Catalysis Science & Technology Accepted Manuscript This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about *Accepted Manuscripts* in the **Information for Authors**. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains. www.rsc.org/xxxxxx # **ARTICLE TYPE** ### Post-synthesis incorporation of Al into germanosilicate ITH zeolite: the influence of treatment conditions on acidic properties and catalytic behavior in tetrahydropyranylation reaction Mariya V. Shamzhy, a,b Maksym V. Opanasenko, Francisca S. de O. Ramos, Libor Brabec, Michal 5 Horáček, Marta Navaro-Rojas, Russell E. Morris, Heloise de O. Pastore, and Jiří Čejka* Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x Post-synthesis alumination of germanosilicate medium-pore ITH zeolite was shown to be an effective procedure for tuning its acidity. The treatment of ITH zeolites synthesized with different chemical 10 compositions (i.e. Si/Ge = 2.5; 4.4; 5.8) with Al(NO₃)₃ aqueous solution led to the formation of strong Brønsted and Lewis acid sites and an increasing fraction of ultramicro- and mesopores in Ge-rich ITH samples (Si/Ge = 2.5 and 4.4). The concentration of Al incorporated in the framework increases with decreasing Si/Ge ratio in the parent ITH. The increasing temperature of alumination from 80 to 175 °C (HT conditions) resulted in 1) 1.5 – 2-fold increase in the concentration of Brønsted acid sites formed; 15 and 2) in decreasing fraction of framework Al atoms detectable with base probe molecules (i.e. pyridine, 2,6-di-tert-butyl-pyridine), i.e. an increased concentration of the "inner" acid sites. The activity of prepared Al-substituted ITH zeolites in tetrahydropyranylation of alcohols is enhanced with increasing amount of accessible acid sites in bulky crystals (e.g. alumination at lower temperature) or with growth the total concentration of acid centres within tiny **ITH** crystals (e.g. alumination under HT conditions). 20 This trend became more prominent with increasing kinetic diameter of substrate molecules under investigation (methanol < 1-propanol < 1-hexanol). ### 1. Introduction The role of zeolites in the current petroleum-based industry can hardly be overestimated. Aluminosilicate zeolites possessing 25 strong acid centres have been widely used as heterogeneous catalysts for a great variety of processes.1 The applications of medium-pore zeolites as industrial catalysts and the recognition of the 'shape selective' properties of these materials² has stimulated a synthetic work aimed at preparing new microporous 30 materials with various pore sizes and structures.³⁻⁸ Zeolite ITH, possessing three sets of interconnecting mediumpore 9- (4.0 x 4.9 Å), 10- (4.8 x 5.7 Å) and 10- (4.7 x 5.1 Å) ring channels, was first synthesized as a pure silicate in concentrated reaction mixtures (H_2O / T^{IV} < 10, where T is the zeolite 35 framework tetrahedral atom) using hexamethonium as structuredirecting agent (SDA). Introducing Al during the synthesis was reported to diminish the crystallization rate of ITH while favouring the formation of EU-1 phase. 10 On the other hand, the smaller B-O-Si angles were claimed to facilitate the introduction 40 of B into ITH framework with respect to the EU-1 structure, although in relatively small amounts (Si/B ratios >50). 10 Similarly, Al present in the initial gel was also reported that limited the crystallization field of germanosilicate UTL zeolite in favour of STF phase,¹¹ while B influences the selectivity of UTL 45 zeolite formation to a lesser extent. 12 Attempts to generate strong acid centres by post-synthesis alumination of borosilicate ITH zeolite resulted in exchange of only a fraction of boron atoms vielding ITH with Si/Al molar ratio of 80 (45 and 105 umol g⁻¹ of Brønsted and Lewis acid sites, respectively). 13 At the same 50 time, Al-containing ITH zeolite with an increased concentration of Brønsted acid sites (63 and 48 µmol g⁻¹ of Brønsted and Lewis acid sites, respectively) was synthesized directly only in the presence of Ge exploiting its propensity to increase the nucleation rate of zeolites containing D4R SBUs (e.g., ITH). 13 Al-ITH was 55 shown as shape selective catalyst for conversion of aromatics 14 and catalytic cracking of vacuum gasoil producing propylene.¹³ Pure germanosilicate ITH zeolites characterized by Si/Ge ratios in the range $6 - \infty$ were prepared using hexamethonium as SDA. 15 Ge was found to preferentially occupy T-sites in the 60 D4Rs. 15 Recently, Ren et al. reported the synthesis of Geenriched ITH zeolites (2 < Si/Ge < 6) in a dilute medium (H₂O / $T^{IV} = 22 - 66$) using N,N,N,N-tetramethyl-1,6-hexanediamine (TMHDA) as template. 16 The possibility to tune the strength of acid centres by post-65 synthesis substitution of Al and Ga for B and Ge in the framework of borogermanosilicate large-pore IWR zeolite was shown and confirmed by means of X-ray powder diffraction, chemical analysis and infrared spectroscopy of adsorbed pyridine.¹⁷ The catalytic performance of prepared isomorphously substituted IWR zeolites in Friedel-Crafts acylation reaction was also evaluated.17 In this paper, we successfully extended this approach to 5 generate strong acid centres by post-synthesis alumination of medium-pore germanosilicate ITH zeolites. The formation of ultramicropores and mesopores at the expense of Ge extraction was observed when using Ge-rich ITH zeolites with Si/Ge = 2.5 or 4.4 as starting materials. It will be shown that the temperature 10 of post-synthesis treatment strongly influences the concentration of Brønsted acid sites formed and their accessibility. The improved catalytic behaviour of aluminated ITH zeolites containing strong acid centres with respect to initial germanosilicates was demonstrated in tetrahydropyranylation 15 reaction (Scheme 1) commonly used for protection of hydroxyl groups in peptide, nucleotide, carbohydrate, and steroid chemistry.18 Scheme 1 Tetrahydropyranylation of alcohols ### 2. Experimental part #### 2.1 Materials 1,6-Dibromohexane (96%), trimethylamine solution (31 – 35 wt.% in ethanol), N,N,N,N'-tetramethyl-1,6-hexanediamine (99%), germanium oxide (99.99%), tetraethylorthosilicate 25 (TEOS, 98%), aluminium nitrate nonahydrate (\geq 98.5%) were used for the synthesis and post-synthesis treatment of zeolites. 