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Most computational chemistry methods cannot provide a uniformly accurate de-

scription of dynamic and static electron correlation. In this paper we present per-

formance of the ERPA-APSG method based on the antisymmetrized product of

strongly orthogonal geminal theory (APSG) and the recently proposed extended ran-

dom phase approximation (ERPA) intergeminal correlation correction. We show that

the ERPA-APSG approach is capable of accounting for both dynamic and static cor-

relation, yielding excellent results when applied to describing conformational changes

of molecules, twisting of the ethylene molecule, and deprotonation reactions.
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I. THE ERPA-APSG METHOD

Computational methods in chemistry still struggle with the problem of providing good

accuracy in predicting diversified electronic structures of molecules at manageable compu-

tational cost. Density functional-based approximations can be highly efficient but most of

them suffer from severe inaccuracies when multireference effects come into play. As a re-

sult they are incapable of correctly describing breaking of covalent bonds - a problem of

fundamental importance in chemistry, or singlet states of diradical character. On the other

hand, wavefunction methods can, depending on the level of approximation, provide results

of required accuracy but the computational cost is often prohibitively high. The most often

used wavefunction methods are either of a single-reference character (e.g. couple cluster

approximations), thus often unreliable in description of strongly correlated systems, or they

are based on a multireference wavefunction (e.g. multireference configuration interaction)

and miss an important portion of dynamic electron correlation.

Geminal theories have been proposed as alternatives to one-electron Hartree-Fock method

and, by relying on two-electron functions called geminals, they are potentially capable of ac-

counting for dissociation of bonds1,2. Imposing a strong orthogonality condition on geminals

leads to a relatively simple optimization problem for the energy but this simplification has

serious consequences in the performance of the resulting method, called antisymmetrized

product of the strongly orthogonal geminals (APSG)3. Some of them originate from the

lack of intergeminal electron correlation in the APSG energy.

Expansion of spatial parts of geminals {ψI} in a set of natural orbitals {ϕp} corresponding

to a singlet-state APSG wavefunction ansatz takes diagonal form4, namely

∀I ψI(r1, r2) =
∑

p∈I

cpϕp(r1)ϕp(r2) . (1)

Arai has shown that strong orthogonality of geminals implies that subspaces in which gem-

inals are expanded (Arai spaces) are disjoint5. In other words, a given natural orbital ϕp

is assigned to only one geminal of the index denoted by Ip. The expression for the APSG

energy reads4

EAPSG[{cp} , {ϕp}] = 2
∑

p

c2p hpp +
∑

pq

δIpIq cpcq 〈pp|qq〉

+
∑

pq

(1− δIpIq) c
2
pc

2
q [2 〈pq|pq〉 − 〈pq|qp〉] . (2)

2
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The one- and two-electron integrals, {hpq} and {〈pq|rs〉}, respectively, are in the represen-

tation of the natural orbitals. The second term in Eq.(2) accounts exactly for intrageminal

electron interactions. As a result APSG provides an exact description of closed-shell two-

electron systems and supersystems composed of noninteracting electron pairs. The last

term in the APSG expression is responsible for the intergeminal effects. It can be expressed

as a sum of Coulomb and exchange intergeminal interactions, apparently missing the in-

tergeminal correlation6. APSG is a good starting point for systems of multiconfigurational

character, since static correlation effects in electron pairs are exactly captured and two-

electron bonds dissociate correctly2,7. The method misses, however, a significant portion

of the dynamic correlation, which is a consequence of the underlying strong orthogonality

condition for geminals resulting in the lack of intergeminal correlation effects. As it will

be shown, this deficiency often results in inaccurate energy differences (e.g. energy barri-

ers), which is a serious limitation of the APSG approximation from the perspective of its

usefulness for chemical systems.

