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Abstract. Alkene metatheses catalyzed by (H2IMes)(Cy2PCH2CH2N(CH3)3
+)(Cl)2Ru(=CHPh) 

Cl–, an analog of Grubbs' second generation catalyst with an ammonium-salt containing phos-

phine, are dramatically accelerated when conducted in the presence of the insoluble resin PS-

SO3Ag (PS = polystyrene). A mechanism involving ionic and covalent phosphine binding (PS-

SO3Ag·PCy2CH2CH2N(CH3)3
+ PS-SO3

–) with concomitant formation of AgCl is proposed. 

Grubbs' second generation catalyst exhibits a modest rate enhancement, believed to reflect the 

generation of PS-SO3Ag·PCy3. 
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 In previous papers, we have developed the concept of "phase transfer activation" of metal 

based catalysts.1-4 This technique is applicable when a ligand (L) must first dissociate in an init-

ial or "k1" step to generate the active catalyst (Scheme 1).5,6 This step is often reversible, with 

recapture of the ligand by the catalyst faster than subsequent binding of substrate (k–1[L] >> 

k2[substrate]). As can be derived from the full rate expression given in Scheme 1, this serves to 

lower the velocity of the reaction as compared to the opposite limit with k–1[L] << k2[substrate] 

(compare red box vs. green box). 
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Scheme 1.  General principles of phase transfer activation.  

 Hence, we have sought catalyst precursors with ligands that are phase or affinity labeled 

such that they will rapidly transfer to an orthogonal (immiscible) phase, as shown in Scheme 1-A 

for liquid/liquid biphase systems. In earlier publications, we have prepared derivatives of Grubbs' 

second generation alkene metathesis catalyst (1a) with fluorophilic and hydrophilic phosphine 

ligands (1b,c; see Scheme 2).1-4 These afforded marked rate enhancements of ring closing re-

actions (RCM) under aqueous/organic and fluorous/organic liquid/liquid biphase conditions, as 

compared to organic monophase conditions.  

 In the preceding protocols, no binding site has been provided for the phase labeled ligand 
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in the orthogonal phase. Thus, phase transfer will be governed by a partition coefficient. We 

wanted to expand this strategy in two conceptual directions. First, we were attracted to the idea of 

using orthogonal solid phases, of which numerous hydrophilic, fluorophilic, and lipophilic 

varieties are available. Among other attributes, this would greatly decrease solvent demand. Sec-

ond, given that many solid materials are easily functionalized – e.g., polystyrene (PS)7 – we set 

out to build in possible phase, ionic, or covalent interactions to enhance phase transfer, as exem-

plified in Scheme 1-B.  
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Scheme 2. Liquid/liquid phase transfer activation using analogs of Grubbs' second generation
alkene metathesis catalyst (1a) with phase labeled phosphine ligands (1b,c).
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 As noted above, dramatic rate accelerations are observed when catalyst 1c, which features 

a phosphine with a hydrophilic tetraalkylammonium chloride moiety, is applied under aque-

ous/organic biphase conditions. We wondered whether the positively charged ligand might rapid-

ly adsorb onto a negatively charged polystyrene, for example readily available sulfonated deriva-

tives as represented by the Amberlyst family.8 We furthermore speculated that using a silver salt 

of a sulfonated polystyrene (PS-SO3Ag)9 would provide additional driving forces. As sketched in 

Scheme 3-A,10 a thermodynamically favorable AgCl precipitation would generate the requisite 

number of anionic binding sites, while the remaining PS-SO3Ag moieties could covalently bind 

to the trivalent phosphorus atom. This polymer was first reported by Bergbreiter, together with a 
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variety of data involving PPh3 binding in solution.9  
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Scheme 3. Proposed mechanisms of catalyst activation.
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 Commercial Amberlyst 15 (PS-SO3H; 4.7 mmol H+/g of polymer) was converted to the 

silver salt PS-SO3Ag as previously reported,11 and standardized by a gravimetric method (HNO3 

/NaCl; 1.5 mmol Ag+/g of polymer).9a,12 In an initial series of experiments, the polymer loading 

was optimized with respect to the catalyst/substrate charge, using N-allyl-N-methallyl-p-tosyl-

amide (2) as shown in Scheme 4. Thus, a series of Schlenk tubes was charged with 1c 

(0.0025−0.0028 mmol; 2.5−2.8 mol%), tridecane internal standard, 2.0 mL of a 0.049−0.050 M 

CH2Cl2 solution of 2 (0.099-0.102 mmol), and varying amounts of the PS-SO3Ag resin per Fig-

ure 1 (0.015, 0.030, 0.045, 0.060, 0.075, 0.150 mmol Ag+ or 6-60 equiv with respect to 1c). Ali-

quots were periodically removed and quenched with ethyl vinyl ether, and the rate of formation 

of the RCM product 3 (Scheme 4) assayed by GC. The best results were obtained with a 0.045 

mmol loading (18 equiv; magenta inverted triangles), although data were comparable with 0.030 

and 0.060 mmol loadings. The 0.045 mmol charge was used for all subsequent experiments. 

