemical binding. For the first group, the CO₂ capture can be mainly attributed to their high specific surface areas and nanosized pores, etc, due to which their selectivity towards CO₂ is ¹⁰⁵ relatively low. In order to improve their CO₂ capture capacity and selectivity, several schemes have been developed, such as microstructure and morphology control, composition optimisation, cation exchange, surface modification, hybrid materials, etc. In particular, impregnating or grafting certain types of solid amines 110 and ILs on the above porous materials has been well recognized as promising approaches. For these low temperature CO₂ adsorbents, much effort has been directed towards enhancing

schematic diagram of the IGCC-CCS process is simplified.

their thermal stability, resistance to moisture, selectivity, durability, and kinetics, etc. Of course, another big concern is the cost of the materials, which is crucial for large scale industrial applications. For intermediate temperature CO₂ sorbents, LDHs ⁵ derived mixed oxides and MgO represent the majority. Much

- progress has been made during the last 3 years, including the use of organic anions to enlarge the interlayer distance, the preparation of LDH hybrid materials, the control of LDH particle size, and the method for alkali carbonates doping. Some more in-
- ¹⁰ depth mechanism investigations have also been performed. Up to date, the CO₂ sorption capacity of LDH derived sorbents already seems very promising and the major remaining issue is to figure out how to maintain its mechanical strength in the presence of steam and at high temperatures. Although intensive efforts have
- ¹⁵ been made to improve the capacity of MgO, the reported sorption capacities of MgO-based systems are still not high enough, hence potentially limiting its wide use for CO₂ capture. For high temperature CO₂ sorbents, CaO has a high CO₂ uptake capacity, but suffers severely from sintering during regeneration. One of
- ²⁰ the most feasible approaches is to incorporate CaO particles into inert materials that act as structural supports or matrices, by which the durability can be significantly improved. For the practical applications of CaO-based materials, some other important issues should be considered as well, for instance, the
- ²⁵ attribution, degraded sorbent reactivation, and the effect of SO₂, etc. The research activities on alkali zirconates have somehow declined and more attention has been directed towards alkali silicates. For instance, Li₄SiO₄ has shown high CO₂ capture capacity and relatively lower regeneration temperatures (<750 °C)</p>
- ³⁰ when compared to CaO, and it is also cheaper in raw materials when compared to alkali zirconates.

Another important part of this review paper is the preparation of CO₂ sorbents from waste resources, such as carbon-based adsorbent from various nut shells, wood and food residues, silica-³⁵ based adsorbent from industrial waste, CaO-based sorbents from egg shells, fishbones, paper industrial solid wastes, and alkali silicates from fly ash, rice husk ash, and diatomite. Finally, the techno-economic assessments of several CO₂ sorbents /technologies in real applications have been briefly reviewed. All 40 results have shown that it is very promising and necessary to

integrate the CO_2 sorbents into the current operating systems, either for decreasing the energy penalty or capturing CO_2 .

Acknowledgements

- This work is supported by the Fundamental Research Funds for ⁴⁵ the Central Universities (TD-JC-2013-3), the Beijing Nova Programme (Z131109000413013), the Program for New Century Excellent Talents in University (NCET-12-0787), the National Natural Science Foundation of China (51308045), the Key Laboratory of Functional Inorganic Material Chemistry
- ⁵⁰ (Heilongjiang University), and the Foundation of State Key Laboratory of Coal Conversion (Grant No. J14-15-309), Institute of Coal Chemistry, Chinese Academy of Sciences. Z. Z thanks the kind support of ICES under A*Star to this research and collaboration.

55 Notes and references

^a College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P. R. China. Tel: +86-13699130626; E-mail: <u>qiang.wang.ox@gmail.com</u>, <u>qiangwang@bjfu.edu.cn</u>

60 ^b Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OXI 3TA, UK

 ^c Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research in Singapore (A*STAR), 1 Pesek Road, Jurong Island, 627833 Singapore. Tel: +65-67963809; E-mail:
 ^{c5} zhong_ziyi@ices.a-star.edu.sg

‡ Footnotes should appear here. These might include comments relevant to but not central to the matter under discussion, limited experimental and spectral data, and crystallographic data.

70 References

- M. Mikkelsen, M. Jørgensn and F. C. Krebs, *Energy Environ. Sci.*, 2010, 3, 43.
- 2. P. N. Pearson and M. R. Palmer, Nature, 2000, 406, 695.
- 3. J. Lu, M. Cheng, Y. Ji and Z. Hui, J. Fuel Chem. Technol., 2009, **37**, 740.
- 4. http:// srippscO2.ucsd.edu/data/atmospheric_CO2.html.
- 5. W. Liu, D. King, J. Liu, B. Johnson, Y. Wang and Z. Yang, *JOM*, 2009, **61**, 36.
- E. A. Roth, S. Agarwal and R. K. Gupta, *Energy Fuels*, 2013, 27, 4129.
- 7. M. K. Mondal, H. K. Balsora and P. Varshney, Energy, 2012, 46, 431.
- J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried and R. D. Srivastava, *Int. J. Greenhouse Gas Control*, 2008, 2, 9.
- 9. Q. Wang, J. Luo, Z. Zhong and A. Borgna, *Energy Environ. Sci.*, 2011, **4**, 42.
- M. Olivares-Marin and M. Maroto-Valer, *Greenhouse Gases Sci.* Technol., 2012, 2, 20.
- 11. US Pat., 1783901, 1930.
- 12. G. T. Rochelle, Science, 2009, 325, 1652.
- 90 13. B. P. Mandal and S. S. Bandyopadhyay, *Chem. Eng. Sci.*, 2006, 61, 5440.
 - M. L. Gray, Y. Soong, K. J. Champagne, J. Baltrus, R. W. Stevens Jr., P. Toochinda and S. S. C. Chuang, *Sep. Purif. Technol.*, 2004, 35, 31.
- R. V. Siriwardane, M. S. Shen, E. P. Fisher and J. A. Poston, *Energy Fuels*, 2001, 15, 279.

Energy & Environmental Science

- T. Tsuda, T. Fujiwara, Y. Takteani and T. Saeguas, *Chem. Lett.*, 1992, 21, 2161.
- 17. S. Lee, T. P. Filburn, M. Gray, J. W. Park and H. J. Song, *Ind. Eng. Chem. Res*, 2008, **47**, 7419.
- 5 18. M. Schladt, T. P. Fiburn and J. J. Helble, *Ind. Eng. Chem. Res.*, 2007, 46, 1590.
- R. A. Khatri, S. S. C. Chuang, Y. Soong and M. Gray, *Energy Fuels*, 2006, **20**, 1514.
- 20. R. L. Burwell and O. Leal, *J. Chem. Soc., Chem. Commun.*, 1974, 342.
 - 21. US Pat., 6364938B1, 2000.
 - 22. US Pat., 2002083833A1, 2002.
 - 23. W. R. Alesi and J. R. Kitchin, Ind. Eng. Chem. Res, 2012, 51, 6907.
- 24. B. Ochiai, K. Yokota, A. Fujii, D. Nagai and T. Endo, *Macromolecules*, 2008, **41**, 1229.
 - X. Xu, C. Song, J.M. Andresen, B.G. Miller and A.W. Scaroni, *Energy Fuels*, 2002, 16, 1463.
 - N. Linneen, R. Pfeffer and Y. S. Lin, *Microporous Mesoporous Mater.*, 2013, 176, 123.
- 20 27. J.M. Chem, P. Bollini, S.A. Didas and C.W. Jones, J. Mater. Chem., 2011, 21, 15100.
 - W.J. Son, J.S. Choi and W.S. Ahn, *Microporous Mesoporous Mater.*, 2008, 113, 31.
- G. Qi, Y. Wang, L. Estevez, X. Duan, N. Anako, A. H. A. Park, W.
 Li, C. W. Jones and E. P. Giannelis, *Energy Environ. Sci.*, 2011, 4, 444.
 - 30. A. Danon, P. C. Stair and E. Weitz, J. Phys. Chem. C, 2011, 115, 11540.
- 31. D. J. Fauth, M. L. Gray, H. W. Pennline, H. M. Krutka, S. Sjostrom and A. M. Ault, *Energy Fuels*, 2012, **26**, 2483.
- 32. K. S. Lackner, Eur. Phys. J. Special Topics, 2009, 176, 93.
- T. Wang, K. S. Lackner and A. Wright, *Environ. Sci. Technol.*, 2011, 45, 6670.
- 34. A. P. Hallenbeck and J. R. Kitchin, *Ind. Eng. Chem. Res*, 2013, **52**, 10788.
 - H. B. Wang, P. G. Jessop and G. Liu, ACS Macro Letters, 2012, 1, 944.
 - A. L. Chaffee, G. P. Knowles, Z. Liang, J. Zhang, P. Xiao and P. A. Webley, *Int. J. Greenhouse Gas Control*, 2007, 1, 11.

- 40 37. M. B. Yue, L. B. Sun, Y. Cao, Y. Wang, Z. J. Wang and J. H. Zhu, *Chem. Eur. J.*, 2008, **14**, 3442.
- Y. Belmabkhout, R. Serna-Guerrero and A. Sayari, *Ind. Eng. Chem. Res.*, 2010, 49, 359.
- R. Sanz, G. Calleja, S. Arencibia and E. S. Sanz-Perez, *Appl. Surf. Sci.*, 2010, 256, 5323.
- A. Diaf, J. L. Garcia and E. J. Bechman, J. Appl. Polym. Sci., 1994, 53, 857.
- 41. A. Diaf and E. J. Bechman, React. Funct. Polym., 1995, 27, 45.
- 42. Y. Liu, Q. Ye, M. Shen, J. Shi, J. Chen, H. Pan and Y. Shi, *Environ. Sci. Technol.*, 2011, **45**, 5710.
- P. Bollini, S. Choi, J. H. Drese and C. W. Jones, *Energy Fuels*, 2011, 25, 2416.
- 44. J. Wang, D. Long, H. Zhou, Q. Chen, X. Liu and L. Ling, *Energy Environ. Sci.*, 2012, 5, 5742.
- 55 45. T. C. Drage, O. Kozynchenko, C. Pevida, M. G. Plaza, F. Rubiera, J. J. Pis, C. E. Snape and S. Tennison, *Energy Proc.*, 2009, 1, 599.
 - A. Arenillas, K. M. Smith, T. C. Drage and C. E. Snape, *Fuel*, 2005, 84, 2204.
- 47. V. Jiménez, A. Ramírez-Lucas, J. A. Díaz, P. Sánchez and A. Romero, *Environ. Sci. Technol.*, 2012, **46**, 7407.
- 48. M. Sevilla and A. B. Fuertes, Energy Environ. Sci., 2011, 4, 1765.
- 49. S. Y. Lee and S. J. Park, J. Colloid Interface Sci., 2013, 389, 230.
- 50. N. P. Wickramaratne and M. Jaroniec, J. Mater. Chem. A, 2013, 1, 112.
- 65 51. J. P. Marco-Lozar, M. Kunowsky, F. Suarez-Garcia and A. Linares-Solano, *Carbon*, 2014, **72**, 125.
 - 52. C. Robertson and R. Mokaya, *Microporous Mesoporous Mater.*, 2013, **179**, 151.
- J. Wang, A. Heerwig, M. R. Lohe, M. Oschatz, L. Borchardt and S. Kaskel, *J. Mater. Chem.*, 2012, 22, 13911.
- 54. T. C. Drage, A. Arenillas, K. M. Smith, C. Pevida, S. Piippo and C. E. Snape, *Fuel*, 2007, 86, 22.
- M. L. Gray, Y. Soong, K. J. Champagne, J. Baltrus, R. W. Stevens, P. Toochinda and S. S. C. Chuang, Sep. Purif. Technol., 2004, 35, 31.
- 75 56. H. Y. Huang and R. T. Yang, Ind. Eng. Chem. Res., 2003, 42, 2427.
 - M. M. Maroto-Valer, Z. Tang and Y. Zhang, *Fuel Process. Technol.*, 2005, 86, 1487.

