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Features of chemical bonds based on the overlap 

polarizabilities: diatomics and solid-state systems 

with the frozen-density embedding approach 

Renaldo T. Moura Jr*, Gian C. S. Duarte, Thiago E. da Silva, Oscar L. Malta, 
Ricardo L. Longo* 

The chemical bond overlap properties were obtained for alkali halides NaY (Y = F, Cl, Br), 

alkaline-earth chalcogenides MX (M = Ca, Mg and X = O, S, Se) and alkali and alkali-earth 

metals (Li, Na, and Mg) in diatomic and solid-state systems using an embedding approach 

based on the Frozen Density Functional Theory to simulate the crystalline effects. The 

computational protocol established provides errors for bond distances smaller than 1%. The 

results indicate that larger chemical bond covalency lead to larger absorption or scattering by 

the overlap region. The ionic specific valence and overlap polarizability are closely related to 

the valence orbitals compactness measured by the sum of Mulliken electronegativities. The 

embedding approach used in this work makes it possible to quantify the effects of the 

crystalline environment on the chemical bond overlap properties. In solid-state, the bond 

overlap charges are less polarizable, in cases of well-known ionic systems (provided by 

electronegativity differences), leading to smaller chemical bond covalency in solids than in 

diatomics. The spectroscopic properties of the polarizability of the electron density in the 

overlap region of a chemical bond could be measured in the 1–20 eV spectral region and could 

be used to characterize some bands in several spectra whose assignments are ambiguous or not 

available. 

 

 

1 Introduction 

The properties of molecular and solid-state compounds depend 

on the type and nature of their atomic constituents, how these 

atoms interact with each other and their spatial structure. In 

particular, the knowledge of the interaction between the atoms 

has motivated the development of the concept of chemical 

bond, which is central to the understanding of chemistry and for 

describing many chemical-based processes. At the dawn of the 

20th century, Lewis introduced the concept of covalent bond 

into chemistry by defining a covalent bond as a pair of 

electrons being shared by two atoms.1 To distinguish from the 

concept of valence used in the valence theory at that time, the 

term covalency was introduced by Lagmuir2 and defined as the 

number of pairs of electrons that a given atom shares with its 

neighbours. 

The first treatment of the covalent chemical bond in H2 

molecule using quantum mechanics was performed by Heitler 

and London in 1927.3, 4 Pauling was the first to propose a 

quantitative measurement of the covalency and ionicity 

concepts based on the electronegativity differences of the atoms 

involved in the bond.  

In solid-state chemistry, the type of atom and the chemical 

bond play an important role at characterizing the type of solid 

(metallic, ionic, covalent, molecular, etc.) and its properties. 

Discussions about the nature of the chemical bond in crystals 

were based, for instance, on thermochemical (Pauling)5, 

valence bond (Coulson)6 and spectroscopic (Phillips)7 theories. 

Indeed, Pauling was able to correlate the electronegativity 

concept (and so the ionicity) to thermochemical data, while 

Coulson formulated the concepts of electronegativity and 

ionicity in the language of molecular orbitals by using the 

definition of electronegativity given by Mulliken. The so-called 

spectroscopic theory for the chemical bond in a crystal was 

based on a model Hamiltonian and used a set of parameters 

obtained from spectroscopic data,7 which provided a 

relationship between the ionicity and the energy gap in crystals. 

Noteworthy that relationships were established between the 

covalency (and ionicity) concept in chemical bonds in solids 

and structural, thermochemical and optical properties, for 

instance, i) binary compounds with large electronegative 

differences tend to form rock salt structures; ii) more ionic 

compounds usually have larger heats of formation; and iii) 
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more covalent compounds tend to have lower bandgap 

energies. It is thus important to have accurate and reliable tools 

for quantifying the covalency in solid and molecular materials 

that can reveal aspects about the electron sharing in chemical 

bond and its consequences for the properties in the solid-state. 