 The rate profile with the 0.045 mmol PS-SO3Ag loading is repeated in Figure 2 (magenta 

inverted triangles), and compared with that of a new experiment without the PS-SO3Ag, but with 

the same reactant/solvent quantities and catalyst charge (blue diamonds). The latter reaction is 

dramatically slower. For comparison, two experiments were conducted with orthogonal liquid  
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Figure 1. Rates of formation of 3 (room temperature, [2]0 = 0.049−0.051 M, 2.5 mol% 1c) in 2.0 mL CH2Cl2 in the presence of 

PS-SO3Ag resin. Resin loading: ◆ 0.010 g (0.015 mmol Ag+); ■ 0.020 g (0.030 mmol Ag+); ▼ 0.030 g (0.045 mmol Ag+); ▲ 

0.040 g (0.060 mmol Ag+); ◄ 0.050 g (0.075 mmol Ag+); ► 0.100 g (0.150 mmol Ag+). 

 

phases. In the first, water (1.0 mL) was added to the CH2Cl2 solution, giving a biphasic organic/ 

aqueous system per Figure 2 (orange squares). In the second, 0.01 M aqueous HCl (1.0 mL) was 

added (green triangles). Both of these experiments, which have been reported earlier,2 afforded 
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faster rates than the monophasic CH2Cl2 conditions. The latter, in which the phosphine ligand is 

protonated by HCl concomitantly with phase transfer, was more rapid. However, both remained 

slower than the liquid/solid biphase conditions with PS-SO3Ag. Hence, liquid/solid biphase con-

ditions can be superior for phase transfer activation. 

 
Figure 2. Rates of formation of 3 (room temperature, [2]0 = 0.049−0.051 M, 2.5 mol% 1c). Solvent systems: ◆ CH2Cl2 (2.0 

mL); ■ CH2Cl2/H2O (2.0 mL/1.0 mL); ▲ CH2Cl2/0.01 M aqueous HCl  (2.0 mL/1.0 mL); ▼ CH2Cl2 (2.0 mL) with 0.030 g PS-

SO3Ag resin (0.045 mmol Ag+). 

 In order to establish the generality of these phenomena, experiments analogous to those in 

Figure 2 were conducted with two additional substrates, diethyl 2-allyl-2-methallylmalonate (4) 

and the allyl/homoallyl N-tosylamide 6 (Scheme 4).13 As illustrated in Figures 3-A and 3-B, the 

liquid/solid biphase conditions gave much faster RCM rates than the liquid monophase con-

ditions (magenta inverted triangles vs. blue diamonds). However, here the liquid/liquid biphase 

conditions involving aqueous HCl (green triangles) exhibited slightly faster rates at low conver-

sions (15-30 min).  

 With regard to the catalyst activation mechanism sketched in Scheme 3-A, Grubbs' sec-

ond generation catalyst 1a would not be expected to give comparable rate accelerations. Thus, in 

experiments analogous to those in Figure 1, Schlenk tubes were charged with 1a (0.0010 mmol), 

tridecane internal standard, 2.0 mL of a 0.051 M CH2Cl2 solution of 4 (0.101 mmol), and vary-

ing amounts of the PS-SO3Ag resin. These conditions employ a lower catalyst loading and less 

reactive RCM substrate than in Figure 1, apropos to the intrinsically higher reactivity of 1a vs. 1c 
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Figure 3. A. Rates of formation of 5 (room temperature, [4]0 = 0.050−0.051 M, 2.5 mol% 1c). Solvent systems: ◆ CH2Cl2 (2.0 

mL); ■ CH2Cl2/H2O (2.0 mL/1.0 mL); ▲ CH2Cl2/0.01 M aqueous HCl (2.0 mL/1.0 mL); ▼ CH2Cl2 (2.0 mL) with 0.030 g PS-

SO3Ag resin (0.045 mmol Ag+). B. Rates of formation of 7 (0 °C, [6]0 = 0.050 M, 1.0 mol% 1c). Solvent systems: ◆ CH2Cl2 
(4.0 mL); ■ CH2Cl2/H2O (4.0 mL/2.0 mL); ▲ CH2Cl2/0.01 M aqueous HCl  (4.0 mL/2.0 mL); ▼ CH2Cl2 (4.0 mL) with 0.024 g 

PS-SO3Ag resin (0.036 mmol Ag+). 

established earlier.2 As shown in Figure s1, the rate depended upon the PS-SO3Ag loading. That 

with 0.015 mmol Ag+ proved optimum and was used in subsequent experiments.  