3,4-Dihydro-2*H*-pyran (DHP, 97%), methanol (≥99.9%), 1propanol (≥99.9%), 1-hexanol (≥99.5%), mesitylene (≥99%) and hexane (≥97%) were used in catalytic experiments. All reactants 30 and solvents were obtained from Sigma Aldrich and used as received without any further treatment. ### 2.2 Preparation of hexamethonium dihydroxide Hexamethylene-bis(trimethylammonium)dibromide was prepared according to the Ref. 19 and transformed into hydroxide form 35 using Bio-Rad AG-1X8 anion exchange resin. The solution of hexamethonium dihydroxide was concentrated (evaporated at p = 25 Torr, T = 35 °C) until the hydroxide concentration became 1.0 mol L⁻¹. ### 2.3 Synthesis of ITH zeolites 40 The zeolites prepared in his study were designated as ITH-n, where "n" is Si/Ge in the reaction mixture. Ge-poor zeolite ITH-6 was synthesized according to Ref. 10 using hexamethonium dihydroxide as SDA. The starting gel had the following composition: 0.86 SiO₂ : 0.14 GeO₂ 45 0.25 SDA(OH)₂ : 5 H₂O. Typically, a certain amount of germanium oxide (GeO₂) was dissolved in a solution of SDA(OH)₂ (1.0 mol L⁻¹). Then, TEOS was added and the mixture was gently stirred at room temperature until complete evaporation of the alcohol formed. The resulting fluid gel was charged into 50 25 ml Teflon-lined autoclave and heated at 175 °C for 20 days under agitation (~ 60 rpm). The solid product was separated by filtration, washed with distilled water and dried overnight at 65 °C. The occluded hexamethonium was removed from the samples by heating the products from room temperature to 55 300 °C at a rate of 1 °C min⁻¹, and kept at that temperature for 3 h. The next step involved increasing the temperature at a rate of 1 °C min⁻¹ up to 580 °C; the temperature was maintained under air flow (200 mL min⁻¹) for 3 h, to remove the remaining organic. Ge-rich zeolites ITH-1 and ITH-2 were prepared according to 60 the Ref. 16 N,N,N,N, -tetramethyl-1,6-hexanediamine (TMHDA) was used as the structure directing agent. The synthetic suspension had the composition of (1-x) SiO₂: x GeO₂: 7 TMHDA: 1.4 HF: 44 H₂O, where x = 0.5 for ITH-1 and x =0.33 for ITH-2. The reaction mixture was heated at 175 °C for 65 6 days under static condition. The as-synthesized samples ITH-1 and ITH-2 were washed with distilled water, dried at 65 °C for 12 h and calcined at 650 °C for 8 h with a temperature ramp of 1 °C·min⁻¹ under air flow (200 mL min⁻¹). #### 70 2.4 Post-synthesis treatment Post-synthesis alumination of ITH zeolites was performed by - stirring of the parent **ITH** zeolite in 1 mol L⁻¹ solution of Al(NO₃)₃ (1g zeolite/100 ml solution) at T = 80 °C, pH = 2.0 for 96 h: - treatment of the parent ITH zeolite in 1 mol L-1 solution of Al(NO₃)₃ (1g zeolite/100 ml solution) at T =175 °C, pH = 2.0 for 24 h
in autoclave. The solid product was centrifuged and extensively washed with distilled water until the filtrate was neutral and then dried 80 overnight at room temperature. The prepared samples are designated in the following way: ITH-n /Al/ temperature (°C). #### 2.5 Characterization The crystallinity of all samples under investigation were 85 determined by X-ray powder diffraction (XRD) using a Bruker AXS-D8 Advance diffractometer with a graphite monochromator and a position sensitive detector (Våntec-1) using CuKα radiation in Bragg–Brentano geometry at a scan rate of 0.25° 2θ min⁻¹. Nitrogen adsorption/desorption isotherms were measured using 90 an ASAP 2020 (Micromeritics) static volumetric apparatus at liquid nitrogen temperature (-196 °C). Prior to the sorption measurements, all samples were degassed with a turbomolecular pump at 300 °C for 8 h. The size and shape of zeolite crystals were examined by 95 scanning electron microscopy (SEM, JEOL JSM-5500LV microscope). For the measurement the crystals were coated with a thin layer of platinum (~ 10 nm) in a BAL-TEC SCD-050 instrument. The concentration of Al, Ge and Si in zeolites was determined 100 by energy dispersive X-ray spectroscopy (EDX) using a Jeol JSM 5600 instrument. Solid-state ²⁷Al NMR spectra were obtained using a Bruker Advance III spectrometer, equipped with a 9.4 T wide-bore superconducting magnet (¹H Larmor frequency of 400.13 MHz). 105 The samples were packed into conventional 4 mm zirconia rotor, www.rsc.org/xxxxxx ### **ARTICLE T** Fig. 1 XRD patterns of ITH-1 (A), ITH-2 (B), ITH-6 (C) zeolites: initial germanosilicates (black), ITH-n/Al/80 (blue) and ITH-n/Al/175 (red) and rotated at a MAS rate of 12.5 kHz using a Bruker 4 mm HFXY probe. A pulse of 1.5 μ s ($v_1 \approx 100 \text{ kHz}$) was applied. 5 Signal averaging was carried out for 200 transients with a repeat interval of 2 s. Spectra were referenced to 1.1 M Al(NO₃)₃ in D₂O using solid Al(acac)₃ ($\delta_{iso} = 0$ ppm, centre of gravity = -4.2 ppm at 9.4 T) as a secondary reference. The concentration of Lewis (c_L) and Brønsted (c_B) acid sites 10 was determined after adsorption of pyridine (Py) by FTIR spectroscopy using a Nicolet Protégé 460 Magna with a transmission MTC/A detector. The zeolites were pressed into self-supporting wafers with a density of 8.0 – 12 mg cm⁻² and activated in situ at T = 450 °C and $p = 5.10^{-5}$ Torr for 4 h. 15 Pyridine adsorption was carried out at 150 °C for 20 min at a partial pressure of 3.5 Torr, followed by desorption for 20 min at the same temperature. Before adsorption pyridine was degassed by freezing-pump-thaw cycles. All spectra were recorded with a resolution of 4 cm⁻¹ by collecting 128 scans for a single spectrum 20 at room temperature. Spectra were recalculated using a wafer density of 10 mg cm⁻². Concentration of c_L and c_B were evaluated from the integral intensities of bands at 1454 cm⁻¹ (c_L) and at 1545 cm⁻¹ (c_B) using extinction coefficients, $\varepsilon(L) = 2.22$ cm μ mol⁻¹, and ϵ (B) = 1.67 cm μ mol⁻¹ ²⁰. A relatively large probe molecule 2,6-di-tert-butyl-pyridine (DTBP) was used to determine the accessibility of acid sites in the prepared zeolites.