The concepts of chemical bond overlap polarizability ( OPα ) 

and ionic specific valence (ISV) were introduced during studies 

related to ligand field theory applied to lanthanide compounds8 

and led to relevant conclusions on the interpretation of the non-

spherical ligand field interactions in terms of covalency.8, 9 As a 

result, a covalency scale and a description of the ligand field in 

these compounds were created,9 so that some empirical 

parameters in the Simple Overlap Model10 could be associated, 

for instance, with the ISVs of the ligating atoms. 

The OPα  and ISV concepts were also explored in the case of 

diatomic molecules, so a new covalency scale, analytically 

quantifiable in terms of the OPα , was established11, 12 in 

excellent agreement with Pauling’s scale11. More recently, a 

proposal in which the overlap region was regarded as a 

localized plasmon-like charge distribution (chemical bond 

overlap plasmon-like – CBOP), characterized by the overlap 

polarizability, has raised the possibility of absorption and 

inelastic scattering of radiation by the overlap region, above the 

first ionization threshold.12 An interesting aspect is that, 

formally, oscillation modes corresponding to σ and π bonds can 

be distinguished by these processes, on the grounds of their 

quite distinct electron densities as, for instance, in the carbon 

monoxide molecule. In addition, the theoretical possibility of 

detecting the CBOP in diatomic molecules by electron inelastic 

scattering was explored,13, 14 including the quadrupole nature of 

the CBOP energy-loss cross section.13 

Our most recent studies showed that the CBOP may be a 

promising tool for quantifying covalency in solid-state 

materials,14 where the CBOP properties for solid-state alkali 

halides were obtained with a point-charge scheme for 

mimicking the crystalline environment. It was shown that the 

CBOP energies for the alkali halide crystals are quite close to 

experimental transition energies ambiguously assigned as 

excitons or surface plasmons. Thus indicating that the CBOP 

could be an alternative assignment to the observed structures 

and shoulders in the 5-15 eV region.14 This computational 

approach14 proved to be robust for ionic crystals, but was 

limited to those systems. Thus, for more covalent solids such as 

aluminum, silicon or tin oxides, this point-charge approach 

presented difficulties for convergence, for creating the 

appropriate clusters, and for stabilizing the O2– species, which 

raised some questions about the quantitative aspects of the 

results. 

Thus, a proper description of the crystalline environment 

around a chemical bond is conceptually and quantitatively 

important because it could aid at establishing relationships 

between macroscopic properties of materials and concepts 

associated with the overlap charge density. For example, a good 

correlation was already found between the non-linear index of 

refraction and the OPα .12 The main goal of the present 

contribution is to extend the concepts and the calculations of 

the chemical bond overlap properties to solid-state materials. 

An embedding approach based on the Frozen Density 

Functional Theory (FDFT) was successfully used to simulate 

the crystalline effects. The quantitative results provided, for 

instance, an alternative characterization of unassigned or 

ambiguously assigned bands in the electron energy-loss spectra 

of solid-state systems such as alkaline-earth chalcogenides and 

some alkali and alkali-earth metals, as well as, the effects of the 

crystalline environment into the chemical bonds by 

comparisons with the respective isolated diatomic system. 

 

2 The concepts of overlap polarizability and ionic 

specific valence 

 

The formulation of the chemical bond overlap polarizability 

and the ionic specific valence was presented elsewhere11-14 and 

shall be only briefly reviewed. 