ergy & Environmental Science Accepted Manuscript

- J. Przepiórski, M. Skrodzewicz and A. W. Morawski, *Appl. Surf. Sci.*, 2004, **225**, 235.
- M. G. Plaza, C. Pevida, A. Arenillas, F. Rubiera and J. J. Pis, *Fuel*, 2007, 86, 2204.
- 5 60. M. G. Plaza, C. Pevida, B. Arias, J. Fermoso, A. Arenillas, F. Rubiera and J. J. Pis, J. Them. Anal. Cal., 2008, 92, 601.
- J. Wei, D. Zhou, Z. Sun, Y. Deng, Y. Xia and D. Zhao, *Adv. Funct. Mater.*, 2013, 23, 2322.
- 62. X. Fan, L. Zhang, G. Zhang, Z. Shu and J. Shi, *Carbon*, 2013, **61**, 10 423.
 - 63. X. Ma, M. Cao and C. Hu, J. Mater. Chem. A, 2013, 1, 913.
 - 64. J. Wang, I. Senkovska, M. Oschatz, M. R. Lohe, L. Borchardt, A. Heerwig, Q. Liu and S. Kaskel, J. Mater. Chem. A, 2013, 1, 10951.
- 65. M. Sevilla, P. Valle-Vigón and A. B. Fuertes, *Adv. Funct. Mater.*, 2011, **21**, 2781.
 - 66. L.-Y. Meng, W. Meng, T. Chen and L. Y. Jin, J. Appl. Polym. Sci., 2014, in press.
 - J. Yu, M. Guo, F. Muhammad, A. Wang, F. Zhang, Q. Li and G. Zhu, *Carbon*, 2014, **69**, 502.
- 20 68. G. Sethia and A. Sayari, Energy Fuels, 2014, 28, 2727.
 - S. Feng, W. Li, Q. Shi, Y. Li, J. Chen, Y. Ling, A. M. Asiri and D. Zhao, *Chem. Commun.*, 2014, **50**, 329.
 - 70. R. S. Franchi, P. J. E. Harlick and A. Sayari, *Ind. Eng. Chem. Res.*, 2005, 44, 8007.
- 25 71. S. H. Liu, C. H. Wu, H. K. Lee and S. B. Liu, *Top. Catal.*, 2010, 53, 210.
 - 72. X. Ma, X. Wang and C. Song, J. Am. Chem. Soc., 2009, 131, 5777.
 - S. Satyapal, T. Filburn, John Trela and J. Strange, *Energy Fuels*, 2001, 15, 250.
- 30 74. W. J. Son, J. S. Choi and W. S. Ahn, *Microporous Mesoporous Mater.*, 2008, **113**, 31.
 - 75. X. Wang, H. Li, H. Liu and X. Hou, *Microporous Mesoporous Mater.*, 2011, **142**, 564.
- 76. M. B. Yue, Y. Chun, Y. Cao, X. Dong and J. H. Zhu, *Adv. Funct. Mater.*, 2006, 16, 1717.
 - 77. P. J. E. Harlick and A. Sayari, Ind. Eng. Chem. Res., 2007, 46, 446.
 - N. Hiyoshi, K. Yogo and T. Yashima, *Microporous Mesoporous Mater.*, 2005, 84, 357.

- 79. G. P. Knowles, S. W. Delaney and A. L. Chaffee, *Ind. Eng. Chem.* 40 *Res*, 2006, 45, 2626.
- R. Serna-Guerrero, Y. Belmabkhout and A. Sayari, *Chem. Eng. J.*, 2010, **158**, 513.
- D. Wang, X. Ma, C. Sentorun-Shalaby and C. Song, *Ind. Eng. Chem. Res.*, 2012, **51**, 3048.
- 45 82. Z. Tang, Z. Han, G. Yang and J. Yang, Appl. Surf. Sci., 2013, 277, 47.
 - J. Wang, H. Chen, H. Zhou, X. Liu, W. Qiao, D. Long and L. Ling, J. Environ. Sci., 2013, 25, 124.
 - A. Houshmand, W. M. A. Wan Daud and M. S. Shafeeyan, *Sep. Sci. Technol.*, 2011, 46, 1098.
- 50 85. A. Kumar Mishra and S. Ramaprabhu, RSC Adv., 2012, 2, 1746.
 - 86. D. I. Jang and S. J. Park, Bull. Korean Chem. Soc., 2011, 32, 3377.
 - 87. A. Houshmand, M. S. Shafeeyan, A. Arami-Niya and W. M. A. W. Daud, *J. Taiwan Inst. Chem. E.*, 2013, **44**, 774.
- 88. M. M. Gui, Y. X. Yap, S. P. Chai and A. R. Mohamed, *Int. J. Science Gas Control*, 2013, **14**, 65.
- M. G. Plaza, K. J. Thurecht, C. Pevida, F. Rubiera, J. J. Pis, C. E. Snape and T. C. Drage, *Fuel Process. Technol.*, 2013, **110**, 53.
- B. C. Bai, J. G. Kim, J. S. Im, S. C. Jung and Y. S. Lee, *Carbon lett.*, 2011, **12**, 236.
- 60 91. J.-Y. Jung, H.-R. Yu, S. J. In, Y. C. Choi and Y.-S. Lee, J. Nanomater., 2013, 2013, 1.
 - 92. D.-I. Jang and S.-J. Park, Fuel, 2012, 102, 439.
 - B.-J. Kim, K.-S. Cho and S.-J. Park, J. Colloid Interface Sci., 2010, 342, 575.
- 65 94. B. J. Park and S. J. Park, J. Mater. Sci. Lett., 1999, 18, 1607.
 - 95. M. Anbia and V. Hoseini, Chem. Eng. J., 2012, 191, 326.
- 96. Y. Kong, L. Jin and J. Qiu, Sci. Total. Environ., 2013, 463-464, 192.
- 97. L. Liu, Q. F. Deng, X. X. Hou and Z. Y. Yuan, J. Mater. Chem., 2012, 22, 15540.
- 70 98. B. Z. Jang and A. Zhamu, J. Mater. Sci., 2008, 43, 5092.
 - W. Lv, D. M. Tang, Y. B. He, C. H. You, Z. Q. Shi, X. C. Chen, C. M. Chen, P. X. Hou, C. Liu and Q. H. Yang, *ACS Nano*, 2009, 24, 3730.
 - 100.A. K. Mishra and S. Ramaprabhu, J. Mater. Chem., 2012, 22, 3708.
- 75 101.H. B. Zhang, J. W. Wang, Q. Yan, W. G. Zheng, C. Chen and Z. Z. Yu, J. Mater. Chem., 2011, 21, 5392.

- 102.L. L. Zhang, X. Zhao, M. D. Stoller, Y. Zhu, H. Ji, S. Murali, Y. Wu, S. Perales, B. Clevenger and R. S. Ruoff, *Nano Lett.*, 2012, **12**, 1806.
- 103.Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach and R. S. Ruoff, *Science*, 2011, **332**, 1537.
- 104.L. Y. Meng and S. J. Park, J. Colloid Interface Sci., 2012, 386, 285.
- 105.M. Asai, T. Ohba, T. Iwanaga, H. Kanoh, M. Endo, J. Campos-Delgado, M. Terrones, K. Nakai and K. Kaneko, J. Am. Chem. Soc., 2011, 133, 14880.
- 10 106.S.-M. Hong, S. H. Kim and K. B. Lee, Energy Fuels, 2013, 27, 3358.
 - 107.Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff, Adv. Mater., 2010, 22, 3906.
 - 108.D. Zhou, Q. Liu, Q. Cheng, Y. Zhao, Y. Cui, T. Wang and B. Han, *Chin. Sci. Bull.*, 2012, **57**, 3059.
- 15 109.A. A. Alhwaige, T. Agag, H. Ishida and S. Qutubuddin, RSC Adv., 2013, 3, 16011.
 - 110.S. Yang, L. Zhan, X. Xu, Y. Wang, L. Ling and X. Feng, *Adv. Mater.*, 2013, **25**, 2130.
 - 111.A. K. Mishra and S. Ramaprabhu, Chem. Eng. J., 2012, 187, 10.
- 20 112.M. Saleh, V. Chandra, K. C. Kemp and K. S. Kim, *Nanotechnology*, 2013, 24, 255702.
 - 113.R. S. D. Ko and L. T. Biegler, Ind. Eng. Chem. Res., 2003, 42, 339.
 - 114.P. Xiao, J. Zhang, P. Webley, G. Li, R. Singh and R. Todd, *Adsorption*, 2008, 14, 575.
- 25 115.Z. Liang, M. Marshall and A. L. Chaffee, *Energy Proc.*, 2009, 1, 1265.
 - 116.E. Díaz, E. Muñoz, A. Vega and S. Ordocnez, *Ind. Eng. Chem. Res.*, 2008, **47**, 412.
 - 117.J. Pires and M. Brotas de Carvalho, J. Mol. Catal., 1993, 85, 295.
- 30 118.J. Merel, M. Clausse and F. Meunier, *Ind. Eng. Chem. Res.*, 2008, 47, 209.
 - 119.P. Li and F. H. Tezel, Microporous Mesoporous Mater., 2007, 98, 94.
 - 120.S. K. Wirawan and D. Creaser, *Microporous Mesoporous Mater.*, 2006, **91**, 196.
- 35 121.B. Bonelli, B. Onida, B. Fubini, C. Otero Arean and E. Garrone, Langmuir, 2000, 16, 4976.
 - 122.J. Zhang, R. Singh and P. A. Webley, *Microporous Mesoporous Mater.*, 2008, **111**, 478.