²¹ The adsorption of DTBP took place at 150 °C for 15 min at an equilibrium vapour pressure of the probe molecule. Desorption proceeded at the same temperature for 1 h 30 followed by collection of spectra at room temperature. Extinction coefficients determined in Ref.²⁰ were used for the evaluation of c_B adsorbing DTBP. ### 2.6 Tetrahydropyranylation of alcohols The catalytic experiments were performed in the liquid phase 35 under atmospheric pressure at room temperature (25 °C) in a multi-experiment workstation Star-Fish (Radleys Discovery Technologies). Before use, the catalyst (100 mg) was activated at 450 °C for 90 min at a rate of 10 °C min⁻¹. Typically, alcohol (i.e. methanol, 1-propanol or 1-hexanol, 9 mmol), mesitylene (0.4 g; 40 internal standard), hexane (10 ml, solvent) and the catalyst (100 mg) were added to a two-necked vessel equipped with a thermometer. DHP (15 mmol) was then added to the vessel. Samples of the reaction mixture were taken periodically and analyzed by using Agilent 6850 GC equipped a nonpolar DB-5 45 column (length 20 m, diameter 0.180 mm, and film thickness 0.18 mm) and a flame ionization detector. The reaction products were identified by using Thermo Finnigan Focus DSQ II Single Quadrupole GC/MS. ### Results and discussion 50 The X-ray diffraction patterns of germanosilicate ITH zeolites (Fig. 1) used as starting materials for alumination match well with those reported in the literature.²² In contrast to ITH-1 and ITH-2 possessing platelet-like crystals, ITH-6 is characterized by needle-like crystals (Fig. 2). While samples ITH-1 and ITH-2 55 present separated crystals of remarkably higher size (Fig. 2A, D, **Table 1**), the Ge-poor *ITH-6* sample shows the agglomerates of www.rsc.org/xxxxxx ### **ARTICLE TYPE** Fig. 2 SEM images of ITH zeolites under investigation : ITH-1 (A); ITH-1/Al/80 (B); ITH-1/Al/175 (C); ITH-2 (D); ITH-2/Al/80 (E); ITH-2/Al/175 (F); ITH-6 (G); ITH-6/Al/80 (H); ITH-6/Al/175 (I) tiny crystals (**Fig. 2G**, **Table 1**). This result may be connected with a higher rate of crystal growth in the presence of TMHDA 10 acting as SDA for *ITH-1* and *ITH-2* samples. The broader and less intense diffraction lines characteristic for *ITH-6* zeolite in comparison with *ITH-1* and *ITH-2* samples (**Fig. 1**) are consistent with smaller size of *ITH-6* crystals (**Fig. 2**). *ITH-1* and *ITH-2* zeolites exhibit type I isotherm (**Fig. 3 A, B**) characteristic for microporous solids and are characterized by micropore volume of 0.112 and 0.125 cm³ g⁻¹, respectively (**Table 1**). *ITH-6* germanosilicate representing quite small crystals (ca. 5.0 x 0.5 x 0.5 μm) showed uptake in the range of p/p_s= 0.8 – 1.0 (**Fig. 3C**) most probably attributed to filling of intercrystalline space. - Chemical analysis of the **ITH** zeolites agrees with the composition of corresponding gels showing increasing Si/Ge ratio in the solids with decreasing Ge concentration in reaction mixture (**Table 1**). However, while chemical composition of Gepoor *ITH-6* zeolite (Si/Ge = 5.8) corresponds to Si/Ge in initial gel, Ge-rich *ITH-1* (Si/Ge = 2.5) and *ITH-2* (Si/Ge = 4.4) samples are characterized by ca. twice lower Si/Ge ratios than those in reaction mixture (**Table 1**). This corresponds to results obtained in Ref. ^{15, 16} and may be related with "saturation" of T-sites in D4Rs and [4¹5²6²] cages. - It should be noted that Ge preferentially occupies positions in D4Rs forming [4Si;4Ge] domains regularly located in-between www.rsc.org/xxxxxx Page 5 of 12 Journal Name # **ARTICLE TYPE** Fig. 3 ²⁷Al MAS NMR spectra of ITH-1 (A), ITH-2 (B), ITH-6 (C) zeolites: ITH-n/Al/80 (blue) and ITH-n/Al/175 (red) silica layers in ITH-1 and ITH-2, while both pure silica [8Si] and Si-rich D4Rs[7Si;1Ge] were detected in Ge-poor (Si/Ge > 5) ITH 5 zeolites.²³ Table 1 Chemical composition and textural characteristics of germanosilicate ITH zeolites under investigation | Sample | de | Chemical composition of zeolites, mol. % | | Si/Ge | | Crystal size | | |--------|----|--|------|------------------|---------|------------------|--| | | ic | Si | Ge | Reaction mixture | Zeolite | (µm) | | | ITH- | 1 | 71.4 | 28.6 | 1 | 2.5 | 10.0 x 2.5 x 1.0 | | | ITH- | 2 | 81.5 | 18.5 | 2 | 4.4 | 40.0 x 5.0 x 5.0 | | | ITH- | 6 | 85.6 | 14.5 | 6 | 5.8 | 5.0 x 0.5 x 0.5 | | #### 3.1 The structure and textural properties of post-synthetically 10 treated ITH zeolites As it was shown in Ref.²³, the acidic treatment of ITH zeolites having appropriate amount of Ge in D4R SBUs (i.e. Si/Ge_{D4R} ≤ 1 like in ITH-1 sample) results in zeolite disassembly, e.g. the formation of layered material possessing the same topology of the 15 layers as initial ITH zeolite. In contrast, all ITH zeolites subjected to alumination in acidic medium (pH = 2.0) at T = 80 °C or 175 °C still display sharp diffraction lines at the characteristic 2-theta positions, which proves the preservation of the structure ordering of the samples (Fig. 1). This indicates that 20 Al acts as "stabilizer" preventing the disassembly of Ge-rich ITH zeolite (i.e. ITH-1) in acidic medium. Mentioned effect was also observed for IWR zeolite in Ref.¹⁷ and may be connected with rapid healing of defects formed in the course of hydrolysis of Ge-O-Si bonds with Al. No diffraction lines of Al(NO₃)₃ or other 25 crystalline admixtures were observed in XRD patterns of ITH zeolites after alumination procedures described in this study. The decrease in the intensity of diffraction lines for ITH zeolites subjected to alumination, which is especially pronounced for Gerich ITH-1 sample (Fig. 1A), likely originates from diminishing 30 of the framework density caused by the leaching of the framework Ge atoms under conditions used (Table 2). The aluminated samples showed drastically higher Si/Ge ratio (12.6 -158) if compared with parent ITH zeolites (Si/Ge = 2.5 - 5.8). The magnitude of Ge extraction depends both on the temperature 35 of the treatment and the size of zeolite crystals. While ITH-2/Al/80 and ITH-2/Al/175 characterized by the bulkiest crystals $(40.0 \times 5.0 \times 5.0 \mu m$, **Table 1**) show close Si/Ge ratios (**Table 2**), higher drop in Ge concentration at 175 vs. 80 °C was observed for ITH-1 (10.0 x 2.5 x 1.0 µm) and especially ITH-6 zeolites (5.0 40 x 0.5 x 0.5 μm). Table 2 Chemical composition of ITH zeolites subjected to alumination | Sample | Chemical composition, mol.%