Starting from the general quantum mechanical sum-over-states 

expression for the polarizability of a field-free molecule and 

expanding the monoelectronic molecular orbitals as a linear 

combination of atomic orbitals, the molecular polarizability can 

be approximated by14 

∑∑
ξ ζ

ζξζξ
ε∆

≅α ),(
2 22

Fr
e v

  2.1 

where e is the elementary charge, ε∆  is an effective energy 

difference between the relevant states, and the summation runs 

over the valence sub-shells of atoms A and B. Thus, the 

diagonal one-center matrix elements lead to the atomic 

polarizabilities, namely, 

∑∑
∈ξ ∈ζ

ζξζξ
ε∆

=α
X X

XX

2

XX

2

X ),(
2

Fr
e v

 2.2 

for X = A or B, and the off-diagonal two-center matrix 

elements lead to the overlap polarizabilities, 

∑∑
∈ξ ∈ζ

ζξζξ
ε∆

=α
A B

BA

2

BA

2

OP ),(
2

Fr
e v

 2.3 

with ),( BA ζξF  being a function of the coefficients of the 

valence atomic orbitals entering in the compositions of the 

HOMO and LUMO. The homopolar dipole approximation15 

may be employed for the dipole matrix elements, BA ζξ r
v

, for 

typical values of bond distances and atomic orbitals that are not 

diffuse. The factor ),( BA ζξF  can be obtained from the 

contributions of the atomic orbitals to the molecular states, 

which can be determined by standard electronic structure 

methods, as long as, these molecular states are localized onto 

the A–B moiety.11, 14 These contributions depend mainly upon 

the overlap between the atomic orbitals involved in the 

chemical bond. Thus, in order to have a general approach that is 

independent on the electronic structure method, a power series 
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expansion in terms of 2ρ , where ρ  is the overlap integral, of 

the summation in Eq. 2.3 may be performed and truncated at 

the second term because 12 <<ρ . As a result, the polarizability 

of the chemical bond is readily separated into a contribution 

from the interacting species A and B, and a contribution from 

the overlap region,8, 11, 14 

OPBA α+α+α≅α   2.4 

with the polarizability of the overlap region expressed as, 

ε∆
ρ

=α
2

222

OP

Re
  2.5 

where R is the bond distance and ρ the overlap integral. 

Noteworthy that the ε∆  quantity in Eq. 2.5 is an excitation 

energy between states that are fully localized in the chemical 

bond and its determination becomes a challenge for polyatomic 

and solid-state systems. 

The electron density confined in the overlap region or more 

simply the overlap charge, q, increases with the overlap volume 

and, therefore, with the polarizability of the overlap region, 

OPα . However, this relationship is not linear and it involves the 

square of the charge through a force constant,16 which was 

postulated to be the force constant, k, of the chemical bond, 

such that, 

OP
2 α= kq   2.6 

On the other hand, the overlap charge (q) should be 

proportional to the overlap (ρ), that is, 

ρ= peq   2.7 

where p is a proportionality constant. If a polar chemical bond 

between A and B is pictured as being formed from an acid-base 

type reaction (A+ + B–), then the factor p may be expressed as 

the sum of contributions from both species, namely, pc from A+ 

and pa from B–. As a result, when using Eqs. 2.5 and 2.6 into 

Eq. 2.7, the ionic specific valences of A+ ( cυ ) and B– ( aυ ) 

were introduced. 8, 11, 14 These quantities may be interpreted as 

the capacity of the atomic species to donate electron density to 

the formation of the A–B bond, and thus, 1≈υ+υ=υ ac . This 

qualitative interpretation is connected with the 

electronegativities of the species involved in the chemical bond, 

where it is expected that species A+ would be more 

electronegative and B–. Noteworthy that the ionic specific 

valence ( υ ) is a general concept and readily applicable to polar 

bonds as well as for homonuclear bonds: 2
1≅υ=υ ac . 

Assuming that the proportionality constant p in Eq. 2.7 is the 

ionic specific valence ( υ ), it is found that 

ε∆
==υ

2

k
Rp   2.8 

Thus, the charge density confined in the overlap region 

becomes 

ε∆
ρ=ρυ=

2

k
Reeq   2.9 

Because the cores of the A and B species attract this charge 

density and confine it in the overlap region, it may be expected 

that the overlap charge density would interact with fields (e.g. 