- 123.A. Zukal, A. Pulido, B. Gil, P. Nachtigall, O. Bludsky, M. Rubesand and J. Cejka, *Phys. Chem. Chem. Phys.*, 2010, **12**, 6413.
- 124.R. Hernández-Huesca, L. Díaz and G. Aguilar-Armenta, *Sep. Purif. Technol.*, 1999, **15**, 163.
- 125.F. Su and C. Lu, Energy Environ. Sci., 2012, 5, 9021.
- 126.Z. Liu, C. Shen, F. V. S. Lopes, P. Li, J. Yu, C. A. Grande and A. E. ⁴⁵ Rodrigues, *Sep. Sci. Technol.*, 2013, **48**, 388.
 - 127.D. P. Bezerra, R. S. Oliveira, R. S. Vieira, C. L. Cavalcante and D. C. S. Azevedo, *Adsorption*, 2011, **17**, 235.
 - 128.M. Salmasi, S. Fatemi, M. Doroudian Rad and F. Jadidi, *Int. J. Environ. Sci. Technol.*, 2013, **10**, 1067.
- 50 129.S. Mahzoon and S. Fatemi, Sep. Sci. Technol., 2014, 49, 55.
 - 130.M. R. Hudson, W. L. Queen, J. A. Mason, D. W. Fickel, R. F. Lobo and C. M. Brown, *J. Am. Chem. Soc.*, 2012, **134**, 1970.
 - 131.S. Araki, Y. Kiyohara, S. Tanaka and Y. Miyake, J. Colloid. Interface. Sci., 2012, 388, 185.
- 55 132.P. Nachtigall, L. Grajciar, J. Perez-Pariente, A. B. Pinar, A. Zukal and J. Cejka, *Phys. Chem. Chem. Phys.*, 2012, 14, 1117.
 - 133.S. Loganathan, M. Tikmani and A. K. Ghoshal, *Langmuir*, 2013, **29**, 3491.
- 134.K. S. Walton, M. B. Abney and M. D. LeVan, *Microporous Mesoporous Mater.*, 2006, **91**, 78.
- 135.F. N. Ridha, Y. X. Yang and P. A. Webley, *Microporous Mesoporous Mater.*, 2009, **117**, 497.
- 136.M. M. Lozinska, E. Mangano, J. P. Mowat, A. M. Shepherd, R. F. Howe, S. P. Thompson, J. E. Parker, S. Brandani and P. A. Wright, *J. Am. Chem. Soc.*, 2012, **134**, 17628.
 - 137.T. H. Bae, M. R. Hudson, J. A. Mason, W. L. Queen, J. J. Dutton, K. Sumida, K. J. Micklash, S. S. Kaye, C. M. Brown and J. R. Long, *Energy Environ. Sci.*, 2013, 6, 128.
- 138.K. M. Lee, Y. H. Lim, C. J. Park and Y. M. Jo, *Ind. Eng. Chem. Res*, 2012, **51**, 1355.
- 139.A. G. Arévalo-Hidalgo, N. E. Almodóvar-Arbelo and A. J. Hernández-Maldonado, *Ind. Eng. Chem. Res.*, 2011, **50**, 10259.
- 140.S.-H. Hong, M.-S. Jang, S. J. Cho and W.-S. Ahn, *Chem. Commun.*, 2014, **50**, 4927.
- 75 141.F. Su, C. Lu, S. C. Kuo and W. Zeng, Energy Fuels, 2010, 24, 1441.
 - 142.P. D. Jadhav, R. V. Chatti, R. B. Biniwale, N. K. Labhsetwar, S. Devotta and S. S. Rayalu, *Energy Fuels*, 2007, 21, 3555.
 - 143.L.-Y. Lin, J.-T. Kuo and H. Bai, J. Hazard. Mater., 2011, 192, 255.

36 | Journal Name, [year], [vol], 00-00

Page 38 of 46

- 144.Y.-K. Kim, Y.-H. Mo, J. Lee, H.-S. You, C.-K. Yi, Y. C. Park and S.-E. Park, J. Nanosci. Nanotechnol., 2013, 13, 2703.
- 145.Y. Jing, L. Wei, Y. Wang and Y. Yu, *Microporous Mesoporous Mater.*, 2014, 183, 124.
- 5 146.P. Singh, J. P. M. Niederer and G. F. Versteeg, *Chem. Eng. Res. Des.*, 2009, 87, 135.
- 147.C. H. Yu, C. H. Huang and C. S. Tan, *Aerosol Air Quality Res.*, 2012, **12**, 745.
- 148.F.Y. Chang, K.J. Chao, H.H. Cheng and C.S. Tan, Sep. Purif.
 Technol., 2009, **70**, 87.
 - 149.R. Serna-Guerrero, Y. Belmabkhout and A. Sayari, *Chem. Eng. J.*, 2010, **158**, 513.
 - 150.R. Serna-Guerrero, Y. Belmabkhout and A. Sayari, *Chem. Eng. J.*, 2010, **161**, 173.
- 15 151.R. Sanz, G. Calleja, A. Arencibia and E. S. Sanz-Pérez, *Microporous Mesoporous Mater.*, 2012, **158**, 309.
 - 152.K. K. Han, L. Ma, H. M. Zhao, X. Li, Y. Chun and J. H. Zhu, Microporous Mesoporous Mater., 2012, 151, 157.
 - 153.E. Gallei and G. Stumpf, J. Colloid Interface Sci., 1976, 55, 415.
- 20 154.S. U. Rege and R. T. Yang, Chem. Eng. Sci., 2001, 56, 3781.
 - 155.F. Brandani and D. M. Ruthven, Ind. Eng. Chem. Res., 2004, 43, 8339.
 - 156.J. Janchena, D. T. F. Mohlmannb and H. Stach, *Stud. Surf. Sci. Catal.*, 2007, **170**, 2116.
- 25 157.A. Ertan and F. Çakicioglu-Özkan, Adsorption, 2005, 11, 151.
 - 158.K.-M. Lee, Y.-H. Lim and Y.-M. Jo, Environ. Technol., 2012, 33, 77.
 - 159.Y. S. Bae, K. L. Mulfort, H. Frost, P. Ryan, S. Punnathanam, L. J. Broadbelt, J. T. Hupp and R. Q. Snurr, *Langmuir*, 2008, 24, 8592.
- 160.Y. Liu, Z. U. Wang and H.-C. Zhou, *Greenhouse Gases Sci. Technol.*, 2012, **2**, 239.
 - 161.X. Peng, X. Cheng and D. Cao, J. Mater. Chem., 2011, 21, 11259.
 - 162.Z. Xiang, D. Cao, J. Lan, W. Wang and D. P. Broom, *Energy Environ. Sci.*, 2010, 3, 1469.
- 163.Z. Xiang, X. Peng, X. Cheng, X. Li and D. Cao, J. Phys. Chem. C, 2011, 115, 19864.
 - 164.A. G. Kontos, V. Likodimos, C. M. Veziri, E. Kouvelos, N. Moustakas, G. N. Karanikolos, G. E. Romanos and P. Falaras, *ChemSusChem*, 2014, 7, 1696.

- 165.Z. Zhang, Y. Zhao, Q. Gong, Z. Li and J. Li, *Chem. Commun.*, 2013, 40 **49**, 653.
- 166.H. Wu, J. M. Simmons, G. Srinivas, W. Zhou and T. Yildirim, J. Phys. Chem. Lett., 2010, 1, 1946.
- 167.S. R. Caskey, A. G. Wong-Foy and A. J. Matzger, J. Am. Chem. Soc., 2008, 130, 10870.
- 45 168.C. R. Wade and M. Dinca, Dalton Trans., 2012, 41, 7931.
 - 169.B. Mu, F. Li, Y. Huang and K. S. Walton, J. Mater. Chem., 2012, 22, 10172.
 - 170.R. Sanz, F. Martinez, G. Orcajo, L. Wojtas and D. Briones, *Dalton Trans.*, 2013, **42**, 2392.
- ⁵⁰ 171.O. K. Farha, A. O. Yazaydin, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr and J. T. Hupp, *Nat. Chem.*, 2010, **2**, 944.
- 172.O. K. Farha, C. E. Wilmer, I. Eryazici, B. G. Hauser, P. A. Parilla, K. O'Neill, A. A. Sarjeant, S. T. Nguyen, R. Q. Snurr and J. T. Hupp, *J. Am. Chem. Soc.*, 2012, 134, 9860.
- 173.B. Zheng, R. Yun, J. Bai, Z. Lu, L. Du and Y. Li, *Inorg. Chem.*, 2013, 52, 2823.
- 174.J. Park, J. R. Li, Y. P. Chen, J. Yu, A. A. Yakovenko, Z. U. Wang, L. B. Sun, P. B. Balbuena and H. C. Zhou, *Chem. Commun.*, 2012, 48, 9995.
- 175.H. S. Choi and M. P. Suh, Angew. Chem., Int. Ed., 2009, 48, 6865.
- 176.S. Henke, A. Schneemann, A. Wutscher and R. A. Fischer, *J. Am. Chem. Soc.*, 2012, **134**, 9464.
- 177.D. H. Hong and M. P. Suh, Chem. Commun., 2012, 48, 9168.
- 65 178.M. Y. Masoomi, K. C. Stylianou, A. Morsali, P. Retailleau and D. Maspoch, *Cryst. Growth Des.*, 2014, 14, 2092.
- 179.T. Bataille, S. Bracco, A. Comotti, F. Costantino, A. Guerri, A. Ienco and F. Marmottini, *CrystEngComm*, 2012, 14, 7170.
- 180.Q. Yan, Y. Lin, P. Wu, L. Zhao, L. Cao, L. Peng, C. Kong and L. Chen, *ChemPlusChem*, 2013, **78**, 86.
- 181.P. Sarawade, H. Tan and V. Polshettiwar, ACS Sustainable Chem. Eng., 2012, 1, 66.
- 182.T. Li, J. E. Sullivan and N. L. Rosi, J. Am. Chem. Soc., 2013, 135, 9984.
- 75 183.Z. Xiang, Z. Hu, D. Cao, W. Yang, J. Lu, B. Han and W. Wang, Angew. Chem. Int. Ed., 2011, 50, 491.
 - 184.R. Li, X. Ren, X. Feng, X. Li, C. Hu and B. Wang, *Chem. Commun.*, 2014, **50**, 6894.