Al Ge Si | | | Si/Ge | Al _{Th} ^a ,
mol. % | | |---|---|------|------|-------|---|--| | ITH-1 | - | 28.6 | 71.4 | 2.5 | - | |
 ITH-1/Al/80 | 2.6 | 6.8 | 90.6 | 13.3 | 92 | | | ITH-1/Al/175 | 4.3 | 2.2 | 93.5 | 42.5 | 88 | | | ITH-2 | _ | 18.5 | 81.5 | 4.4 | | | | ITH-2/Al/80 | 1.5 | 7.0 | 91.5 | 13.0 | 91 | | | ITH-2/Al/175 | 2.1 | 7.2 | 90.7 | 12.6 | 84 | | | ITH-6 | _ | 14.5 | 85.6 | 5.8 | _ | | | ITH-6/Al/80 | 6.7 | 4.3 | 89.0 | 21.0 | 24 | | | ITH-6/Al/175 | 4.0 | 0.6 | 95.0 | 158 | 89 | | | ^a calculated based on the integral intensities of peaks at 0 and 60 ppm in | | | | | | | | ²⁷ Al NMR spectra | | | | | | | www.rsc.org/xxxxxx Journal Name # **ARTICLE TYPE** Fig. 4 Nitrogen adsorption (•) and desorption (o) isotherms of ITH-1 (A), ITH-2 (B), ITH-6 (C) zeolites: initial germanosilicates (black), ITH-n/Al/80 (blue) and ITH-n/Al/175 (red) This result indicates the role of diffusion in the degermanation 5 process and is in agreement with previous observations on the influence of zeolite crystal size on dealumination²⁴ and desilication²⁵ outcome. While the results of the chemical analysis indicate increasing concentration of Al (**Table 2**), the solid-state ²⁷Al MAS NMR 10 spectra of all aluminated samples (Fig. 3) show the presence of both tetrahedral AlO₄ (shift ranges of 50 - 80 ppm) and octahedral AlO₆ species (-10 - 15 ppm). ²⁶ Ge-rich ITH-1 and ITH-2 zeolites aluminated at 80 or 175 °C and ITH-6/Al/175 sample show a dominant peak at - 54 ppm (~90% of the 15 integrated signal intensity) evidencing the incorporation of the most aluminium atoms into the framework of zeolite (Fig. 3). In contrast, the ITH-6/Al/80 showed the dominant reflex at 0 ppm (76% of the integrated intensity, **Table 2**) attributed to AlO₆ species. It seems, that the output of alumination is dependent on 20 the rates of 3 processes, i.e. 1) extraction of Ge leading to the formation of silanol defects (vide infra); 2) healing of formed defects with Al leading to the formation of Brønsted acid sites; precipitation of oxo-Al species internal/intercrystalline voids resulted in a deposition of extra-25 framework species. The total amount of Al as well as the ratio between framework and extra-framework Al species (Table 2) depends both on the treatment condition and intrinsic properties of initial germanosilicate (i.e. crystal size, Si/Ge ratio). Increasing the temperature of the treatment results in the growth of the 30 concentration of Al, incorporated into the framework of ITH-1 zeolites possessing the bulkiest crystals does not depend significantly on the temperature of the treatment. This result is likely connected either with diffusional restrictions for Ge extraction/Al penetration into bulky crystals. On the other hand, the contamination of extra-framework Al species is favourable for *ITH-6* zeolites possessing tiny crystals when being aluminated at 80 °C (**Table 2**). The shape of ITH platelet-like crystals remained intact during alumination (Fig. 2), ITH-1/Al/80 (Fig. 2B) and ITH-2/Al/80 (Fig. 2E) showed increased fraction of cracked tiny crystals (1 – 3 µm) in comparison with the parent ITH-1 (Fig. 2A) and ITH-2 (Fig. 2D) zeolites. In contrast, ITH-1/Al/175 (Fig. 2C) and ITH-2/Al/175 (Fig. 2F) zeolites treated under hydrothermal conditions showed crystals of uniform size close to the parent germanosilicates. This result is probably connected with acceleration of the dissolution/precipitation processes at elevated temperature via Ostwald ripening of ITH crystals under hydrothermal conditions. It seems that alumination at higher temperature resulted in an accelerated and more complete recrystallization of ITH-n zeolites, while the low temperature treatment led to deterioration of the crystal morphology (destruction or conglutination, Fig. 2). Nitrogen isotherms provide valuable information on the textural properties of aluminated **ITH** zeolites when compared with the parent ones. In contrast to parent germanosilicate *ITH-1* and *ITH-2* zeolites (**Fig.4A**, **B**) exhibiting type I isotherm, zeolites *ITH-1/Al/80* and *ITH-2/Al/80* aluminated at 80 °C show isotherms of type I with hysteresis loop of H4 characteristic of and ITH-6 zeolites. In contrast, the concentration of Al in ITH-2 www.rsc.org/xxxxxx Page 7 of 12 Journal Name ### ARTICLE TYPE microporous solids with a broad pore size distribution. The magnification of the average pore size in ITH-1 and ITH-2 zeolites treated with Al(NO₃)₃ solution in acidic medium is most probably connected with breaking of hydrolytically unstable Ge-5 O(Si) bonds resulting in the increasing void volume. A similar process of mesopores formation in the course of the treatment of germanosilicate IWW zeolite with hydrochloric acid at elevated temperature was also observed in Ref. 27 The increase in the alumination temperature leads to the increased fraction of 10 mesopores in ITH-1/Al/175 and ITH-2/Al/175 both exhibiting combined type I and type IV isotherms, being typical for hierarchical micro/mesoporous materials. It should be noted, that a contribution of Si extraction in the formation of mesopores at 175 °C cannot be excluded, since ITH-2/Al/80 and ITH-2/Al/175 15 characterized by close Si/Ge ratio (Table 2) showed drastically different nitrogen ad-/desorption isotherms (Fig. 4). In contrast, alumination does not significantly impact the pore system of Gepoor ITH-6 zeolite. Both aluminated ITH-6/Al/80 and ITH-6/Al/175 zeolites or parent ITH-6 germanosilicate possessed 20 similar adsorption/desorption isotherms of type I showing an interparticle adsorption in the range of $p/p_0 = 0.8 - 1.0$ (Fig. 4C). The formation of extra-porosity not observing during the alumination of Ge-poor ITH-6 zeolite treatment with Al(NO₃)₃ solution is likely caused by "unsuitable" distribution of 25 extractable Ge atoms in the framework (the absence of [4Si;4Ge] domains according to the NMR data ²³). **Table 3** Textural characteristics of **ITH** zeolites subjected to alumination | Sample | $V_{micro}^{a}, \\ cm^{3} \cdot g^{-1}$ | $V_{meso}^{,},$ $cm^3 \cdot g^{-1}$ | $S_{BET}^{c}, \\ m^2 \cdot g^{-1}$ | $S_{ext}^{a}, \\ m^2 \!