electromagnetic oscillating fields) and electron beams 

differently from the other charge densities in the system, such 

as that of the A and B cores or lone electron pairs. In fact, static 

electric fields would induce polarization of the charge density 

confined in the overlap region, which is described by the 

polarizability of the overlap region, OPα . On the other hand, 

electromagnetic fields would induce oscillations of this 

confined overlap charge, whereas electron beams would be, for 

instance, scattered by it. In analogy with a picture discussed by 

Jackson17 that described a charge density interacting with 

oscillating fields as plasma, this charge density confined in the 

overlap region was denoted previously as plasmon-like.12-14 

However, because plasmons are now more commonly 

employed in the description of collective oscillating modes of 

charge densities, especially, surface charges, there has been 

some confusion on this terminology. Thus, we shall refer to the 

charge density confined in the overlap region of a chemical 

bond simply as overlap charge or more specifically as chemical 

bond overlap charge. In addition, the properties of the overlap 

region in a chemical bond, such as charge density, 

polarizability ( OPα ), mass, volume, etc., shall be denoted 

generically as chemical bond overlap properties. 

In the following subsection, the theoretical framework for 

probing the overlap charge with photons (e.g., absorption, 

excitation, inelastic scattering) and electrons (e.g., energy-loss 

cross section) shall be briefly presented.12-14 
 

3 Absorption, inelastic scattering and electron energy-

loss by the chemical bond overlap charge 

 

The overlap charge confined by the cores of A and B is 

described by a harmonic potential with force constant k, in 

order to be consistent with the proposed model and with the 

postulate in Eq. 2.6. By assigning an effective mass (m) to the 

overlap region, a semi-classical harmonic oscillator picture 

emerges that was used to calculate the absorption and Raman 

scattering processes by the overlap charge as depicted in Figure 

1. The energy-loss cross section of an electron beam scattered 

by the overlap charge was also calculated.12-14 The energy 

dissipation by the overlap charge shall occur almost entirely 

through non-radiative energy transfer channels, leading to 

bound-to-bound state transitions, dissociation, photoelectrons 

and heat production. 
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Figure 1. Schematic level diagram indicating the absorption and Raman 

scattering processes by the overlap electron density confined into a chemical 

bond. 

 

This semi-classical oscillator having a mass of the overlap 

region given by,12-14 

emm υρ=   3.1 

with em  being the electron mass, has an fundamental angular 

frequency, 0ω , expressed as 

m

k
=ω0   3.2 

with k being the bond force constant as assumed in Eq. 2.6. The 

corresponding characteristic energy (absorption) is 

0p ω= hE   3.3 

The oscillator strength, f, associated with electromagnetic 

energy absorption for this characteristic energy is given by12-14 

2

2

0

3

2
µ

ω
=

e

m
f

h

  3.4 

where the transition electric dipole moment, µ, is given by the 

approximation employed in Eq. 2.3, namely, 

ρ≅µ eR
2

1
  3.5 

where R, e and ρ were already defined. 

The dispersion relation of Kramers-Heisenberg for a semi-

classical oscillator can be used to obtain the cross-section for 

the Raman scattering, Ramanσ , which in the high frequency 

regime is approximately given by12-14 

2

OP

2

4

3
s

Raman

π4












α








ω
ε∆ωω

=σ
hc

  3.6 

where ω  and 0ω−ω=ωS  are the angular frequencies of the 

incident and scattered photons, respectively, ε∆  is the 

excitation energy as used in the overlap polarizability, OPα , in 

Eq. 2.5. 

In the inelastic scattering process by the chemical bond overlap 

charge, an incident electron beam with wave vector K
r

 is 

scattered by the target and acquires a wave vector 'K
r

. The total 

cross section in a scattering solid-angle can be expressed as12, 13 

∫
θ

θ
θ−

θθ
θ

ρυπ
=σ

2

1
q

qq
2

q

p

2424

2

2

Loss
cos1

sincos
d

3

2

E

mRe

h

 3.7 

where KKq
rr

r

−=  is the angle between the incident and scattered 

electron beam, and the aperture of the detection instrument 

defined by the difference 12 θ−θ  is assumed to be 3° to 5°. 