- 185.Q. Wang, W. Xia, W. Guo, L. An, D. Xia and R. Zou, *Chem. Asian. J.*, 2013, 8, 1879.
- 186.C. Montoro, E. García, S. Calero, M. A. Pérez-Fernández, A. L. López, E. Barea and J. A. R. Navarro, *J. Mater. Chem.*, 2012, 22, 10155.
- 187.J. Duan, Z. Yang, J. Bai, B. Zheng, Y. Li and S. Li, *Chem. Commun.*, 2012, 48, 3058.
- 188.B. Zheng, H. Liu, Z. Wang, X. Yu, P. Yi and J. Bai, *CrystEngComm*, 2013, **15**, 3517.
- 10 189.Y. Lin, Q. Yan, C. Kong and L. Chen, Sci. Rep., 2013, 3, 1859.
 - 190.S. N. Brune and D. R. Bobbitt, Anal. Chem., 1992, 64, 166.
 - 191.R. Haldar, S. K. Reddy, V. M. Suresh, S. Mohapatra, S. Balasubramanian and T. K. Maji, *Chem. Eur. J.*, 2014, **20**, 4347.
- 192.X. Si, J. Zhang, F. Li, C. Jiao, S. Wang, S. Liu, Z. Li, H. Zhou, L. Sun and F. Xu, *Dalton Trans.*, 2012, **41**, 3119-3122.
 - 193.Y. Hu, W. M. Verdegaal, S.-H. Yu and H.-L. Jiang, *ChemSusChem*, 2014, 7, 734.
 - 194.Z. Xiang, S. Leng and D. Cao, J. Phys. Chem. C, 2012, 116, 10573.
- 195.K. Liu, B. Li, Y. Li, X. Li, F. Yang, G. Zeng, Y. Peng, Z. Zhang, G. Li, Z. Shi, S. Feng and D. Song, *Chem. Commun.*, 2014, **50**, 5031.
- 196.Y. Zhao, H. Ding and Q. Zhong, Appl. Surf. Sci., 2013, 284, 138.
- 197.D. Qian, C. Lei, G. P. Hao, W. C. Li and A. H. Lu, ACS Appl. Mater. Interf., 2012, 4, 6125.
- 198.R. Babarao and J. W. Jiang, Energy Environ. Sci., 2009, 2, 1088.
- 25 199.J. Yu and P. B. Balbuena, J. Phys. Chem. C, 2013, 117, 3383.
 - 200.Q. Yang, S. B. Vaesen, F. Ragon, A. D. Wiersum, D. Wu, A. Lago, T. Devic, C. Martineau, F. Taulelle, P. L. Llewellyn, H. Jobic, C. Zhong, C. Serre, G. D. Weireld and G. Maurin, *Angew. Chem. Int. Ed.*, 2013, 52, 10316.
- 30 201.D. Wang, C. Sentorun-Shalaby, X. Ma and C. Song, *Energy Fuels*, 2010, **25**, 456.
 - 202.D. J. Fauth, M. L. Gray, H. W. Pennline, H. M. Krutka, S. Sjostrom and A. M. Ault, *Energy Fuels*, 2012, **26**, 2483.
- 203.W. Ke, S. Hongyan, L. Lin, Y. Xinlong, Y. Zifeng, L. Chenguang and Z. Qingfang, J. Nat. Gas Chem., 2012, **21**, 319.
 - 204.O. Leal, C. Bolivar, C. Ovalles, J. J. Garcia and Y. Espidel, *Inorg. Chim. Acta*, 1995, **240**, 183.
 - 205.J. Yu, Y. Le and B. Cheng, RSC Adv., 2012, 2, 6784.

206.Y. Du, Z. Du, W. Zou, H. Li, J. Mi and C. Zhang, J. Colloid Interface Sci., 2013, **409**, 132.

- 207.A. Goeppert, H. Zhang, M. Czaun, R. B. May, G. K. S. Prakash, G. A. Olah and S. R. Narayanan, *ChemSusChem*, 2014, 7, 1386.
- 208.S. Bai, J. Liu, J. Gao, Q. Yang and C. Li, *Microporous Mesoporous Mater.*, 2012, **151**, 474.
- 45 209.Y. G. Ko, H. J. Lee, H. C. Oh and U. S. Choi, *J. Hazard Mater.*, 2013, 250-251, 53.
 - 210.J.-L. Liu and R.-B. Lin, Powder Technol., 2013, 241, 188.
 - 211.H. Zhang, A. Goeppert, M. Czaun, G. K. S. Prakash and G. A. Olah, *RSC Adv.*, 2014, 4, 19403.
- ⁵⁰ 212.M. Yao, Y. Dong, X. Feng, X. Hu, A. Jia, G. Xie, G. Hu, J. Lu, M. Luo and M. Fan, *Fuel*, 2014, **123**, 66.
 - 213.F.-Q. Liu, L. Wang, Z.-G. Huang, C.-Q. Li, W. Li, R.-X. Li and W.-H. Li, *ACS Appl. Mater. Interf.*, 2014, **6**, 4371.
 - 214.M. R. Liebl and J. Senker, Chem. Mater., 2013, 25, 970.
- 55 215.A. Wilke and J. Weber, J. Mater. Chem., 2011, 21, 5226.
- 216.C. F. Martín, E. Stöckel, R. Clowes, D. J. Adams, A. I. Cooper, J. J. Pis, F. Rubiera and C. Pevida, *J. Mater. Chem.*, 2011, 21, 5475.
- 217.M. Kaliva, G. S. Armatas and M. Vamvakaki, *Langmuir*, 2012, 28, 2690.
- 60 218.Y. Luo, B. Li, W. Wang, K. Wu and B. Tan, Adv. Mater., 2012, 24, 5703.
 - 219.M. G. Rabbani and H. M. El-Kaderi, Chem. Mater., 2011, 23, 1650.
 - 220.X. Chen, S. Qiao, Z. Du, Y. Zhou and R. Yang, *Macromol. Rapid. Commun.*, 2013, **34**, 1181.
- 65 221.L. H. Xie and M. P. Suh, Chemistry, 2013, 19, 11590.
 - 222.K. V. Rao, S. Mohapatra, C. Kulkarni, T. K. Maji and S. J. George, *J. Mater. Chem.*, 2011, **21**, 12958.
 - 223.R. Dawson, D. J. Adams and A. I. Cooper, Chem. Sci., 2011, 2, 1173.
- 224.N. Ritter, I. Senkovska, S. Kaskel and J. Weber, *Macromolecules*, 2011, 44, 2025.
- 225.N. Du, H. B. Park, G. P. Robertson, M. M. Dal-Cin, T. Visser, L. Scoles and M. D. Guiver, *Nat. Mater.*, 2011, **10**, 372.
- 226.Y. Luo, B. Li, L. Liang and B. Tan, Chem. Commun., 2011, 47, 7704.
- 227.W. Lu, J. P. Sculley, D. Yuan, R. Krishna and H.-C. Zhou, *J. Phys.* 75 *Chem. C*, 2013, **117**, 4057.
 - 228.T. Ben, C. Pei, D. Zhang, J. Xu, F. Deng, X. Jing and S. Qiu, *Energy Environ. Sci.*, 2011, **4**, 3991.

Page 40 of 46

- 229.X. Zhu, S. M. Mahurin, S.-H. An, C.-L. Do-Thanh, C. Tian, Y. Li, L. W. Gill, E. W. Hagaman, Z. Bian, J.-H. Zhou, J. Hu, H. Liu and S. Dai, *Chem. Commun.*, 2014, **50**, 7933.
- 230.T. Ben, Y. Li, L. Zhu, D. Zhang, D. Cao, Z. Xiang, X. Yao and S. Qiu, *Energy Environ. Sci.*, 2012, **5**, 8370.
- 231.Z. Xiang, X. Zhou, C. Zhou, S. Zhong, X. He, C. Qin and D. Cao, J. *Mater. Chem.*, 2012, **22**, 22663.
- 232.H. J. Jeon, J. H. Choi, Y. Lee, K. M. Choi, J. H. Park and J. K. Kang, *Adv. Energy Mater.*, 2012, **2**, 225.
- 10 233.H. Lim, M. C. Cha and J. Y. Chang, *Macromol. Chem. Phys.*, 2012, 213, 1385.
 - 234.Y. Zhao, Y. Shen, L. Bai, R. Hao and L. Dong, *Environ. Sci. Technol.*, 2012, **46**, 1789.
- 235 J. H. Ahn, J. E. Jang, C. G. Oh, S. K. Ihm, J. Cortez and D. C. Is Sherrington, *Macromolecules*, 2006, **39**, 627.
- 236.J. Germain, F. Svec and J. M. Fré chet, *J. Chem. Mater.*, 2008, **20**, 7069.
- 237.P. M. Budd, N. B. McKeown and D. Fritsch, *Macromol. Sym.*, 2006, 245, 403.
- 20 238.M. G. Schwab, B. Fassbender, H. W. Spiess, A. Thomas, X. Feng and K. Mullen, *J. Am. Chem. Soc.*, 2009, **131**, 7216.
 - 239.W. Li, H. Shi and J. Zhang, ChemPhysChem, 2014, 15, 1772.
 - 240.Z. Xiang, D. Cao, W. Wang, W. Yang, B. Han and J. Lu, *J. Mater. Chem. C*, 2012, **116**, 5974.
- 25 241.Y. Xie, T. T. Wang, X. H. Liu, K. Zou and W. Q. Deng, *Nat. Commun.*, 2013, 4, 1960.
 - 242.T. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F. Deng, J. M. Simmons, S. Qiu and G. Zhu, *Angew. Chem. Int. Ed.*, 2009, 48, 9457.
- 30 243.W. Lu, D. Yuan, J. Sculley, D. Zhao, R. Krishna and H. C. Zhou, J. Am. Chem. Soc., 2011, 133, 18126.
 - 244.S. Guggenheim and R. T. Martin, Clays Clay Miner., 1995, 43, 255.
 - 245.F. Bergaya, B. K. G. Theng and G. Lagaly, *Handbook of clay science*, *in: Developments in Clay Science*, Elseiver, Oxford, 2006.
- 35 246.J. C. Hicks, J. H. Drese, D. J. Fauth, M. L. Gray, G. Qi and C. W. Jones, J. Am. Chem. Soc., 2008, 130, 2902.
 - 247.L. Stevens, K. Williams, W. Y. Han, T. Drage, C. Snape, J. Wood and J. Wang, *Chem. Eng. J.*, 2013, **215**, 699.
- 248.E. A. Roth, S. Agarwal and R. K. Gupta, *Energy Fuels*, 2013, 27, 40 4129.