We have proposed6 an intergeminal correlation correction to APSG by considering in-

tergeminal density fluctuation terms, which, after employing the fluctuation-dissipation

equation, has led to expressing the intergeminal correlation in terms of the transition density

matrix elements. The latter can be found by solving the extended random phase approx-

imation (ERPA) equations8,9 originally formulated as a method for obtaining excitation

energies. The ERPA equations can be written as an eigenvalue problem that reads

[

(

A
+
)1/2

A
−
(

A
+
)1/2

]

(

A
+
)

−1/2
Yν = ω2

ν

(

A
+
)

−1/2
Yν , (3)

where, ω2
ν denotes the νth eigenvalue. If the ground state APSG wavefunction is employed,

the symmetric and positive definite matrices A−, A+ are given in terms of the coefficients

{cp} and the orbitals {ϕp}. Their explicit forms are provided in the Appendix. The in-

tergeminal correlation correction has been expressed in terms of the eigenvectors Yν and

3
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the pertinent spin-summed expression reads6

Eintergem =
∑

p>q

∑

r>s

(1− δIpIqδIrIsδIpIr)

×

[

2(cp + cq)(cr + cs)
∑

ν

(Yν)pq(Yν)rs

−[c2p(1− c2q) + c2q(1− c2p)]δprδqs

]

〈pr|qs〉 . (4)

Notice that terms involving indices belonging to the same geminal are considered to be of

intrageminal character and are excluded from the summation.

Computing the energy within the ERPA-APSG method involves two steps. First, the

optimal APSG ground state energy is found by minimizing the function given in Eq.(2)

with respect to orbitals under the orthogonality constraint and the expansion coefficients

constrained by a normalization condition for each geminal, i.e. ∀I

∑

p∈I c
2
p = 1. In addi-

tion, full optimization of the APSG energy involves finding optimal Arai spaces. Overall,

the APSG optimization scales as M4Ngem with the size of the basis set M and with the

number of geminals Ngem
10. The second step consists in solving the ERPA equations (3)

and computing the intergeminal correction (4) that is added to the APSG energy. Notice

that indices of the (Yν)pq elements run through all distinct pairs (pq), where p > q. Thus,

the dimensionality of the ERPA eigenproblem, Eq.(3), for M basis set functions amounts

to M(M − 1)/2 and is much greater than that of the RPA problem in which the size of the

Yν vector is only NoccNvirt, where Nocc and Nvir are, respectively, numbers of the occupied

and virtual orbitals. In general, all of the APSG natural orbitals are fractionally occupied,

i.e. each natural occupation number np is different from 0 and 1 (notice that the values of

the natural occupation numbers, {np}, directly related to the expansion coefficients by the

relation ∀p np = c2p, are bound by 0 and 1). Each Arai space includes one “strongly” occu-

pied natural orbital of the occupation number greater than 1/2, the rest of orbitals being

“weakly” occupied, i.e. their occupancies are smaller than 1/2. If the APSG wavefunction

describes a molecule close to its equilibrium geometry (or, more generally, bonds in the

molecule are not stretched) the occupancies of the “strongly” occupied orbitals are close to

1, whereas those for the “weakly” occupied ones are small and close to 0. The occupation

pattern is different in the case of a molecule with a stretched covalent two-electron bond.

Then the occupation number of one of the “strongly” occupied orbitals and of one of the

4

Page 4 of 13Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



“weakly” occupied ones deviates strongly from 1 and 0. In fact, in the dissociation limit

the occupancies of two natural orbitals, the so-called frontier orbitals, achieve a value 1/2.

Frontier (bonding and antibonding) orbitals belong to the same geminal, which is localized

on the breaking bond. The ERPA equations treat all pairs of orbitals on equal footing.