 

4 Computational Models and Procedures 

 

The theoretical framework describing the properties of the 

chemical bond based on overlap polarizabilities ( OPα ) and 

overlap charges was employed and applied to solid-state 

systems such as alkali-earth chalcogenides MX (M = Ca, Mg 

and X = O, S, Se), alkali and alkali-earth metallic systems Li, 

Na and Mg. This selection was motivated by previous 

theoretical and computational results10-12 showing relationships 

between the overlap polarizability ( OPα ) and covalency. The 

data required to calculate the ionic specific valence ( υ ) the 

overlap polarizability ( OPα ) and the overlap charge properties 

namely, R, ρ , ε∆  and k were obtained with an embedding 

approach to simulate the crystalline effects. From these 

quantities, some properties of the CBOC were calculated, such 

as, absorption wavelengths ( 0λ ) and their respective oscillator 

strengths ( f ), incident ( λ ) and scattered photon wavelengths (

sλ ) and their respective scattering cross-sections ( Ramanσ  and 

Lossσ ), as well as the values of the overlap charge wavelengths (

pλ ) and energies ( pE ). 

In order to maintain the localized nature of the overlap charge 

density model, the distances (R) and bond force constants (k) in 

the solid structures were calculated using a cluster model 

embedded into the crystalline environment, where a central 

cluster was treated self-consistently and the environment 

embedding clusters were treated as frozen densities. The 

overlap (ρ) between the valence orbitals of the MX pair was 

calculated at the equilibrium distance in the crystal structure 

using the following expression for the overlap, ijS , between the 

valence orbitals in atoms A and B (see Supporting 

Information), 

( )∑∑=
k l

kllkij ObaS   4.1 
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where ka  and lb  are the coefficients of the basis functions 

centered at atoms A and B, respectively, and klO  is the overlap 

integral between the basis functions k and l used to describe the 

atomic valence subshells. Equation 4.1 makes it possible to take 

into account the embedding density effects self-consistently 

through the ka  and lb  coefficients. 

For the calculation of the excitation energies ( ε∆ ), this model 

is not appropriate because the electronic states could be 

delocalized over the self-consistent central cluster, thus 

violating one of the main assumptions of the overlap charge 

framework, namely, the diatomic-like behavior. Thus, a new 

model was created which included only the M–X pair as 

explicit atoms in the self-consistent part embedded into the 

crystalline frozen density (relaxed) environment. For 

implementing this model for the overlap charge density, the 

Frozen Density Functional Theory (FDFT)18 formalism appears 

to be an appropriate choice because it can take into account the 

crystalline environment while keeping the bond of interest in a 

diatomic-like state. In this approach, the embedding of a self-

consistent cluster or MX diatomic species into the crystalline 

environment was performed by the Frozen Density Embedding 

(FDE) implemented in ADF program19 as briefly described in 

the following section. 

 

4.1 The Frozen Density Embedding Approach 

A simplified approach to treat chemical processes in solution 

was developed based on DFT (density functional theory).18 

This approach, denoted as frozen DFT (FDFT), consists in 

freezing the electron density of the solvent molecules, while 

solving the self-consistent problem for the solute Hamiltonian 

that includes the effective potential of the solvent molecules. 

The FDE theory was explained in literature18 and only a brief 

introduction to allow explanations of the computational 

procedure and of the discussions of the calculated results. In an 

example of the FDFT simplification, an N-electron system is 

divided in two subsystems S1 and S2 with N1 and (N – N1) 

electrons, respectively. Accordingly, the total electron density 

can written as 

)()()( 21 rrr
vvv

ρ+ρ=ρ   4.2 

where )(1 r
v

ρ  and )(2 r
v

ρ  are the electron density of subsystems 

S1 and S2, respectively. If )(2 r
v

ρ  satisfies the condition 

12 d )( NNrr −=ρ∫
vv

  4.3 

then, )(1 r
v

ρ  is the density that minimizes the total energy of the 

system, ( )[ ]rE
v

ρ , and is expressed in terms of the Kohn-Sham 

orbitals as 

∑
=

ϕϕ=ρ
2

1

*
1

1

2)(
N

i

iir
v

  4.4 

In this procedure, it is possible to express the effective potential 

(Veff) in the same way as in the original Kohn-Sham method. 