- 249.A. Azzouz, S. Nousir, N. Platon, K. Ghomari, T. C. Shiao, G. Hersant, J.-Y. Bergeron and R. Roy, *Int. J. Greenhouse Gas Control*, 2013, 17, 140.
- 250.A. Gil, M. A. Vicente and S. A. Korili, J. Catal., 2005, 229, 119.
- 45 251.R. G. Leliveld, T. G. Ros, A. J. van Dillen, J. W. Geus and D. C. Koningsberger, *J. Catal.*, 1999, **185**, 513.
 - 252.C. Chen, D.-W. Park and W.-S. Ahn, Appl. Surf. Sci., 2013, 283, 699.
 - 253.W. Wang, X. Wang, C. Song, X. Wei, J. Ding and J. Xiao, *Energy Fuels*, 2013, 27, 1538.
- 50 254.C. Zhao, X. Chen and C. Zhao, Energy Fuels, 2010, 24, 1009.
- 255.Y. Seo, S. H. Jo, C. K. Ryu and C. K. Yi, *Chemosphere*, 2007, **69**, 712.
- 256.S. C. Lee, B. Y. Choi, C. K. Ryu, Y. S. Ahn, T. J. Lee and J. C. Kim, *Korean J. Chem. Eng.*, 2006, 23, 374.
- 55 257.Y. Liang, D. P. Harrison, R. P. Gupta, D. A. Green and W. A. McMichael, *Energy Fuels*, 2004, 18, 569.
 - 258.J. B. Lee, C. K. Ryu, J. I. Baek, J. H. Lee, T. H. Eom and S. H. Kim, *Ind. Eng. Chem. Res.*, 2008, **47**, 4465.
- 259.C. K. Yi, S. H. Jo, Y. Seo, S. D. Park, K. H. Moon, J. S. Yoo, J. B.
 Lee and C. K. Ryu, *Stud. Surf. Sci. Catal.*, 2006, **159**, 501.
 - 260.D. P. Harrison, Greenhouse Gas Control Technol., 2005, 2, 1101.
- 261.Y. Liang, D. P. Harrison, R. P. Gupta, D. A. Green and W. J. McMichael, *Energy Fuels*, 2004, 18, 569.
- 262.V. E. Sharonov, A. G. Okunev and Y. I. Aristov, *React. Kinet. Catal.* Lett., 2004, 82, 363.
- 263.C. Zhao, X. Chen and C. Zhao, Chemosphere, 2009, 75, 1401.
- 264.C. K. Yi, S. H. Jo, Y. Seo, J. B. Lee and C. K. Ryu, *Int. J. Greenhouse Gas Control*, 2007, **1**, 31.
- 265.S. C. Lee, H. J. Chae, S. J. Lee, Y. H. Park, C. K. Ryu, C. K. Yi and J.
 C. Kim, *J. Mol. Catal. B: Enzym.*, 2009, 56, 179.
 - 266.C. K. Yi, S. H. Jo, H. J. Ryu, Y. W. Yoo, J. B. Lee and C. K. Ryu, Greenhouse Gas Control Technol., 2005, 2, 1765.
 - 267.Y. Wu, X. Chen, W. Dong, C. Zhao, Z. Zhang, D. Liu and C. Liang, *Energy Fuels*, 2013, 27, 4804.
- 75 268.W. Dong, X. Chen and Y. Wu, Energy Fuels, 2014, 28, 3310.
 - 269.V. S. Derevschikov, J. V. Veselovskaya, T. Y. Kardash, D. A. Trubitsyn and A. G. Okunev, *Fuel*, 2014, **127**, 212.
 - 270.R. R. Kondakindi, G. McCumber, S. Aleksic, W. Whittenberger and M. A. Abraham, *Int. J. Greenhouse Gas Control*, 2013, 15, 65.

- 271.D. K. Lee, D. Y. Min, H. Seo, N. Y. Kang, W. C. Choi and Y. K. Park, *Ind. Eng. Chem. Res.*, 2013, **52**, 9323.
- 272.L. w. Wang, Y. f. Diao, L. l. Wang, X. f. Shi and X. y. Tai, *Korean J. Chem. Eng.*, 2013, **30**, 1631.
- 5 273.M. Kianpour, M. A. Sobati and S. Shahhosseini, *Chem. Eng. Res. Des.*, 2012, **90**, 2041.
- 274.M. Freemantle, *An Introduction to Ionic Liquids*, RSC Publishing, London, 2010.
- 275.J. Ren, L. B. Wu and B. G. Li, Ind. Eng. Chem. Res., 2012, 51, 7901.
- 10 276.B. E. Gurkan, J. C. de la Fuente, E. M. Mindrup, L. E. Ficke, B. F. Goodrich, E. A. Price, W. F. Schneider and J. F. Brennecke, J. Am. Chem. Soc., 2010, 132, 2116.
- 277.Y. Y. Jiang, G. N. Wang, Z. Zhou, Y. T. Wu, J. Geng and Z. B. Zhang, *Chem. Commun.*, 2008, **4**, 505.
- 15 278.L. A. Blanchard, D. Hancu, E. J. Beckman and J. F. Brennecke, *Nature*, 1999, **399**, 28.

279.K. R. Seddon, Nature, 2003, 2, 363.

- 280.B. F. Goodrich, J. C. de la Fuente, B. E. Gurkan, Z. K. Lopez, E. A. Price, Y. Huang and J. F. Brennecke, *J. Phys. Chem. B*, 2011, 115, 9140.
- 281.H. Yu, Y. T. Wu, Y. Y. Jiang, Z. Zhou and Z. B. Zhang, New J. Chem., 2009, 33, 2385.
- 282.N. M. Kocherginsky, Q. Yang and L. Seelam, *Sep. Purif. Technol.*, 2007, **53**, 171.
- 25 283.P. Scovazzo, J. Kieft, D. A. Finan, C. Koval, D. DuBois and R. D. Noble, *J. Membr. Sci.*, 2004, 238, 57.
 - 284.L. J. Lozano, C. Godínez, A. P. d. l. Ríos, F. J. Hernández-Fernández, S. Sánchez-Segado and F. J. Alguacil, J. Membr. Sci., 2011, 376, 1.
 - 285.R. D. Noble and D. L. Gin, J. Membr. Sci., 2011, 369, 1.
- ³⁰ 286.K. M. Gupta, Y. Chen and J. Jiang, *J. Phys. Chem. C*, 2013, **117**, 5792.
- 287.D. D. Iarikov, P. Hacarlioglu and S. T. Oyama, *Chem. Eng. J.*, 2011, 166, 401.
- 288.S. Hanioka, T. Maruyama, T. Sotani, M. Teramoto, H. Matsuyama, K.
 Nakashima, M. Hanaki, F. Kubota and M. Goto, *J. Membr. Sci.*, 2008,
 314, 1.
 - 289.J. E. Bara, E. S. Hatakeyama, C. J. Gabriel, S. Lessmann, D. L. Gin and R. D. Noble, *J. Membr. Sci.*, 2008, **316**, 186.
- 290.M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keefe and O. M. Yaghi, *Science*, 2002, **295**, 469.

- 291.Y. Chen, Z. Hu, K. M. Gupta and J. Jiang, J. Phys. Chem., 2011, 115, 21736.
- 292.E. I. Privalova, P. MaÈki-Arvela, D. Yu Murzin and J. P. Mikkola, Russ. Chem. Rev., 2012, 81, 435.
- 45 293.K. M. Gupta, Y. Chen, Z. Hu and J. Jiang, *Phys. Chem. Chem. Phys.*, 2012, 14, 5758.
 - 294.X. Wang, N. G. Akhmedov, Y. Duan, D. Luebke and B. Li, *J. Mater. Chem. A*, 2013, **1**, 2978.
- 295.X. Luo, Y. Guo, F. Ding, H. Zhao, G. Cui, H. Li and C. Wang,
 Angew. Chem. Int. Ed., 2014, **53**, 7053.
- 296.E. I. Privalova, E. Karjalainen, M. Nurmi, P. i. M. ki-Arvela, K. E. nen, H. Tenhu, D. Y. Murzin and J.-P. Mikkola, *ChemSusChem*, 2013, 6, 1500.
- 297.M. Hasib-ur-Rahman, M. Siaj and F. Larachi, *Chem. Eng. Process.*, 2010, **49**, 313.
 - 298.J. Tang, W. Sun, H. Tang, M. Radosz and Y. Shen, *Macromolecules*, 2005, **38**, 2037.
 - 299.S. Supasitmongkol and P. Styring, *Energy Environ. Sci.*, 2010, 3, 1961.
- 60 300.J. Tang, H. Tang, W. Sun, M. Radosz and Y. Shen, J. Polym. Sci. Part A, 2005, 43, 5477.
- 301.J. E. Bara, C. J. Gabriel, E. S. Hatakeyama, T. K. Carlisle, S. Lessmann, R. D. Noble and D. L. Gin, *J. Membr. Sci.*, 2008, 3, 321.
- 302.S. Kato, Y. Tsujita, H. Yoshimizu, T. Kinoshita and J. S. Higgins, *Polymer*, 1997, **38**, 2807.
 - 303.Z. Mogri and D. R. Paul, Polymer, 2001, 42, 7781.
 - 304.J. L. Budzien, J. D. McCoy, D. H. Weinkauf, R. A. LaViolette and E. S. Peterson, *Macromolecules*, 1998, **3368**, 31.
- 305.Y. Jiao, A. Dua, Z. Zhu, V. Rudolphb, G. Q. M. Lu and S. C. Smitha, 70 *Catal. Today*, 2010.
- 306.Q. Sun, Z. Li, D. J. Searles, Y. Chen, G. M. Lu and A. Du, J. Am. Chem. Soc., 2013, 135, 8246.
- 307.P. Shao, X.-Y. Kuang, L.-P. Ding, J. Yang and M.-M. Zhong, *Appl. Surf. Sci.*, 2013, 285, 350.
- 75 308.Z. Mahdavifar and N. Abbasi, Physica. E, 2014, 56, 268.
 - 309.H. Choi, Y. C. Park, Y.-H. Kim and Y. S. Lee, J. Am. Chem. Soc., 2011, 133, 2084.
 - 310.A. Kalinkin, E. Kalinkina, O. Zalkind and T. Makarova, *Colloid J.*, 2008, **70**, 33.
- 80 311.M. T. Rodríguez and H. Pfeiffer, Thermochim. Acta, 2008, 473, 92.