\cdot\! g^{-1}$ | |--------------|---|-------------------------------------|------------------------------------|--| | ITH-1 | 0.112 | 0.007 | 285 | 23 | | ITH-1/Al/80 | 0.103 | 0.05 | 330 | 143 | | ITH-1/Al/175 | 0.080 | 0.12 | 207 | 62 | | ITH-2 | 0.125 | 0.005 | 313 | 28 | | ITH-2/Al/80 | 0.124 | 0.07 | 400 | 166 | | ITH-2/Al/175 | 0.101 | 0.17 | 275 | 90 | | ITH-6 | 0.138 | 0.13 | 321 | 68 | | ITH-6/Al/80 | 0.141 | 0.18 | 345 | 86 | | ITH-6/Al/175 | 0.130 | 0.13 | 303 | 64 | ^a micropore volume and external surface area were evaluated from the tplot method. Both ITH-6 zeolite and its aluminated derivatives ITH-6/Al/80 and ITH-6/Al/175 are characterized by high V_{meso} values, related 35 to the adsorption of nitrogen in the interparticle space of the crystals (Table 3). Alumination of ITH-1 and ITH-2 zeolites decreased micropore volume but increased volume of mesopores, in the range of 0.3-0.8 of p/p_0 (**Table 3**). This corresponds to the formation of extra pores in the course of Ge extraction during 40 alumination of ITH-1 and ITH-2 enhancing with increasing temperature of the treatment. The higher values of external surface area S_{ext} for ITH-1/Al/80 and ITH-2/Al/80 with respect to the initial germanosilicates (Table 3) agree with the results of SEM showing the decreasing average crystal size after 45 alumination of Ge-rich ITH zeolites at 80 °C (Fig. 2). #### 3.2 The nature and concentration of acid sites FTIR spectroscopy was used to investigate the evolution of OHgroups during alumination of ITH zeolites with different chemical compositions; the relevant spectra are depicted in Fig. 50 5A. Parent germanosilicates showed two absorption bands (at ca 3745 and 3633 - 3653 cm⁻¹) in the region 3800 - 3500 cm⁻¹. While the intensity of the band at 3745 cm⁻¹ attributed to silanol groups increased with decreasing crystal size of germanosilicate ITH zeolites (ITH-2 < ITH-1 < ITH-6 (Fig. 5A, Table 1), a broad ss absorption band at 3633 - 3653 cm⁻¹ attributed to external Ge-OH groups²⁸ grew with increasing Ge content in the following sequence: ITH-6 < ITH-2 < ITH-1. The increased absorption band at 3745 cm⁻¹ in the spectra of ITH-n/Al/80 zeolites with respect to parent germanosilicate 60 indicates the formation of silanol defects under conditions used (Fig. 5A). In contrast, ITH-n/Al/175 and ITH-n zeolites showed absorption bands at 3745 cm⁻¹ of comparable intensities (Fig. 4A). This indicates the acceleration of Al incorporation into the framework of ITH zeolite accompanied with some healing of 65 silanol defects with increasing temperature of the treatment. In agreement with this assumption, ITH zeolites aluminated at 175 °C are characterized by more intensive absorption band assigned to the bridging hydroxyl groups (cca. 3620 cm⁻¹, Fig. **5A**) compared with the samples treated at 80 °C. The incorporation of Al atoms into the framework of **ITH** zeolites in the course of the post-synthesis treatment was confirmed by FTIR spectroscopy of adsorbed pyridine. The appearance of the absorption band at 1545 cm⁻¹ assigned to the pyridinium ion in the spectra of aluminated ITH zeolites clearly 75 evidences the incorporation of aluminium into the framework positions [25] (Fig. 5B). In addition, alumination caused the increase in the intensity of the absorption band at 1455 cm⁻¹, which is obviously connected with increased concentration of Lewis acid centres [25] in aluminated **ITH** zeolites in comparison 80 with initial germanosilicates. The concentrations of Brønsted and Lewis acid sites determined from the integral intensities of the bands at 1545 and 1455 cm⁻¹ using extinction coefficients²⁰ are given in **Table 4**. ITH-6/Al/80 (c_B = 97; c_L = 194 μ mol g⁻¹) and ITH-6/Al/175 (c_B = ₈₅ 239; $c_L = 150 \,\mu\text{mol g}^{-1}$) samples having the smallest crystals showed the highest concentrations of incorporated acid
centres despite a relatively low concentration of hydrolytically unstable Ge-O(Si) bonds (**Table 1**). For zeolites of the comparable crystal size (e.g. ITH-1, ITH-2), the amount of incorporated acid centres 90 increased with decreasing Si/Ge ratio in the parent germanosilicate. ³⁰ b evaluated using BJH method. ^c surface area was evaluated using adsorption branch in the range p/p_s = 0.05 - 0.25 www.rsc.org/xxxxxx # **ARTICLE TYPE** Fig. 5 IR spectra of ITH-1 (a), ITH-2 (b), ITH-6 (c) zeolites (initial germanosilicates (black), ITH-n/Al/80 (blue) and ITH-n/Al/175 (red)): (A) region of hydroxyl vibrations; (B) region of pyridine vibrations. Down/thin lines show spectra before adsorption of pyridine, while top/bold show spectra after adsorption of base molecule **Table 4** The concentration of Lewis and Brønsted acid sites within **ITH** zeolites, determined by means of FTIR spectroscopy of adsorbed PY and DTBP | Sample | c _E
μmol
Pyridine | g-1 | c _L
µmol g ⁻¹
PPyridine | $c_{\Sigma} \atop \mu mol \ g^{\text{-}1}$ | $\begin{array}{c} Al_{FR}{}^{a} \\ \mu mol \ g^{\text{-}1} \end{array}$ | $c_{\Sigma}/Al_{FR,} \\ {}^{0}\!\!/_{\!0}$ | |--------------|------------------------------------|-----|---|--|---|--| | ITH-1 | - | _ | 26 | 26 | _ | _ | | ITH-1/Al/80 | 60 | 24 | 140 | 200 | 381 | 53 | | ITH-1/Al/175 | 140 | 4 | 100 | 240 | 624 | 38 | | ITH-2 | _ | _ | 20 | 20 | _ | _ | | ITH-2/Al/80 | 90 | 21 | 67 | 157 | 216 | 72 | | ITH-2/Al/175 | 127 | 1 | 48 | 175 | 279 | 62 | | ITH-6 | _ | _ | 13 | 13 | _ | _ | | ITH-6/Al/80 | 97 | 10 | 194 | 291 | 371 | 78 | | ITH-6/Al/175 | 239 | 8 | 150 | 389 | 594 | 65 | ^acalculated based on the results of chemical analysis and relative integral intensity of peak at 60 ppm in ²⁷Al NMR spectra This may be connected with 1) increasing concentration of hydrolytically unstable Ge–O(Si) bonds being the source of defects in the second step condensing with aluminium ions forming acid centres; 2) increasing average size of pores developing in the course of hydrolysis of available Ge–O(Si) bonds facilitating the diffusion of aluminium ions to the formed defects. In this way, the alumination of *ITH-1* zeolite containing 28.6 mol.% of Ge (**Table 1**) generated higher amount of acid centres (200 – 240 μmol g⁻¹, **Table 4**) when compared with *ITH-2* (18.9 mol.