However, as it has been mentioned in Ref.8 not all pairs are equally important for excitation

energies obtained from the ERPA method. We have also investigated that reducing the

dimension of the main matrix in the eigenproblem (3) to NstrongNweak, where Nstrong and

Nweak denote the number of “strongly” and “weakly” occupied orbitals, respectively, influ-

ences the value of the intergeminal correlation correction by a few mHartrees for investigated

molecules. In particular, truncated implementation of the intergeminal correction does not

influence the method’s performance for systems in which multiple bonds are broken (e.g.

the description of the symmetric stretching of O-H bond in a water molecule, shown in Ref.6

is faithfully reproduced by ERPA-APSG). In addition, we have found out that obtaining

smooth potential energy curves is much more demanding if solution of the full (instead of

reduced) ERPA equations is employed in Eq.(4), which is due to the fact that definitions of

the A
−, A+ matrices involve dividing by sums and differences of two coefficients, cp ± cq,

that may be of the values close to 0.

Since truncating the ERPA matrices dramatically reduces the computational cost of solv-

ing the ERPA equations and it significantly improves the smoothness of the potential energy

curves, we propose that the ERPA-APSG method employs the vectors Yν resulting from

solving the truncated ERPA equations. The assumed truncation involves partitioning of

the set of the natural orbitals into “strongly”-occupied, “weakly”-occupied and frontier or-

bital subsets and removing from the main ERPA matrix rows and columns corresponding to

the “strongly”-“strongly” and “weakly”-“weakly” occupied pairs. Notice that if the ERPA-

APSG method is applied to atoms or molecules without stretched bonds there is no need

to select frontier orbitals and the respective set is empty. The truncated ERPA eigenprob-

lem has a similar (or the same if there are no frontier orbitals) scaling as that of the RPA

method. In the following section, we will show that such defined ERPA-APSG method leads

to obtaining excellent energy differences for processes governed by both dynamic and static

electron correlation.

5
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TABLE I. Inversion and rotational barriers. Absolute errors of the barriers with respect to either

CCSD(T) or TCSCF-CISD values are provided in parenthesis. Geometries: a
ROH = 1.808 a.u.,

αHOH = 104.5◦, b
RNH = 1.912 a.u., α = 67◦ (see Fig.2), c

ROH = 1.827 a.u., ROO = 2.748 a.u.,

αHOO = 99.5◦, α=115.9◦ (see Fig.3), d
RCC = 1.330 a.u., RCH = 1.076 a.u., αHCC = 121.7◦,

αtorsional=0◦. Basis sets used: H2O, NH3 - cc-pVTZ
11; H2O2 - cc-pVDZ11; C2H4 - DZP12. eResults

taken from Ref.12

Molecule Method Total energy [Ha] Barrier [kcal/mol]

Opt. geom.a Linear

H2O CCSD(T) -76.3339 -76.2785 34.8 (0.0)

MP2 -76.3205 -76.2663 34.0 (0.8)

APSG -76.1569 -76.0886 42.9 (8.1)

ERPA-APSG -76.3297 -76.2751 34.2 (0.5)

Opt. geom.b Planar

NH3 CCSD(T) -56.4746 -56.4637 6.8 (0.0)

MP2 -56.4546 -56.4442 6.5 (0.3)

APSG -56.3258 -56.3095 10.2 (3.4)

ERPA-APSG -56.4726 -56.4618 6.8 (0.0)

Opt. geom.c cis trans cis trans

H2O2 CCSD(T) -151.1939 -151.1797 -151.1925 8.9 (0.0) 0.9 (0.0)

MP2 -151.1705 -151.1562 -151.1692 9.0 (0.1) 0.9 (0.0)

APSG -150.9338 -150.9188 -150.9329 9.4 (0.5) 0.5 (0.4)

ERPA-APSG -151.1624 -151.1483 -151.1611 8.9 (0.0) 0.8 (0.1)

Opt. geom.d Twisted (90◦)

C2H4 TCSCF-CISDe -78.3659 -78.2457 75.4 (0.0)

CASSCFe -78.1895 -78.0646 78.4 (3.0)

MP2 -78.3529 -78.1907 101.8 (26.4)

APSG -78.1920 -78.0646 80.0 (4.6)

ERPA-APSG -78.3700 -78.2445 78.8 (3.4)
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II. RESULTS

First, we investigate inversion of H2O, umbrella inversion of NH3, and cis and trans

torsional barriers of H2O2 molecule. The results are collected in Table I and Figs. 1-3.