Page 42 of 46

- 312.J. Ortiz-Landeros, C. Gómez-Yáñez and H. Pfeiffer, J. Solid State Chem., 2011, 184, 2257.
- 313.R. B. Vieira and H. O. Pastore, *Environ. Sci. Technol.*, 2014, 48, 2472.
- 5 314.Y. Wu, X. Chen, M. Radosz, M. Fan, W. Dong, Z. Zhang and Z. Yang, *Fuel*, 2014, **125**, 50.
- 315.R. V. Siriwardane, C. Robinson, M. Shen and T. Simonyi, *Energy Fuels* 2007, 21, 2088.
- 316.X. Wang, N. G. Akhmedov, Y. Duan, D. Luebke, D. Hopkinson and
 B. Li, ACS Appl. Mater. Interf., 2013, 5, 8670.
- 317.G. R. Williams and D. O'Hare, J. Mater. Chem., 2006, 16, 3065.
- 318.V. Rives and S. Kannan, J. Mater. Chem., 2000, 10, 489.
- 319.Y. Ding and E. Alpay, Trans. IChemE, 2001, 79, 45.
- 320.Z. Yong and A. E. Rodrigues, *Energy Convers. Manage.*, 2002, **43**, 15 1865.
 - 321.H. T. J. Reijers, S. E. A. Valster-Schiermeier, P. D. Cobden and R. W. v. d. Brink, *Ind. Eng. Chem. Res.*, 2006, 45, 2522.
 - 322.M. S. San Román, M. J. Holgado, C. Jaubertie and V. Rives, *Solid State Sci.*, 2008, **10**, 1333.
- 20 323.U. Sharma, B. Tyagi and R. V. Jasra, *Ind. Eng. Chem. Res.*, 2008, 47, 9588.
 - 324.M. K. Ram Reddy, Z. P. Xu, G. Q. (Max) Lu and J. C. Diniz da Costa, *Ind. Eng. Chem. Res.*, 2008, **47**, 2630.
- 325.S. P. Reynolds, A. D. Ebner and J. A. Ritter, *Ind. Eng. Chem. Res.*, 2006, **45**, 4278.
 - 326.Y. Ding and E. Alpay, Chem. Eng. Sci., 2000, 55, 3461.
 - 327.E. L. G. Oliveira, C. A. Grande and A. E. Rodrigues, Sep. Purif. Technol., 2008, 62, 137.
- 328.A. D. Ebner, S. P. Reynolds and J. A. Ritter, *Ind. Eng. Chem. Res.*,
 2006, 45, 6387.
- 329.K. B. Lee, A. Verdooren, H. S. Caram and S. Sircar, J. Colloid Interface Sci., 2007, 308, 30.
- 330.S. Walspurger, L. Boels, P. D. Cobden, G. D. Elzinga, W. G. Haije and R. W. van den Brink, *ChemSusChem*, 2008, 1, 643.
- 35 331.M. Dadwhal, T. Kim, M. Sahimi and T. T. Tsotsis, *Ind. Eng. Chem. Res.*, 2008, 47, 6150.
 - 332.M. R. Othman, N. M. Rasid and W. J. N. Fernando, *Chem. Eng. Sci.*, 2006, **61**, 1555.

- 333.N. N. A. H. Meis, J. H. Bitter and K. P. d. Jong, *Ind. Eng. Chem. Res.*, 2010, **49**, 1229.
- 334.Q. Wang, Z. Wu, H. H. Tay, L. Chen, Y. Liu, J. Chang, Z. Zhong, J. Luo and A. Borgna, *Catal. Today*, 2011, **164**, 198.
- 335.Q. Wang, H. H. Tay, Z. Zhong, J. Luo and A. Borgna, *Energy Environ. Sci.*, 2012, **5**, 7526.
- ⁴⁵ 336.A. Garcia-Gallastegui, D. Iruretagoyena, V. Gouvea, M. Mokhtar, A. M. Asiri, S. N. Basahel, S. A. Al-Thabaiti, A. O. Alyoubi, D. Chadwick and M. S. P. Shaffer, *Chem. Mater.*, 2012, **24**, 4531.
 - 337.K. Ariga, J. P. Hill, M. V. Lee, A. Vinu, R. Charvet and S. Acharya, *Sci. Technol. Adv. Mater.*, 2008, 9, 1.
- 50 338.L. H. Zhang, F. Li, D. G. Evans, X. Duan and J. M. Sci., J. Mater. Sci., 2010, 45, 3741.
 - 339.A. Inayat, M. Klumpp and W. Schwieger, *Appl. Clay Sci.*, 2011, **51**, 452.
 - 340.P. Benito, I. Guinea, F. M. Labajos and V. Rives, J. Solid State Chem., 2008, 181, 987.
 - 341.S. P. Paredes, G. Fetter, P. Bosch and S. Bulbulian, J. Mater. Sci., 2006, 41, 3377.
 - 342.A. Tsujimura, M. Uchida and A. Okuwaki, J. Hazard Mater., 2007, 143, 582.
- 60 343.G. Hu, N. Wang, D. O'Hare and J. Davis, *Chem. Commun.*, 2006, 287.
 - 344.S. Li, J. Lu, M. Wei, D. G. Evans and X. Duan, *Adv. Funct. Mater.*, 2010, **20**, 2848.
- 345.M. J. Climent, A. Corma, S. Iborra, K. Epping and A. Velty, *J. Catal.*, 2004, **225**, 316.
- 346.P. Benito, M. Herrero, F. M. Labajos and V. Rives, *Appl. Clay Sci.*, 2010, **48**, 218.
- 347.T. Xiao, Y. Tang, Z. Jia, D. Li, X. Hu, B. Li and L. Luo, *Nanotechnology*, 2009, 20, 475603.
- 70 348.R. Ma, K. Takada, K. Fukuda, N. Iyi, Y. Bando and T. Sasaki, *Angew Chem. Int. Ed.*, 2008, **47**, 86.
- 349.Q. Wang, Y. Gao, J. Luo, Z. Zhong, A. Borgna, Z. Guo and D. O'Hare, *RSC Adv.*, 2013, **3**, 3414.
- 350.Q. Wang, H. H. Tay, L. Chen, Y. Liu, J. Chang, Z. Zhong, J. Luo and 5 A. Borgna, *J. Nanoeng. Nanomanuf.*, 2011, **1**, 298.
- 351.Y. Gao, Z. Zhang, J. Wu, X. Yi, A. Zheng, A. Umar, D. O'Hare and Q. Wang, *J. Mate. Chem. A*, 2013, **1**, 12782.
- 352.J. C. G. Carroll, J. Corish, B. Henderson and W. C. Mackrodt, J. Mater. Sci., 1988, 23, 2824.

Energy & Environmental Science

- 353.B. Feng, H. An and E. Tan, *Energy Fuels*, 2007, 21, 426.
- 354.S. Choi, J. H. Drese and C. W. Jones, ChemSusChem, 2009, 2, 796.
- 355.R. Philipp and K. Fujimoto, J. Phys. Chem., 1992, 96, 9035.
- 356.C. D. Daub, G. N. Patey, D. B. Jack and A. K. Sallabi, *J. Chem. Phys.*, 2006, **124**, 114706.
- 357.D. L. Meixner, D. A. Arthur and S. M. George, *Surf. Sci.*, 1992, **261**, 141.

358.G. Pacchioni, Surf. Sci., 1993, 281, 207.

- 359.M. B. Jensen, L. G. M. Pettersson, O. Swang and U. Olsbye, *J. Phys. Chem. B*, 2005, **109**, 16774.
- 360.M. Bhagiyalakshmi, J. Y. Lee and H. T. Jang, *Int. J. Greenhouse Gas Control*, 2010, **4**, 51.
- 361.S.-W. Bian, J. Baltrusaities, P. Galhotra and V. H. Grassian, J. Mate. Chem., 2010, 20, 8705.
- 15 362.A. M. Ruminski, K.-J. Jeon and J. J. Urban, J. Mater. Chem., 2011, 21, 11486.
 - 363.M. B. Yue, Y. Chun, Y. Cao, X. Dong and J. H. Zhu, Adv. Funct. Mater., 2006, 16, 1717.
- 364.F. N. Gu, F. Wei, J. Y. Yang, Y. Wang and J. H. Zhu, *J. Phys. Chem.* 20 *C*, 2010, **114**, 8431.
- 365.L. Li, X. Wen, X. Fu, F. Wang, N. Zhao, F. Xiao, W. Wei and Y. Sun, *Energy Fuels*, 2010, 24, 5773.
- 366.K. K. Han, Y. Zhou, W. G. Lin and J. H. Zhu, *Microporous Mesoporous Mater.*, 2013, 169, 112.
- 25 367.M. Bhagiyalakshmi, P. Hemalatha, M. Ganesh, P. M. Mei and H. T. Jang, *Fuel*, 2011, **90**, 1662.
 - 368.H. Jeon, Y. J. Min, S. H. Ahn, S.-M. Hong, J.-S. Shin and J. H. Kim, *Colloids Surf. A*, 2012, **414**, 75.
- 369.S.-W. Bian, J. Baltrusaitis, P. Galhotra and V. H. Grassian, *J. Mater. Chem.*, 2010, **20**, 8705.
- 370.L. She, J. Li, Y. Wan, X. Yao, B. Tu and D. Zhao, *J. Mater. Chem*, 2011, **21**, 795.
- 371.Y. Y. Li, K. K. Han, W. G. Lin, M. M. Wan, Y. Wang and J. H. Zhu, J. Mater. Chem. A, 2013, 1, 12919.
- 35 372.W. J. Liu, H. Jiang, K. Tian, Y. W. Ding and H. Q. Yu, *Environ. Sci. Technol.*, 2013, **47**, 9397.
 - 373.G. W. Huber, S. Iborra and A. Corma, Chem. Rev., 2006, 106, 4044.
 - 374.T. K. Kim, K. J. Lee, J. Yuh, S. K. Kwak and H. R. Moon, New J. Chem., 2014, 38, 1606.