However, the kinetic energy cannot be written in the same way 

because the Kohn-Sham determinant of the overall system 

(subsystems S1 and S2) is not known. Thus, the FDFT 

formalism approximates the kinetic energy functional as a sum 

of the kinetic energies from the densities for )(1 r
v

ρ  and )(2 r
v

ρ  

with a non-additive term correction nad
ST . As a result, the Euler 

equation in the FDFT method for the two subsystems (S1 being 

self-consistent and S2 being frozen) is expressed as12 
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r
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ρδ
+

δρ
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+

+
−

ρ
+

−

ρ
+=µ ∫∫

 4.5 

The solution of equation 4.5 can be obtained similarly to the 

original Kohn-Sham method by solving  

[ ]
2,,2,1       

)(

,T
)(

2

1
1

1

21
nad
s

eff
2 Ni

r
rV

iii
K

v

v

=ϕε=ϕ








δρ

ρρδ
++∇−     4.6 

Equations 4.4, 4.5 and 4.6 form then a new scheme of self-

consistent calculation analogous to the Kohn-Sham DFT 

method, although in FDFT simplification, part of the electron 

density (related to (N – N1) electrons) is frozen. Thus, instead of 

solving the N-electron problem, it is possible to solve the N1-

electron problem using the new effective potential #
effV , 

[ ]
)(

,T
)()(

1

21
nad
s

eff
#

eff
r

rVrV
v

vv

δρ

ρρδ
+=   4.7 

The FDFT approach was successfully employed in the 

description of several systems20-23 and it is quite suitable for the 

CBOC model because by freezing the electronic density of the 

surrounding atoms, the orbitals shall be localized in the self-

consistent portion of the system, however, the effects of the 

environment (e.g., crystalline effects) are taken into account. 

 

4.2 Solid-State Embedding Scheme with the FDE scheme 

Initially, the electron density of a selected isolated cluster, 

which may be a unit cell or not, is obtained self-consistently. 

Subsequently, this electron density is frozen and replicated 

around a central cluster to mimic the crystalline environment. 

In the replicated system, the electron density of the central 

cluster is obtained by the FDFT approach under the influence of 

the frozen densities of the neighboring clusters. The current 

implementation of the ADF program does not perform 

analytical gradient calculations using the FDE approach. 

Therefore, a code was developed to perform a geometry 

optimization of a single distance in the central cluster using a 

modified Brent method based on gradients.24 In addition, this 

code can perform automatically the entire process, namely, 

generates the isolated cluster electron density, replicates the 

cluster in space, and builds the ADF input file for a FDE 

calculation. The scheme used to mimic the crystalline effects is 

depicted in Figure 2. 
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 Figure 2. Schematic representation of the Frozen Density Embedding approach used in the calculation of the bond distance, bond force constants, bond excitation 

energy, and overlap integral for crystalline structures. Si are clusters with frozen densities, SSCF is the cluster for which the Kohn-Sham orbitals will be obtained under 

the influence of crystalline effects. 

Once the frozen and self-consistent subsystems (Si and SSCF in 

the Figure 2, respectively) are defined and the desired chemical 

bond is selected, the code provides the force constant (k), the 

excitation energy ( ε∆ ), and the overlap (ρ) for the chemical 

bond. 

Into the code was implemented the option to scan the bond 

distance of interest, so that the force constant can be calculated 

from a quadratic polynomial fit as 22bk = , with 2b  being its 

quadratic coefficient. It was also implemented into de the 

calculation of the numerical second derivative of the energy 

with respect to distance, thus allowing the direct estimate of the 

force constant that can be used to check the value obtained by 

the polynomial fitting procedure. 

The calculation of the excitation energy is performed by 

freezing the entire self-consistent cluster (SSCF in the Figure 2), 

except for the two atoms involved in the desired chemical bond. 