As a reference the CCSD(T) results obtained by the molpro package13 are employed. For

comparison we have also included MP2 results. The values of the total ERPA-APSG energies

are in agreement with their CCSD(T) counterparts within 2-4 [mHa] for NH3 and H2O and

around 30 [mHa] for H2O2 not only at equilibrium geometries but along the whole energy

curves. This is quite remarkable, taking into account that the APSG energies deviate from

the reference CCSD(T) values by a few hundreds of [mHa], cf. Table I. Shapes of inversion

curves are in excellent agreement with those obtained by the CCSD(T) method which is

reflected in highly accurate energy barriers for the considered inversions. The absolute errors

with respect to CCSD(T) values amount to only 0.0 [kcal/mol], 0.5 [kcal/mol], 0.0 [kcal/mol]

and 0.1 [kcal/mol] for, respectively, inversion of NH3, H2O, cis-H2O2, and trans-H2O2 and

they are significantly lower than those of the APSG method. Notice that the inversion

energy barriers predicted by the ERPA-APSG method are comparable and equally close to

the reference CCSD(T) values, as these obtained by employing the MP2 approach.
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FIG. 1. Inversion of the H2O molecule in cc-pVTZ11 basis set.
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dynamic electron correlation. One can wonder, however, how the ERPA-APSG method

performs if multireference effects come into play. It has been shown6 that adding the in-

tergeminal correlation correction to the APSG energy preserves correct shapes of dissociation

energy curves. To further investigate the accuracy of the ERPA-APSG method for quasi-

degenerate molecules we have applied it to describing twisting of the ethylene molecule.

Twisted ethylene is a challenging example of a diradical transition state. A correct wave-

function should account for degenerate (π)2 and (π∗)2 configurations. Spin-restricted single-

reference methods overestimate the torsional energy barrier and produce an unphysical cusp

(cf. the MP2 energy curve in Fig. 4). Fig.4 shows that the ERPA-APSG method inherits

a proper description of the bond-breaking from the APSG method. Notice that employing

the ERPA-APSG method in description of ethylene twisting involves dividing the natural

orbitals into “strongly”-, “weakly”-occupied, and frontier orbitals. The lowest (in terms of

occupancy) orbital of np > 1/2 and the highest orbital of the occupation number < 1/2

belong to the set of frontier orbitals. Their occupancies achieve a value 1/2 at torsional

angle equal 90◦.
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FIG. 4. Twisting of C-C bond of C2H4 molecule in DZP12 basis set.

Table I shows that the torsional energy barrier height predicted by the ERPA-APSG

approach amounts to 78.8 [kcal/mol], in a good agreement with the reference value, 75.4
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[kcal/mol], predicted by the TCSCF-CISD method [a multireference configuration inter-

action method which includes all single and double excitations from the (π)2 and (π∗)2

configurations] of Krylov et al.12. Remarkably, the ERPA-APSG total energy values dif-

fer by only a few mHartrees from their TCSCF-CISD counterparts (see Table I). For the

APSG values the deviation is more than 170 [mHa]. Nevertheless, by confronting Fig.4

one can see that shifted APSG and ERPA-APSG potential energy curves are of very sim-

ilar shapes, which results in close energy barrier heights predicted by two methods. Still,

the ERPA-APSG energy barrier is in a better agreement with the reference TCSCF-CISD

barrier height than that of the APSG approach. It is also interesting to notice that the

ERPA-APSG torsional energy barrier for ethylene is of the same quality as that obtained

with a full valence CASSCF method.