- ⁴⁰ 375.K. B. Lee, M. G. Beaver, H. S. Caram and S. Sircar, *Ind. Eng. Chem. Res.*, 2008, **47**, 8048.
- 376.G. Xiao, R. Singh, A. Chaffee and P. Webley, *Int. J. Greenhouse Gas Control*, 2011, **5**, 634.
- 377.M. Liu, C. Vogt, A. L. Chaffee and S. L. Y. Chang, *J. Phys. Chem. C*, 2013, **117**, 17514.
- 378.M.A. Aramendia, V. Borau, C. Jimenez, A. Marinas, J.M. Marinas, J.R. Ruiz and F.J. Urbano, J. Mol. Catal. A: Chem., 2004, 218, 81.
- 379.H. Jeon, Y. J. Min, S. H. Ahn, S.-M. Hong, J.-S. Shin, J. H. Kim and K. B. Lee, *Colloids Surf. A*, 2012, **414**, 75.
- ⁵⁰ 380.S. J. Han, Y. Bang, H. J. Kwon, H. C. Lee, V. Hiremath, I. K. Song and J. G. Seo, *Chem. Eng. J.*, 2014, **242**, 357.
- 381.S. Wang, S. Yan, X. Ma and J. Gong, *Energy Environ. Sci.*, 2011, 4, 3805.
- 382.S. Li, Y. Shi, Y. Yang, Y. Zheng and N. Cai, *Energy Fuels*, 2013, **27**, 5352.
- 383.M. Alonso, Y. A. Criado, J. C. Abanades and G. Grasa, *Fuel*, 2014, 127, 52.
- 384.J. Blamey, E. J. Anthony, J. Wang and P. S. Fennell, *Prog. Energ. Combust. Sci.*, 2010, **36**, 260.
- ⁶⁰ 385.M. E. Boot-Handford, J. C. Abanades, E. J. Anthony, M. J. Blunt, S. Brandani, N. Mac Dowell, J. R. Fernandez, M.-C. Ferrari, R. Gross, J. P. Hallett, R. S. Haszeldine, P. Heptonstall, A. Lyngfelt, Z. Makuch, E. Mangano, R. T. J. Porter, M. Pourkashanian, G. T. Rochelle, N. Shah, J. G. Yao and P. S. Fennell, *Energy Environ. Sci.*, 2014, **7**, 130.
- 65 386.M. Alonso, N. Rodríguez, B. Gonzalez, B. Arias and J. C. Abanades, *Ind. Eng. Chem. Res.*, 2011, **50**, 6982.
- 387.J. R. Fernández, J. C. Abanades, R. Murillo and G. Grasa, *Int. J. Greenhouse Gas Control*, 2012, 6, 126.
- 388.I. Martínez, G. Grasa, R. Murillo, B. Arias and J. C. Abanades,
 Energy Fuels, 2012, 26, 1432.
- 389.K. Sasaki, K. Wakuta, N. Tokuda, R. V. Belosludov, S. Ueda, R. Inoue, Y. Kawazoe and T. Ariyama, *ISIJ International*, 2012, 52, 1233.
- 390.M. Olivares-Marín, E. M. Cuerda-Correa, A. Nieto-Sánchez, S. García, C. Pevida and S. Román, *Chem. Eng. J.*, 2013, **217**, 71.
 - 391.D. Karami and N. Mahinpey, Ind. Eng. Chem. Res., 2012, 51, 4567.
 - 392.E. T. Santos, C. Alfonsín, A. J. S. Chambel, A. Fernandes, A. P. S. Dias, C. I. C. Pinheiro and M. F. Ribeiro, *Fuel*, 2012, 94, 624.
- 393.P. Xu, M. Xie, Z. Cheng and Z. Zhou, *Ind. Eng. Chem. Res.*, 2013, **52**, 12161.

- 394.C. Luo, Y. Zheng, C. Zheng, J. Yin, C. Qin and B. Feng, Int. J. Greenhouse Gas Control, 2013, 12, 193.
- 395.A. M. López-Periago, J. Fraile, P. López-Aranguren, L. F. Vega and C. Domingo, *Chem. Eng. J.*, 2013, **226**, 357.
- 5 396.F.-Q. Liu, W.-H. Li, B.-C. Liu and R.-X. Li, J. Mate. Chem. A, 2013, 1, 8037.
- 397.F. N. Ridha, V. Manovic, A. Macchi, M. A. Anthony and E. J. Anthony, *Fuel Process. Technol.*, 2013, **116**, 284.
- 398.M. J. Al-Jeboori, M. Nguyen, C. Dean and P. S. Fennell, *Ind. Eng. Chem. Res.*, 2013, 52, 1426.
 - 399.Y. Li, C. Zhao, H. Chen, C. Liang, L. Duan and W. Zhou, *Fuel*, 2009, 88, 697.
 - 400.F. N. Ridha, V. Manovic, Y. Wu, A. Macchi and E. J. Anthony, *Int. J. Greenhouse Gas Control*, 2013, **16**, 21.
- ¹⁵ 401.Z. S. Li, N. S. Cai, Y. Y. Huang and H. J. Han, *Energy Fuels*, 2005, **19**, 1447.
 - 402.B. Feng, W. Q. Liu, X. Li and H. An, Energy Fuels, 2006, 20, 2417.
 - 403.V. Manovic and E. J. Anthony, Ind. Eng. Chem. Res., 2010, 49, 6916.
- 404.A. M. Kierzkowska, L. V. Poulikakos, M. Broda and C. R. Müller, 20 *Int. J. Greenhouse Gas Control*, 2013, **15**, 48.
 - 405.C.-T. Yu and W.-C. Chen, Fuel, 2014, 122, 179.
 - 406.Wenqiang Liu, Bo Feng, Yueqin Wu, Guoxiong Wang, John Barry and J. C. D. d. Costa, *Environ. Sci. Technol.*, 2010, **44**, 3093.
- 407.L. Li, D. L. King, Z. Nie and C. Howard, *Ind. Eng. Chem. Res.*, 2009, 25 **48**, 10604.
- 408.S. F. Wu and Y. Q. Zhu, Ind. Eng. Chem. Res., 2010, 49, 2701.
- 409.Y. J. Li, C. S. Zhao, H. C. Chen, L. B. Duan and X. P. Chen, *Fuel*, 2010, **89**, 642.
- 410.C. H. Huang, K. P. Chang, C. T. Yu, P. C. Chiang and C. F. Wang, 30 *Chem. Eng. J.*, 2010, **161**, 129.
- 411.K. B. Yi, C. H. Ko, J.-H. Park and J.-N. Kim, *Catal. Today*, 2009, **146**, 241.
- 412.C. Luo, Y. Zheng, N. Ding, Q. Wu, G. Bian and C. Zheng, *Ind. Eng. Chem. Res.*, 2010, **49**, 11778.
- ³⁵ 413.M. Zhao, M. Bilton, A. P. Brown, A. M. Cunliffe, E. Dvininov, V. Dupont, T. P. Comyn and S. J. Milne, *Energy Fuels*, 2014, 28, 1275.
 - 414.P. Gruene, A. G. Belova, T. M. Yegulalp, R. J. Farrauto and M. J. Castaldi, *Ind. Eng. Chem. Res.*, 2011, **50**, 4042.

- 415.C. S. Martavaltzi and A. A. Lemonidou, *Microporous Mesoporous Mater.*, 2008, **110**, 119.
- 416.Z. Zhou, Y. Qi, M. Xie, Z. Cheng and W. Yuan, *Chem. Eng. Sci.*, 2012, **74**, 172.
- 417.N. J. Amos, M. Widyawati, S. Kureti, D. Trimis, A. I. Minett, A. T. Harris and T. L. Church, J. Mater. Chem. A, 2014, 2, 4332.
- 45 418.P. Lan and S. Wu, Chem. Eng. Technol., 2014, 37, 580.
 - 419.J. C. Mabry and K. Mondal, Environ. Technol., 2011, 32, 55.
 - 420.P. E. Sanchez-Jimenez, L. A. Perez-Maqueda and J. M. Valverde, *Appl. Energy*, 2014, **118**, 92.
 - 421.C.-C. Li, U.-T. Wu and H.-P. Lin, J. Mater. Chem. A, 2014, 2, 8252.
- 50 422.B. González, M. Alonso and J. C. Abanades, Fuel, 2010, 89, 2918.
 - 423.H. Chen, C. Zhao, Y. Yang and P. Zhang, *Appl. Energy*, 2012, **91**, 334.
 - 424.H. Chen, C. Zhao and Y. Yang, *Fuel Process. Technol.*, 2013, **116**, 116.
- 55 425.N. Phalak, N. Deshpande and L. S. Fan, *Energy Fuels*, 2012, 26, 3903.
- 426.J. M. Valverde, P. E. Sanchez-Jimenez and L. A. Perez-Maqueda, Fuel, 2014, 123, 79.
- 427.K. Kuramoto, S. Fujimoto, A. Morita, S. Shibano, Y. Suzuki, H.
 Hatano, S. Shi-Ying, M. Harada and T. Takarada, *Ind. Eng. Chem. Res.*, 2003, 42, 975.
- 428.A. Coppola, P. Salatino, F. Montagnaro and F. Scala, *Fuel*, 2014, **127**, 109.
- 429.Y. Wu, J. Blamey, E. J. Anthony and P. S. Fennell, *Energy Fuels*, 65 2010, **24**, 2768.
- 430.F. Yu, N. Phalak, Z. Sun and L.-S. Fan, *Ind. Eng. Chem. Res.*, 2012, 51, 2133.
- 431.J. Yin, C. Zhang, C. Qin, W. Liu, H. An, G. Chen and B. Feng, *Chem. Eng. J.*, 2012, **198-199**, 38.
- 70 432.Y. J. Li, C. S. Zhao, C. R. Qu, L. B. Duan, Q. Z. Li and C. Liang, *Chem. Eng. Technol.*, 2008, **31**, 237.
- 433.H. Chen, C. Zhao, M. Chen, Y. Li and X. Chen, *Fuel. Process. Technol.*, 2011, **92**, 1144.
- 434.I. Martínez, G. Grasa, R. Murillo, B. Arias and J. C. Abanades, 5 *Energy Fuels*, 2011, **25**, 1294.
- 435.J. M. Cordero, M. Alonso, B. Arias and J. C. Abanades, *Energy Fuels*, 2014, **28**, 1325.

Energy & Environmental Science

- 436.C. Luo, Y. Zheng, J. Guo and B. Feng, Fuel, 2014, 127, 124.
- 437.R. H. Borgwardt, Environ. Sci. Technol., 1970, 4, 59.
- 438.C. Tullin and E. Ljungstrom, Energy Fuels, 1989, 3, 284.
- 439.P. Sun, J. R. Grace, C. J. Lim and E. J. Anthony, *Energy Fuels*, 2006, **21**, 163.
- 440.B. Arias, J. M. Cordero, M. Alonso and J. C. Abanades, *AIChE J.*, 2011, **58**, 2262.
- 441.P. Sun, J. R. Grace, C. J. Lim and E. J. Anthony, *Energy Fuels*, 2007, **21**, 163.
- 10 442.H. Ryu, J. Grace and C. Lim, Energy Fuels, 2006, 20, 1621.
 - 443.H. Lu and P. Smirniotis, Ind. Eng. Chem. Res., 2009, 48, 545.
 - 444.R. T. Symonds, D. Y. Lu, V. Manovic and E. J. Anthony, *Ind. Eng. Chem. Res.*, 2012, **51**, 7177.
- 445.R. Hughes, D. Lu, E. J. Anthony and A. Macchi, *Fuel Process*. 15 *Technol.*, 2005, **86**, 1523.
 - 446.F. N. Ridha, V. Manovic, Y. Wu, A. Macchi and E. J. Anthony, *Int. J. Greenhouse Gas Control*, 2013, **17**, 357.
 - 447.F.-Q. Liu, W.-H. Li, B.-C. Liu and R.-X. Li, J. Mater. Chem. A, 2013, 1, 8037.
- 20 448.K. B. Yi and D. O. Eriksen, Sep. Sci. Technol., 2006, 41, 283.
 - 449.E. Ochoa-Fernandez, M. Ronning, T. Grande and D. Chen, *Chem. Mater.*, 2006, **18** 1383.
 - 450.Q. Xiao, Y. F. Liu, Y. J. Zhong and W. D. Zhu, J. Mater. Chem., 2011, 21, 3838.
- 25 451.D. Barraza Jiménez, M. A. Escobedo Bretado, D. Lardizábal Gutiérrez, J. M. Salinas Gutiérrez, A. López Ortiz and V. Collins-Martínez, *Int. J. Hydrogen Energy*, 2013, **38**, 2557.
 - 452.Y. Duan, Phys. Chem. Chem. Phys., 2013, 15, 9752.
- 453.M. Y. Veliz-Enriquez, G. Gonzalez and H. Pfeiffer, J. Solid State Chem., 2007, **180**, 2485.
- 454.V. L. Mejı'a-Trejo, E. Fregoso-Israel and H. Pfeiffer, *Chem. Mater.*, 2008, **20**, 7171.
- 455.F. Durán-Muñoz, I. C. Romero-Ibarra and H. Pfeiffer, J. Mater. Chem. A, 2013, 1, 3919.
- 35 456.Y. Duan, H. Pfeiffer, B. Li, I. C. Romero-Ibarra, D. C. Sorescu, D. R. Luebke and J. W. Halley, *Phys. Chem. Chem. Phys.*, 2013, 15, 13538.
 - 457.M. Wang and C.-G. Lee, Energy Convers. Manage., 2009, 50, 636.
 - 458.C. Zanzottera, M. Armandi, S. Esposito, E. Garrone and B. Bonelli, J. Phys. Chem. C, 2012, 116, 38.
 - 44 | Journal Name, [year], [vol], 00-00