% of Ge)-derived samples (127 – and 175 μmol g⁻¹, **Table 4**). Remarkably increased concentration of formed Brønsted acid centres (1.5 – 2.5 times) at slightly decreased amount of Lewis acid sites (**Table 3**) with increasing temperature of alumination of **ITH** zeolites from 80 to 175 °C should be noticed. From the first sight, a successful incorporation of Al atoms into the framework of medium-pore **ITH** zeolite in the course of the post-synthesis treatment seems to contradict to literature results, ^{29, 30} thoroughly disproving aluminium incorporation in acidic medium to medium-pore boralites with inner void being inaccessible for bulky hydrated aluminium cations. However, these studies were focused only on (boro)silicate zeolites. The presence of hydrolytically unstable "domains" (i.e. D4R SBUs) in *ITH-1* and *ITH-2* zeolites seems to create the necessary prerequisites for incorporation of Al atoms. Since the conditions www.rsc.org/xxxxxx ### ARTICLE TYPE Fig. 6 Yield of tetrahydropyranyl ether versus time obtained in the reaction of methanol and DHP at 301 K over ITH-1 (A), ITH-2 (B), ITH-6 (C)-derived zeolites: initial germanosilicates (black), ITH-n/Al/80 (blue) and ITH-n/Al/175 (red) of the treatment (pH = 2.0, T = 80 or 175 °C) are sufficient for 5 extraction of the most Ge from the framework (Table 2), it is reasonable to assume that the first stage of overall process is the breaking of Si-O-Ge bonds in D4Rs.²³ This leads to the formation of silanol defects in all ITH zeolites under investigation (Fig. 5A) as well as to the creation of ultramicro-10 and mesopores in ITH-1 or ITH-2 zeolites (Fig. 4). Thus, the development of extra-porosity in the course of ITH-1 and ITH-2 alumination seems to facilitate the penetration of hydrated aluminium cations in the inner volume of zeolite crystals followed by their condensation with Si-OH groups. At the same 15 time, the "unsuitable" distribution of extractable Ge atoms in the framework (the absence of [4Si;4Ge] domains according to the NMR data ²³) in *ITH-6* zeolite seems to prevent the formation of extra-porosity (Fig. 4C). For the latter sample, 75% of Al forms intercrystalline extra-framework species with octahedrally 20 coordinated aluminium (Fig. 3), whereas the formation of Brønsted acid sites (Table 4) likely proceeds mainly on the outer surface of the crystals. Noticeably, the concentration of framework Al (Al $_{\rm FR}$, Table 4) calculated based on the results of ²⁷Al NMR exceeds the total 25 concentration of acid sites determined using Py as probe molecule. This is obviously connected with different accessibility of incorporated Al atoms being dependant on the treatment conditions and crystal size of aluminated ITH zeolites. Lower fraction of acid centres detectable for Py is characteristic for ITH-30 n/Al/175 (38-62%, Table 4) vs. ITH-n/Al/80 zeolites (53-78%, **Table 4**). This result may indicate the incorporation of a higher amount of Al to "inner" domains of ITH crystals with increasing temperature of alumination. Remarkably higher concentrations of surface Brønsted acid centres for ITH-1/Al/80 35 towards ITH-1/Al/175 and similarly for ITH-2-derived samples (Table 4) were also detected using FTIR spectroscopy of adsorbed DTBP (the size of the DTBP molecule is about 7.9 Å, 21 which is higher than the diameter of 10-ring channels in zeolites). Higher accessibility of acid centres in ITH-2-derived samples (62; 40 72 %, **Table 4**) vs. *ITH-1* derivatives (38; 53 %, **Table 4**) is probably connected with larger fraction of mesopores within of ITH-2/Al vs. ITH-1/Al (Table 3). Naturally, ITH-6/Al zeolites characterized by tiny crystals (Fig. 2) showed the highest accessibility of acid centres (65 and 78 %, Table 4) among 45 zeolites under investigation. According to the results of FTIR spectroscopy of adsorbed DTBP ITH-6 zeolites aluminated at different temperatures insignificantly differ in the concentration of surface Brønsted acid sites detected with DTBP (8 - 10 umol g⁻¹, **Table 4**). ### 50 3.3 Catalytic performance of Al-substituted ITH zeolites in tetrahydropyranylation of alcohols The activity of various heterogeneous catalysts in the tetrahydropyranylation of alcohols may be attributed to both Brønsted and Lewis acid sites. 18, 31 The catalytic behavior of 55 aluminated ITH zeolites was investigated tetrahydropyranylation of methanol, 1-propanol and 1-hexanol. While practically no conversion of substrates was observed over initial germanosilicate ITH zeolites possessing only a small www.rsc.org/xxxxxx # **ARTICLE TYPE** Fig. 7 Initial rate (A) and the yield of tetrahydropyranyl ethers (B) formed in the reaction of methanol (a), 1-propanol (b) and 1-hexanol (c) over ITH zeolites aluminated at 80 °C () and at 175 °C () amount of weak Lewis acid centres (**Fig. 6**, **Table 4**), the only products of alcohols transformation formed in reaction mixture over Al-containing zeolites under investigation were targeted tetrahydropyranyl ethers (**Scheme 1**). Relative amount of dimer formed in the competitive bimolecular dimerization of DHP did not exceed 6 mol.%. 10 The yield of tetrahydropyranyl ether obtained in the reaction of methanol and DHP after 1200 min was found to increase in the following order of catalysts: ITH-2/Al/175 (25%) < ITH-1/Al/175 (58%) < ITH-1/Al/80 (85%) < ITH-6/Al/80 (100%) = ITH-6/Al/175 (100%) = ITH-2/Al/80 (100%) (Fig. 6). Noticeably, 15 ITH-n/Al/80 (n = 1; 2) samples characterizing by higher accessibility of acid sites performed better than ITH-n/Al/175 (n = 1; 2) zeolites. In particular, ITH-2/Al/175 possessing higher concentration of acid centres than ITH-2/Al/80 (175 vs. 157 µmol/g, **Table 3**) showed remarkably lower initial rate in 20 methanol tetrahydropyranylation (80·10⁻⁵ vs. 430·10⁻⁵ mmol·h⁻¹, Fig. 7). At the same time, while ITH-1/Al/80 (S_{ext} = 143 m² g⁻¹, Table 3) and ITH-I/Al/175 (S_{ext} = 62 m² g⁻¹, Table 3) were characterized by similar initial reaction rates in methanol transformation $(110 - 150 \cdot 10^{-5} \text{ mmol} \cdot \text{h}^{-1}, \text{ Fig. 7A})$, ITH-1/Al/80 25 with a larger Sext (accessibility of acid sites) showed a higher yield of target ether (Fig. 7B). The obtained results may indicate that diffusion constraints exist in prepared micro/mesoporous ITH zeolites possessing big crystals (i.e. ITH-1 and ITH-2 aluminated derivatives) even when using methanol as a substrate. 