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A new low-temperature all-solution approach was invented to produce perovskite solar cells with 

efficiency of 15.4% at high device yield.    
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nm which is twofold longer than that of the previously  
measured low end of the electron and hole diffusion 
length of around 100-130 nm.12, 14 The long carrier 
extraction length should be ascribed to the excellent 
crystallinity, passivation by fullerenes,24 and/or low 
extrinsic doping of perovskite films formed by 
interdiffusion. It demonstrates the advantages of the 
interdiffusion approach in the formation of high quality 
perovslite films. The highest PCE devices were 
obtained by annealing of the PbI2/MAI with a thickness 
of 140/190 nm at 100 ºC for 2 hours. The device was 
measured under AM 1.5 simulated one sun illumination.  

Table I.  Photovoltaic performance of a best-performing device 
under different illumination light intensities. 

Light 
intensity 

(mW/cm2) 

JSC 
(mA/cm2) 

VOC 
(V) 

FF 
(%) 

PCE 
(%) 

3.20 0.78 0.85 82.2 17.0 

31 7.09 0.92 77.0 16.2 

100 20.59 0.94 78.8 15.3 

 

The device area is 9.6 mm2, determined by the 
overlap of the cathode and anode electrodes. In order to 

avoid the overestimation of the photocurrent density by 
the piping effect, an aperture size of 8 mm2 was used to 
define the light absorption area.25 A Schott KG5 color-
filtered Si diode (Hamamatsu S1133) was used to 
calibrate the light intensity of the solar simulator before 
photocurrent measurement to avoid optical mismatch.26    

The best performing device has a JSC of 19.6 
mA/cm2, FF of 79.3%, open circuit voltage (VOC) of 
0.99 V, and PCE of 15.4%. Fig. 4c shows the external 
quantum efficiency (EQE) of the device. The calculated 
JSC from the EQE spectra is 18.9 mA/cm2, which is 
close to the measured JSC of 19.6 mA/cm2. It is noted 
that there are two troughs in the EQE spectrum at 
around 400 nm and 600 nm, which is caused by the 
stronger reflection of the glass/ITO substrates at these 
wavelength regions. Another best performing device 
with larger photocurrent but smaller VOC shows even 
higher efficiency of 16-17% at a lower light intensity of 
3.2-30 mW/cm2, as summarized in Table 1. The light 
intensity was tuned by applying neutral density filters of 
different optical densities. The higher efficiency under 
lower light intensity is ascribed to the reduced charge 
recombination evidenced by the larger FF, up to 82%. 
There is still room to further increase the carrier 
diffusion length for efficiency enhancement. Although a 
larger JSC of 22 mA/cm2 could be reached in our devices 
with thicker perovskite thickness, the VOC and FF 
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Fig. 4.  Performance of the perovskite devices. (a) Photocurrents of the device with PbI2 thickness of 140 nm while varied MAI concentration
from 40-50 mg/ml; (b) Photocurrents of the devices will perovskite films of different thickness varied from 200 to 320 nm; (c) external
quantum efficiency of one optimized device. (d-g) Device performance statistics based on more than 50 devices from five batches. 
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generally reduce, pulling down the PCE, which still 
needs a thorough understanding on the charge 
recombination process in perovskite materials and 
electrode interfaces to recover the VOC and FF.  

One significant improvement of the device 
performance reported in this work is from the large FF 
of around 80% for most of our devices. The statistics of 
FF, JSC, and VOC are shown in Fig. 4d-f. In addition to 
the reduced charge recombination in perovskite layers 
due to their good crystallinity and passivation by 
PCBM, both at the top surface and at the grain 
boundaries inside the perovskite films,24 the compact 
and leakage-free perovskite films formed by the 
interdiffusion process should also contribute to the large 
FF. Most of the devices have a low saturated dark 
current density in the order of 10-4-10-3 mA/cm2 at -2 V. 
The 15.4% device has a large shunt resistance of 4.67 
kΩ∙cm2 and a small series resistance of 1.06 Ω∙cm2 
calculated from the photocurrent curve which is among 
the best values reported. Another merit of the 
interdiffusion method for fabricating perovskite devices 
is that it gives an excellent yield of high PCE devices 
which is attractive for large-scale production of 
perovskite devices. The statistics of the PCE based on 
more than 50 devices from five batches are shown in 
Fig. 4g. The average PCE is 14.5% and 85% of the 
devices have efficiency above 14%. 

It has been reported that photocurrent hysteresis 
appears in some perovskite devices, which is strongly 
dependent on the device fabrication process as well as 
the measurement scanning rate and directions.27  The 
origin of photocurrent hysteresis was ascribed to either 
the traps, ferroelectric properties of the perovskite 
material and/or the electromigration of ion in the 
perovskites. Here we changed the scanning rate from 
very fast to very slow, with a delay between 

measurement voltage points increased from 0 to 500 ms, 
which corresponds to the scan rate of 10.4 V/s to 0.033 
V/s. The slowest scanning rate is comparable to what 
Snaith et al. reported.27 As shown in Fig. 5a-b, no 
obvious hysteresis of photocurrent was observed by 
changing the sweep rates or direction in our devices or 
the sweep rates. This indicates that the origin of 
hysteresis in photocurrent is more likely due to the traps 
formation in some nonoptimized film and device 
fabrication process. The ultimate way to examine the 
efficiency of a solar cell device is to measure its power 
output at the load point. If there is large density of traps 
in the devices or photocurrent hysteresis for other 
reasons, the photocurrent would rise slowly upon 
turning on illumination. Fig. 5c shows that the 
photocurrent rose quickly to maximum in the timescale 
limited by the spin rate of the chopper, proving the 
presence of a negligible amount of charge traps in our 
optimized devices.  

Conclusions 

The interdiffusion method can be simply 
applied to other types of perovskite materials for 
incorporating Cl, Br, F, or other elements from 
precursor solutions and can also start with thermally 
evaporated precursor stacking layers to relieve the strict 
requirements for composition controlling in the co-
evaporation process. The low temperature used is 
compatible with plastic flexible substrates. The 
interdiffusion approach can be potentially scaled up for 
large area device fabrication with established solution-
process techniques, such as die-slot coating, gravure 
coating, and doctor blade coating. 
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Fig. 5  (a) Photocurrents of a high performance perovskite device measured with different delays between measurement points (a) and 
different sweep directions (b). No obvious hysteresis of photocurrent was observed.  (c) Measured photocurrent output at the maximum 
power point of a high performance device versus time by turning on and off the illumination with a chopper. 
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