- 40 459.K. M. and N. K., J. Ceram. Soc. Jpn., 2001, 109, 911.
 - 460.K. M., Y. S. and N. K., J. Mater. Sci. Lett., 2002, 21, 485.
 - 461.K. Essaki, K. Nakagawa, M. Kato and H. Uemoto, J. Chem. Eng. Jpn., 2004, 37, 772.
- 462.M. Seggiani, M. Puccini and S. Vitolo, Int. J. Greenhouse Gas Control, 2013, 17, 25.
- 463.M. Kato, K. Nakagawa, K. Essaki, Y. Maezawa, S. Takeda, R. Kogo and Y. Hagiwara, *Int. J. Appl. Ceram. Technol.*, 2005, **2**, 467.
- 464.M. Kato, S. Yoshikawa and K. Nakagawa, J. Mater. Sci. Lett., 2002, 21, 485.
- 50 465.K. Essaki and M.Kato, J. Mater. Sci., 2005.
 - 466.E. Ochoa-Fernández, T. Zhao, M. Rønning and D. Chen, J. Environ. Eng., 2009, 135, 397.
 - 467.R. Pacciani, J. Torres, P. Solsona, C. Coe, R. Quinn, J. Hufton, T. Golden and L. F. Vega, *Environ. Sci. Technol.*, 2011, **45**, 7083.
- 55 468.I. C. Romero-Ibarra, J. Ortiz-Landeros and H. Pfeiffer, *Thermochim. Acta*, 2013, 567, 118.
- 469.M. Seggiani, M. Puccini and S. Vitolo, Int. J. Greenhouse Gas Control, 2011, 5, 741.
- 470.R. Xiong, J. Ida and Y. S. Lin, Chem. Eng. Sci., 2003, 58, 4377.
- 60 471.J. F. Stebbins, Z. Xu and D. Vollath, Solid State Ionics, 1995, 78, L1.
- 472.K. Jackowska and A. R. West, J. Mater. Sci., 1983, 18, 2380.
- 473.C. Gauer and W. Heschel, J. Mater. Sci., 2006, 41, 2405.
- 474.J. Ortiz-Landeros, C. Gomez-Yanez, L. M. Palacios-Romero, E. Lima and H. Pfeiffer, *J. Phys. Chem. A*, 2012, **116**, 3163.
- 65 475.H. Pfeiffer, E. Lima and P. Bosch, Chem. Mater., 2006, 18, 2642.
 - 476.H. Pfeiffer, C. Vazquez, V. H. Lara and P. Bosch, *Chem. Mater.*, 2007, **19**, 922.
 - 477.M. Y. Veliz-Enriquez, G. Gonzalez and H. J. Pfeiffer, *Solid State Chem.*, 2007, **180**, 2485.
- 70 478.J. I. Ida, R. Xiong and Y. S. Lin, Sep. Purif. Technol., 2004, 36, 41.
- 479.R. Quinn, R. J. Kitzhoffer, J. R. Hufton and T. C. Golden, *Ind. Eng. Chem. Res.*, 2012, **51**, 9320.
- 480.S. Shan, Q. Jia, L. Jiang, Q. Li, Y. Wang and J. Peng, *Ceram. Int.*, 2013, **39**, 5437.
- 75 481.M. Olivares-Marín and M. M. Maroto-Valer, *Greenhouse Gases Sci. Technol.*, 2012, 2, 20.

Page 46 of 46

- 482.UNEP, presented in part at the Compendium of Technologies Osaka/Shiga, Japan, 2009.
- 483.M. G. Plaza, S. García, F. Rubiera, J. J. Pis and C. Pevida, Sep. Purif. Technol., 2011, 80, 96.
- 5 484.A. S. González, M. G. Plaza, F. Rubiera and C. Pevida, *Chem. Eng. J.*, 2013, 230, 456.
- 485.A. S. Ello, L. K. C. de Souza, A. Trokourey and M. Jaroniec, *Microporous Mesoporous Mater.*, 2013, 180, 280.
- 486.D. P. Vargas, L. Giraldo and J. C. Moreno-Pirajan, *Int. J. Mol. Sci.*,
 2012, 13, 8388.
 - 487.G. Dobele, T. Dizhbite, M. V. Gil, A. Volperts and T. A. Centeno, *Biomass Bioenergy*, 2012, 46, 145.
 - 488.J. Song, W. Shen, J. Wang and W. Fan, Carbon, 2014, 69, 255.
- 489.M. G. Plaza, A. S. González, C. Pevida, J. J. Pis and F. Rubiera, *Appl. Energy*, 2012, 99, 272.
- 490.A. Boonpoke, S. Chiarakorn, N. Laosiripojana, S. Towprayoon and A. Chidthaisong, *Korean J. Chem. Eng.*, 2011, **29**, 89.
- 491.R. Wang, P. Wang, X. Yan, J. Lang, C. Peng and Q. Xue, ACS Appl. Mater. Interf., 2012, 4, 5800.
- 20 492.Z. Zhang, K. Wang, J. D. Atkinson, X. Yan, X. Li, M. J. Rood and Z. Yan, J. Hazard. Mater., 2012, 229, 183.
 - 493.M. G. Plaza, C. Pevida, B. Arias, J. Fermoso, M. D. Casal, C. F. Martín, F. Rubiera and J. J. Pis, *Fuel*, 2009, 88, 2442.
- 494.M. G. Plaza, C. Pevida, C. F. Martín, J. Fermoso, J. J. Pis and F. 25 Rubiera, *Sep. Purif. Technol.*, 2010, **71**, 102.
- 495.M. A. Silva, S. A. Nebra, M. J. Machado Silva and C. G. Sanchez, *Biomass Bioenergy*, 1998, **14**, 457.
- 496.A. Wahby, J. M. Ramos-Fernandez, M. Martinez-Escandell, A. Sepulveda-Escribano, J. Silvestre-Albero and F. Rodriguez-Reinoso,
 ChemSusChem, 2010, **3**, 974.
 - 497.M. E. Casco, M. Martinez-Escandell, J. Silvestre-Albero and F. Rodriguez-Reinoso, *Carbon*, 2014, **67**, 230.
 - 498.S.-Y. Lee, H.-M. Yoo, S. W. Park, S. H. Park, Y. S. Oh, K. Y. Rhee and S.-J. Park, *J. Solid State Chem.*, 2014, **215**, 201.
- 35 499.L.-Y. Lin and H. Bai, *Microporous Mesoporous Mater.*, 2013, **170**, 266.
 - 500.M. Ives, R. C. Mundy, P. S. Fennell, J. F. Davidson, J. S. Dennis and A. N. Hayhurst, *Energy Fuels*, 2008, 22, 3852.
- 501.E. R. Sacia, S. Ramkumar, N. Phalak and L.-S. Fan, *ACS Sustainable*. 40 *Chem. Eng.*, 2013, **1**, 903.

- 502.S. Castilho, A. Kiennemann, M. F. Costa Pereira and A. P. Soares Dias, *Chem. Eng. J.*, 2013, **226**, 146.
- 503.M. Mohammadi, P. Lahijani and A. R. Mohamed, *Chem. Eng. J.*, 2014, **243**, 455.
- 45 504.Y. Li, C. Liu, R. Sun, H. Liu, S. Wu and C. Lu, *Ind. Eng. Chem. Res*, 2012, **51**, 16042.
- 505.S. Yoo, J. S. Hsieh, P. Zou and J. Kokoszka, *Bioresource Technol.*, 2009, **100**, 6416.
- 506.H. V. Walton, O. J. Cotterill and J. M. Vandepopuliere, *Poultry Sci.*,
 1973, 52, 1192.
- 507.M. Olivares-Marin, T. C. Drage and M. Mercedes Maroto-Valer, *Int. J. Greenhouse Gas Control*, 2010, **4**, 623.
- 508.K. Wang, X. Guo, P. Zhao, F. Wang and C. Zheng, J. Hazard Mater., 2011, 189, 301.
- 55 509.S. Shan, Q. Jia, L. Jiang, Q. Li, Y. Wang and J. Peng, *Chin. Sci. Bull.*, 2012, **57**, 2475.
- 510.K. Wang, X. Guo*, P. Zhao, F. Wang and C. Zheng, J. Hazard. Mater., 2011, 189, 306.
- 511.M. Zhao, A. I. Minett and A. T. Harris, *Energy Environ. Sci.*, 2013, 6,
 25.
- 512.T. F. Hurst, T. T. Cockerill and N. H. Florin, *Energy Environ. Sci.*, 2012, **5**, 7132.
- 513.C. C. Dean, D. Dugwell and P. S. Fennell, *Energy Environ. Sci.*, 2011, 4, 2050.
- 65 514.N. Berghout, M. van den Broek and A. Faaij, Int. J. Greenhouse Gas Control, 2013, 17, 259.
- 515.K. Vatopoulos and E. Tzimas, J. Cleaner Production, 2012, 32, 251.
- 516.M. Gazzani, E. Macchi and G. Manzolini, Int. J. Greenhouse Gas Control, 2013, **12**, 493.
- 70 517.M. M. J. Knoope, J. C. Meerman, A. Ramírez and A. P. C. Faaij, Int. J. Greenhouse Gas Control, 2013, 16, 287.
- 518.S. Chen, W. Xiang, D. Wang and Z. Xue, *Appl. Energy*, 2012, **95**, 285.

75