In this case, the frozen density of this nearest neighbor is 

relaxed in a freeze-and-thaw calculation. In this process, the 

embedded subsystem (the bonded atom pair on SSCF in the 

Figure 2) is frozen, while this fragment is thawed. This process 

is repeated until convergence is reached. By relaxing the frozen 

fragments, it is possible to improve the environment density by 

taking into account the polarization of the environment by the 

embedded system.25 

The overlap (ρ) between the valence atomic orbitals of the 

atoms forming the chemical bond of interest was calculated 

from the overlap integrals in the selected basis set and their 

corresponding SCF coefficients by using equation 4.1. 

All calculations employed the BLYP functional with DZ, DZP, 

TZP e TZ2P Slater-type basis sets for the SCF. The excitation 

energy calculations used the TDDFT approach with the same 

functional and basis set. The non-additive kinetic energy term 

of the embedding part was described by the recommended18 

PW91K functional.26 All calculations were performed with the 

ADF program19 using its default criteria and increasing the 

numerical integration criteria to INTEGRATION 10.0 or 12.0. 
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The calculations of the isolated diatomic species were also 

perfomed with the ADF program19 using the same functional 

(BLYP) and basis sets at the calculated equilibrium bond 

distance. 

 

5 Results and Discussion 

 

Because this is the first time that the FDE approach is applied 

in the description of the crystalline environment, it needs to be 

properly validated and a computational protocol established, 

which involves the selection of the basis set and the choice of 

the replication scheme. The basis sets tested were listed in the 

previous section and the following replications: 3×3×3, 5×5×5 

and 6×5×5 were tried. In the first two replications, the frozen 

and the self-consistent clusters are former by eight atoms, 

whereas in the 6×5×5 replication, the clusters are formed by 

sixteen atoms. Figure 3 depicts the energy curves for each 

replication scheme and basis set for the NaCl system. 

For the 3×3×3, 5×5×5 replications, the calculated energy 

minimum is ca. 2.6 Å for all basis sets. Comparison with the 

experimental distance for Na–Cl bond (2.81 Å), suggests that 

these replication schemes to freeze the density of the neighbor 

cells are not adequate to provide a proper description of the 

crystalline effects. It may be observed that the energy profile in 

Figure 3a has a cusp at distances near the experimental value. 

This may be a consequence of the fact that the atoms directly 

bonded to the analyzed chemical bond have their densities 

frozen. Thus, to correct these flaws of these embedding 

schemes a larger self-consistent cluster was employed. Indeed, 

with the 6×5×5 replication scheme, the energy curves for the 

tested basis sets show a minimum at distances very close the 

experimental one, as can be observed in Figure 3b. As a result, 

the bond parameters and the overlap density properties were 

calculated with the 6×5×5 replication and the TZ2P basis set for 

three systems (NaF, NaCl, NaBr) whose properties had already 

been calculated14 with a point charge embedding approach. For 

these systems, the equilibrium distance and its gradient and 

Hessian (to provide the force constant), the excitation energy 

and the overlap were calculated and are presented in Table S1 

(Supporting Information). Noteworthy that the errors between 

the calculated and experimental bond distances are smaller than 

1%, indicating that this frozen density embedding with a 6×5×5 

replication and a TZ2P basis set is an accurate protocol to 

mimic the crystalline effects for a local chemical bond. In 

addition, there is a complete agreement between the force 

constants calculated by the Hessian (second derivative of the 

energy with respect to the distance) and the quadratic 

polynomial fit of the energy with respect to the distance. 

 

 Figure 3. Energy profiles obtained with BLYP functional and DZ, DZP, TZP and TZ2P basis sets for the test system NaCl. a) For the replications 3×3×3 and 5×5×5 in 

which the frozen and the SCF clusters have eight atoms. b) For a replication 6×5×5 in which the frozen and the SCF clusters (with sixteen atoms) was calculated with 

BLYP/TZ2P. 