30 Diffusion limitations seem not to play so decisive role in tetrahydropyranylation of methanol over aluminated ITH-6 zeolites having the smallest crystals of 5.0 x 0.5 x 0.5 μm (Table **1, Fig. 2H, I)**. In this way, ITH-6/Al/80 (S_{ext} = 86 m² g⁻¹, **Table 2**) showed 4-times higher initial rate in methanol 35 tetrahydropyranylation (Fig. 7A) in comparison with ITH-1/Al/80 $(S_{ext} = 143 \text{ m}^2 \text{ g}^{-1}, \text{ Table 2})$ (Fig. 7A). A superior performance of ITH-6/Al/80 having higher total concentration of acid sites (291 vs. 200 µmol g⁻¹, **Table 3**) in transformation of methanol can be explained taking into account the possibility of substrate 40 activation by "inner" acid centres. In contrast, ITH-1/Al/80 (67 – 84% yield, Fig. 7B) performed better than ITH-6/Al/80 (52 – 64%) yield, Fig. 7B) when using bulkier 1-propanol and especially 1hexanol as substrate. This result is likely connected with the increasing role of external acid sites in the activation of bulky A decrease in the activity
of all aluminated **ITH** samples (**Fig.** 7) was observed when the size of the reactants increased (methanol (kinetic diameter 3.6 Å) < 1-propanol (4.7 Å) < 1-hexanol (6.2 Å). 32 Again, ITH-I/Al/80 and ITH-2/Al/80 showed of higher initial rates of alcohol transformation (**Fig. 7A**) and yields of target ethers (**Fig. 7B**) vs. ITH-1/Al/175 and ITH-2/Al/175 possessing lower S_{ext} (accessibility of acid sites). It should be noted, that particular results of DTBP (a selective probe molecule for Brønsted sites) adsorption and activity of prepared ITH-n/Al samples in tetrahydropyranylation of alcohols can hardly be correlated without considering total concentration of accessible acid sites (both Brønsted and Lewis) formed on the external surface. In particular, comparing ITH-1/Al/80 ($S_{ext} = 143 \text{ m}^2 \text{ g}^{-1}$, **Table 2**) and *ITH-2/Al/80* ($S_{ext} = 166 \text{ m}^2 \text{ g}^{-1}$, **Table 2**), a very s similar amount of external Brønsted acid sites (Table 3) gives massively different activities (Fig. 7), which may be related to the higher S_{ext} of more active ITH-2/Al/80. On the other hand, catalytic activity of prepared Al-substituted ITH zeolites cannot be correlated only with their textural characteristics. For instance, $_{10}$ ITH-1/Al/175 (S_{ext} = 62 m² g⁻¹, **Table 2**) showed higher yields, despite having lower S_{ext} than ITH-2/Al/175 ($S_{ext} = 90 \text{ m}^2 \text{ g}^{-1}$, Table 2). This agrees with higher concentration of surface Brønsted acid sites in ITH-1/Al/175 (Table 3). In contrast, total acidity likely determines the catalytic 15 behavior of ITH-6 aluminated derivatives when using 1-propanol and 1-hexanol as substrates. ITH-6/Al/80 possessing lower total number of acid sites ($c_{\Sigma} = 292 \mu \text{mol g}^{-1}$) shows lower initial rates and yields in tetrahydropyranylation of 1-propanol and 1-hexanol than ITH-6/Al/175 ($c_{\Sigma} = 391 \mu mol g^{-1}$) (Fig. 7) despite having 20 similar number of external Brønsted acid sites (Table 3) and higher S_{ext} (**Table 2**). This result can be rationalized considering lower pass length of reacting molecules into and off tiny crystals of Al-containing ITH-6 zeolites and assuming activation of substrate molecules (kinetic diameters < 6.2 Å) with acid centres ₂₅ inaccessible for DTBP (kinetic diameter = 7.9 Å) within *ITH-6/Al* catalysts. ITH-2/Al/80 zeolite possessing highest value of S_{ext} (166 m² g⁻¹ ¹, Table 2) showed the highest initial rates when using 1propanol ($r_0 = 330 \cdot 10^{-5} \text{ mmol} \cdot \text{h}^{-1}$) and 1-hexanol ($r_0 = 250 \cdot 10^{-5}$ 30 mmol·h⁻¹) as substrates (**Fig. 7**). However, it should be noted, that the yields achieved over ITH-2/Al/80 possessing relatively high Sext and ITH-6/Al/175 having the highest concentration of acid sites are comparable (Fig. 7). This agrees with higher concentration of acid centres activating substrate molecules in 35 initial time within ITH-2/Al/80 (e.g. surface acid centres), while involving of "inner" acid sites of ITH-6/Al/175 in catalytic process in time. ### 4. Conclusions Alumination of Ge-rich medium-pore ITH zeolites (Si/Ge = 2.5 40 and 4.4) in acidic medium (pH = 2) was found to result not only in the formation of strong Brønsted and Lewis acid sites, but also in the development of extra porosity, related to the extraction of Ge off D4Rs SBUs regularly arranged in initial germanosilicates. In contrast, no extra-porosity was formed in the course of 45 alumination of Ge-poor ITH zeolite (Si/Ge = 5.8). The chemical composition and crystal size of initial zeolite as well as the temperature of post-synthesis treatment was shown to determine the total concentration and accessibility of formed acid centres as well as the ratio between Brønsted and Lewis acid 50 sites. For Ge-rich ITH zeolites showing bulky crystals (e.g. 10.0 x 2.5 x 1.0 µm) the amount of incorporated acid centres increased with decreasing Si/Ge ratio in the parent germanosilicate, which is likely connected with 1) increased concentration of 55 hydrolytically unstable Ge-O(Si) bonds being the source of defects further condensed with aluminium ions forming acid centres; 2) increased average size of pores developed during hydrolysis of available Ge-O(Si) bonds, which facilitate the diffusion of aluminium ions to the formed defects. Ge-poor ITH 60 zeolite possessing the smallest crystals (i.e. 5.0 x 0.5 x 0.5 μm) showed the highest concentration of incorporated acid centres (291 and 389 µmol g⁻¹ for the samples aluminated at 80 and 175 °C, respectively). The formation of larger pores at 175 °C enhanced the diffusion 65 of Al species as well as acceleration of the rates of condensation reactions leading to the formation of Si-O-Al bonds. This led to the remarkable increase (1.5 - 2.5 times) in the concentration of formed Brønsted acid centres at slightly decreased amount of Lewis acid sites in aluminated ITH