 The rate profile for this PS-SO3Ag loading is repeated in Figure 4 (solid red squares), 

together with data for an analogous experiment in the absence of the resin (solid blue diamonds). 

A rate enhancement is evident under liquid/solid biphase conditions, but is less dramatic. Similar 

effects were seen with the other substrates 2 (Figure 4; note faster reaction) and 6 (not depicted). 

 Accordingly, we suggest two mechanisms for liquid/solid phase transfer of the phosphine 

ligands, as sketched in Scheme 3. In the first and originally envisioned scenario, the PS-SO3Ag 

resin and the tetraalkylammonium chloride containing phosphine generate AgCl and the surface  
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Figure 4. Rates of formation RCM products (room temperature, [substrate]0 = 0.050−0.051 M, 1.0 mol% 1a). Substrate/product, 

solvent systems: ◆ 4/5, CH2Cl2 (2.0 mL); ■ 4/5, CH2Cl2 (2.0 mL) with 0.010 g PS-SO3Ag resin (0.015 mmol Ag+);◇ 2/3, 

CH2Cl2 (2.0 mL); □ 2/3, CH2Cl2 (2.0 mL) with 0.010 g PS-SO3Ag resin (0.015 mmol Ag+). 

assembly PS-SO3Ag·PCy2CH2CH2N(CH3)3
+ PS-SO3

–, which features ionic and covalent inter-

actions. In the second, applicable to neutral trialkylphosphines such as PCy3, a more weakly 

bound covalent adduct is generated (e.g., PS-SO3Ag·PCy3). Although many silver(I) phosphine 

adducts have been characterized, they are generally labile, with low barriers to phosphine ex-

change (typically 11-13 kcal/mol) suggestive of weak silver-phosphorus bonds.14  

 Finally, the ability of the PS-SO3Ag resin to adsorb the free phosphines Cy2PCH2CH2N-

Me3
+ Cl− and PCy3 was tested. For solubility reasons, the former could not be assayed in the re-

action solvent (CH2Cl2), so methanol was employed, with the idea that the more polar solvent 

would decrease the driving force for adsorption and provide a lower limit for rates and equilibria 

in less polar solvents. Thus, NMR tubes were charged with standard solutions of the phosphines 

in CD3OD or CD2Cl2 (0.40 M; 0.40 mL, 0.160 mmol) and capillaries containing the internal 

standard ClPPh2. A reference 31P{1H} NMR spectrum was recorded, and the PS-SO3Ag resin 

(0.0342-0.0322 mmol Ag+, ca. 20 mol% compared to phosphine) was added with shaking. The 

amount of adsorbed phosphine was assayed every 30-60 min, as diagrammed in Figure 5. Inter-

estingly, the theoretical amount of the cationic phosphine was adsorbed (Ag+ limiting, 1:1 stoi-

chiometry), and at approximately twice the rate of PCy3.15  
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Figure 5. Phosphine absorbed by 0.0215−0.0228 g of PS-SO3Ag resin (1.5 mmol Ag+/g): (◆) Cy2PCH2CH2NMe3

+ Cl− from a 

CD3OD solution (0.40 M, 0.400 mL); (■) PCy3 from a CD2Cl2 solution (0.40 M, 0.400 mL). 

 Various additives have previously been noted to enhance the rates of alkene metatheses 

with Grubbs type catalysts. These include a variety of copper(I) salts.16 However, we are un-

aware of any prior data with silver(I) species. Importantly, Bergbreiter tested the effect of PS-

SO3Ag upon rates of alkene hydrogenations with Wilkinson's catalyst some time ago.9,11 No ac-

celeration was noted, and only very modest enhancements were observed with ruthenium cata-

lysts of the type RuHX(PPh3)3 (X = H, OAc, Cl; 1.1-1.8 fold).9,11 However, a poorly active cat-

alyst precursor, RuCl2(PPh3)3, did exhibit a 15 fold rate increase.9b,11 All of these results, and 

others involving inhibition of phosphine poisoning, were interpreted from the standpoint of co-

valent phosphine binding to the resin.  

 In summary, this study has expanded the scope of phase transfer activation, as applied to 

alkene metathesis using Grubbs-type catalysts, from liquid/liquid biphase to liquid/solid biphase 

conditions. These new solvent-leaner protocols incorporate attractive bonding interactions be-

tween the solid phase and the ligands undergoing phase transfer, thereby providing the most pro-

nounced rate accelerations observed to date. Future reports will extend the utility of phase trans-

fer activation to other types of catalytic reactions.  
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