Finally, we apply the ERPA-APSG approach to predict deprotonation energies of water,

methanol, ethanol, and propanol. The results are collected in Table II. One immediately

notices that the deprotonation energies predicted by the APSG method are in error, with

respect to the CCSD(T) data, which ranges from 9.6 [kcal/mol] for H2O to 12.8 [kcal/mol]

for propanol molecule. The errors are within c.a. 4 [kcal/mol] for the tested systems if the

ERPA-APSG is employed, so the reduction of errors provided by the intergeminal correlation

correction is striking. Noticeably, the error does not seem to increase significantly with the

size of the system.

The results presented in the paper show that the ERPA-APSG method may serve as

a useful and versatile tool in predicting electronic structure of molecules or in describing

chemical reactions. From the examples presented, it is evident that adding the intergem-

inal correlation energy to the APSG energy not only improves total energies but, more

importantly, also energy differences. It offers good accuracy at modest computational cost

compared with wavefunction methods like CCSD(T) or CASSCF. The greatest virtue of the

ERPA-APSG approach is a balanced treatment of dynamic and static correlation effects

that makes the method applicable to systems around and far from equilibrium geometries

and when bonds are stretched or breaking.

10

Page 10 of 13Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



TABLE II. Deprotonation energies of alcohols, ∆E. Absolute errors with respect to CCSD(T)

values are provided in parenthesis. Aug-cc-pVDZ11 basis set used in all calculations. Geometries:

a
ROH = 1.808 a.u., αHOH = 104.5◦, b B3LYP/6-31G∗ optimized14, cMP2/6-31G∗ optimized.

Molecule Method ∆E [kcal/mol]

H2O
a CCSD(T) 395.5 (0.0)

MP2 391.6 (3.9)

APSG 405.1 (9.6)

ERPA-APSG 397.9 (2.4)

CH3OHb CCSD(T) 393.5 (0.0)

MP2 390.4 (3.1)

APSG 404.1 (10.6)

ERPA-APSG 396.5 (3.0)

C2H5OHb CCSD(T) 389.3 (0.0)

MP2 386.6 (2.7)

APSG 401.9 (12.6)

ERPA-APSG 393.3 (4.0)

C3H7OHc CCSD(T) 390.9 (0.0)

MP2 388.2 (2.7)

APSG 403.7 (12.8)

ERPA-APSG 395.0 (4.1)

III. APPENDIX

The ERPA-APSG method involves solving the ERPA equations, Eq.(3), where the ele-

ments of the matrices A
+ and A

− are given in terms of the APSG natural orbitals {ϕp}

and the expansion coefficients {cp} [cf. Eq.(2)], namely9

∀p>q
r>s

A+
pq,rs = (cp + cq)

−1(Apq,rs +Bpq,rs)(cr + cs)
−1 ,

∀p>q
r>s

A−

rs,pq = (cp − cq)
−1(Apq,rs − Bpq,rs)(cr − cs)

−1 ,

11
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where

Bpq,rs = Apq,sr = (np − nq)(δpshqr − δqrhps)

+(cpcsδIpIs + cqcrδIqIr)(〈pq|rs〉+ 〈pq|sr〉)

+[npns(1− δIpIs) + nqnr(1− δIqIr)− npnr(1− δIpIr)− nqns(1− δIqIs)](2 〈pr|qs〉 − 〈pr|sq〉)

−δqrcp
∑

t

δIpItct 〈ps|tt〉 − δpscq
∑

t

δIqItct 〈qr|tt〉

−δprcr
∑

t

δIrItct 〈qs|tt〉 − δqscs
∑

t

δIsItct 〈pr|tt〉

+δps
∑

t

nt[np(1− δIpIt)− nq(1− δIqIt)](2 〈qt|rt〉 − 〈qt|tr〉)

−δqr
∑

t

nt[np(1− δIpIt)− nq(1− δIqIt)](2 〈pt|st〉 − 〈pt|ts〉) .

The APSG natural occupation numbers {np} are simply squares of the pertinent expansion

coefficients, i.e. ∀p np = c2p. Two-electron integrals are assumed to be given in terms of the

APSG natural orbitals.
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