zeolites independently on the 70 chemical composition of parent germanosilicate. In contrast to alumination at 80 °C, the treatment of germanosilicate ITH zeolites at 175 °C was accompanied with decreasing fraction of framework Al atoms detectable with base probe molecules (i.e. pyridine, 2,6-di-tert-butyl-pyridine), i.e. the 75 increased concentration of the "inner" acid sites. The activity of prepared Al-substituted ITH zeolites possessing big crystals (e.g. 10.0 x 2.5 x 1.0 μm) was found not depending on the total concentration of acid centres, indicating diffusion constraints existing in prepared micro/mesoporous ITH 80 zeolites even when using methanol as a substrate in tetrahydropyranylation reaction. In general, Ge-rich ITH zeolites (Si/Ge = 2.5 and 4.4) aluminated at 80 °C having higher S_{ext} and concentration of accessible acid sites performed better in tetrahydropyranylation of alcohols than samples aluminated at 85 175 °C. In contrast, activity of aluminated derivatives of Ge-poor ITH zeolite (Si/Ge = 5.8) possessing tiny crystals (i.e. $5.0 \times 0.5 0$ 0.5 µm) increased with growth of the total concentration of acid centres. A decrease in the activity of all aluminated ITH samples was observed when the size of the reactants increased (methanol 90 (kinetic diameter 3.6 Å) < 1-propanol (4.7 Å) < 1-hexanol (6.2 Å). ### 5. Acknowledgements Authors thank Dr. Daniel Dawson (University of St Andrews) for 95 the providing of NMR data. M.S. thanks the Czech Science Foundation for the support of the Project 14-30898P, M.O. acknowledges the Czech Science Foundation for the Project 13-17593P. R.E.M thanks the EPSRC for funding (EP/K025112/1 and EP/L014475/1). #### 6. Notes and references - ^a J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, v. v. i., Dolejškova 3, CZ-182 23 Prague 8, Czech Republic. Fax: (+420)286 582 307; Tel: (+420)266053795; E-mail: jiri.cejka@jh- - L.V. Pisarzhevskiy Institute of Physical Chemistry, National Academy of Sciences of Ukraine, pr. Nauky, 31 Kyiv 03028, Ukraine. Fax: (+380)445 256 216; Tel: (+380)445 254 196 - Micro and Mesoporous Molecular Sieves Group, Institute of Chemistry, 110 University of Campinas, Rua Monteiro Lobato, 270, 13083-861, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil. - d EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews KY16 9ST, United Kingdom. 31. 33. - D. Kubicka, I. Kubickova and J. Čejka, *Catal. Rev. Sci. Eng.*, 2013, 55, 1-78. - S. M. Csicsery, in Stud. Surf. Sci. Catal., eds. H. K. Beyer, H. G. Karge, I. Kiricsi and J. B. Nagy, 1995, vol. 94, pp. 1-12. - W. J. Roth, P. Nachtigall, R. E. Morris, P. S. Wheatley, V. R. Seymour, S. E. Ashbrook, P. Chlubna, L. Grajciar, M. Polozij, A. Zukal, O. Shvets and J. Čejka, *Nat. Chem.*, 2013, 5, 628-633. - P. S. Wheatley, P. Chlubná-Eliášová, H. Greer, W. Zhou, V. R. Seymour, D. M. Dawson, S. E. Ashbrook, A. B. Pinar, L. B. McCusker, M. Opanasenko, J. Čejka and R. E. Morris, Angew. Chem. Int. Ed., 2014, 53, 13210-13214. - A. Corma, M. J. Diaz-Cabanas, J. L. Jorda, F. Rey, G. Sastre and K. G. Strohmaier, J. Am. Chem. Soc., 2008, 130, 16482-16483 - M. Kubů, S. Zones and J. Čejka, Top. Catal., 2010, 53, 1330-1339. - S. Smeets, D. Xie, L. B. McCusker, C. Baerlocher, S. I. Zones, J. A. Thompson, H. S. Lacheen and H.-M. Huang, *Chem. Mater.*, 2014, 26, 3909-3913. - J. Čejka, A. Vondrová, B. Wichterlová, G. Vorbeck and R. Fricke, Zeolites, 1994, 14, 147-153. - A. Corma, M. Puche, F. Rey, G. Sankar and S. J. Teat, *Angew. Chem. Int. Ed.*, 2003, 42, 1156-1159. - 25 10. T. Boix, M. Puche, M. A. Camblor and A. Corma, Synthetic porous crystalline material ITQ-13 its synthesis and use, US 6 471 941 - M. V. Shamzhy, O. V. Shvets, M. V. Opanasenko, P. S. Yaremov, L. G. Sarkisyan, P. Chlubna, A. Zukal, V. R. Marthala, M. Hartmann and J. Cejka, *J. Mater. Chem.*, 2012, 22, 15793-15803. - O. V. Shvets, M. V. Shamzhy, P. S. Yaremov, Z. Musilova, D. Prochazkova and J. Čejka, *Chem. Mater.*, 2011, 23, 2573-2585. - 35 13. R. Castaneda, A. Corma, V. Fornes, J. Martinez-Triguero and S. Valencia, *J. Catal.*, 2006, **238**, 79-87. - J. S. Buchanan, J. M. Dakka, X. Feng and J. G. Santiesteban, *Aromatics conversion with ITQ-13*, US7081556 B2 - J. A. Vidal-Moya, T. Blasco, F. Rey, A. Corma and M. Puche, Chem. Mater., 2003, 15, 3961-3963. - X. Ren, J. Liu, Y. Li, J. Yu and R. Xu, J. Porous Mater., 2013, 20, 975-981. - M. Shamzhy and F. S. d. O. Ramos, Catal. Today, 2015, 243, 76-84 - G. Sartori, R. Ballini, F. Bigi, G. Bosica, R. Maggi and P. Righi, *Chem. Rev.*, 2003, **104**, 199-250. - G. Sastre, A. Pulido, R. Castañeda and A. Corma, *J. Phys. Chem. B*, 2004, **108**, 8830-8835. - 20. C. A. Emeis, J. Catal., 1993, 141, 347-354. - M. A. Camblor, A. Corma, H. García, V. Semmer-Herlédan and S. Valencia, *J. Catal.*, 1998, 177, 267-272. - C. Baerlocher, L. B. McCusker and D. H. Olson, *Atlas of zeolite framework types*, Elsevier, Amsterdam, 2007. - M. Shamzhy, M. Opanasenko, Y. Tian, K. Konysheva, O. Shvets, R. E. Morris and
J. Čejka, *Chem. Mater.*, 2014, 26, 5789-5798. - R. Dutartre, L. C. de Ménorval, F. Di Renzo, D. McQueen, F. Fajula and P. Schulz, *Micropor. Mater.*, 1996, 6, 311-320. - J. C. Groen, L. A. A. Peffer, J. A. Moulijn and J. Pérez-Ramírez, in *Stud. Surf. Sci. Catal.*, eds. S. Abdelhamid and J. Mietek, Elsevier, 2005, vol. 156, pp. 401-408. - in Multinuclear Solid-State NMR of Inorganic Materials, eds. J. D. M. Kenneth and E. S. Mark, Pergamon, 2002, vol. 6, pp. 271-330. - L. Burel, N. Kasian and A. Tuel, Angew. Chem. Int. Ed., 2014, 53, 1360-1363. - M. Moliner, M. J. Díaz-Cabañas, V. Fornés, C. Martínez and A. Corma, *J. Catal.*, 2008, 254, 101-109. - 29. C. Y. Chen and S. I. Zones, Method for heteroatom lattice substitution in large and extra-large pore borosilicate zeolites, US 6,468,501 - C.-Y. Chen and S. I. Zones, in *Zeolites and Catalysis*, Wiley-VCH Verlag GmbH & Co. KGaA, 2010, pp. 155-170. - P. G. M. Wuts and T. W. Greene, in *Greene's Protective Groups in Organic Synthesis*, John Wiley & Sons, Inc., 2006, pp. 431-532. - H. Wu, Q. Gong, D. H. Olson and J. Li, Chem. Rev., 2012, 112, 836-868. - K. Góra-Marek, K. Tarach and M. Choi, J. Phys. Chem. C, 2014, 118, 12266-12274.