A second test performed was the calculation of the force 

constant using a complete reference system to ascertain the 

consistence of the embedding results. Namely, the reference 

consisted of replications n×n×n with n = 3, 4, 5, and 6 for a Li 
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crystalline system, where the energy was calculated for 

different distances between two central atoms. Considering 

symmetry in calculations, at the equilibrium distance, the SCF 

convergence is usually achieved, while for other distances, the 

change in point group of the whole system introduces a drastic 

convergence problem. Only for the smallest replication 3×3×3 

we were able to perform the calculations without symmetry that 

provided a force constant of 0.32×105 dyn cm–1 and an 

equilibrium distance of 2.9 Å. Given the size of the replication 

and the relative error to the experimental bond distance, the 

results for the force constant with and without embedding are 

compatible and comparable. It is important to emphasize that 

the application of full periodic calculations (such as plane 

waves) for the overlap polarizability model requires a very 

large unit cell (supercell) to ensure that there are no intracell 

interactions between the underlying quantities. In addition, a 

full periodic calculation would be unable to provide the 

underlying properties of the overlap except the force constant. 

Noteworthy that the small errors calculated for the bond 

distances do suggest that this proposed embedding approach is 

quite reliable. 

From the underlying quantities (R, ρ, k, and ∆ε) characterizing 

the overlap density presented in Tables S1-S3 (Supporting 

Information), its properties related to covalency (polarizability, 

αOP  and ionic specific valence, υ) and to spectroscopy 

(absorption wavelength and oscillator strength, scattered 

wavelength and Raman cross-section, electron energy-loss 

cross-section, characteristic energy) were calculated and are 

presented in Table 1. Noteworthy that these properties for alkali 

halides (NaF, NaCl, NaBr) follow the same trend already 

observed and discussed for these systems using a modified 

point-charge embedding scheme,14 thus indicating that the 

present frozen density embedding approach are consistent with 

preview results. This validation indicates that the replication 

6×5×5 scheme with the TZ2P basis set is an appropriate 

computational protocol to explore the overlap density 

properties in solid-state systems and was employed for the 

remaining systems. 

The accuracy and robustness of the computational methodology 

developed may be ascertained by the small errors (< 3% in 

Tables S1 and S2, except for Na metal) related to the calculated 

equilibrium bond distances in wide range of crystalline solid-

state structures such as NaY (Y = F, Cl, Br), MX (M = Ca, Mg 

and X = O, S, Se) and Li, Na, and Mg metals. 

Regarding the parameters of the chemical bonds, a systematic 

trend was observed for a fixed chalcogenide. For instance, the 

force constant decreases when going from Mg to Ca in the MX 

(X = O, S, Se) diatomic systems but increases in the crystal 

series. Furthermore, the overlap integrals follow the same trend 

in both diatomic and crystalline systems (Tables S2 and S3). It 

has been established for diatomic molecules that as the percent 

of the ionic contribution to the chemical bond increases, the 

force constant also becomes larger.27 

 

Table 1. Spectroscopic and covalency properties of the overlap charge density for alkali halide, alkali-earth chalcogenide and metal crystal structures. 
Absorption wavelength λ0 (nm) and its respective oscillator strength, f, Scattered λS photon wavelength (nm) and its respective scattering (Raman) cross-
section σRaman (10–26 cm2). Electron energy-loss cross-section σLoss (10–22 cm2). Overlap charge characteristic energy Ep (eV). Overlap polarizability αop (Å

3) and 
ionic specific valence υ. 

Crystal λ0 f λS σRaman σLoss Ep αop υυυυ 

NaF 792 0.004 883 0.0201 0.0044 15.5 0.068 1.239 

NaCl 1044 0.005 696 0.0263 0.0075 11.8 0.136 1.551 

NaBr 1032 0.002 701 0.0097 0.0020 11.9 0.088 1.366 

CaO 1582 0.318 567 5.9728 6.0752 7.78 2.389 2.708 

CaS 2487 0.617 502 32.936 23.134 4.95 7.353 2.548 

CaSe 2224 1.019 514 50.184 43.917 5.54 7.568 3.192 

MgO 1724 0.667 551 84.077 14.886 7.14 3.037 1.741 

MgS 2630 0.995 496 110.88 44.545 4.68 9.288 2.144 

MgSe 3064 2.810 483 683.66 218.98 4.02 18.84 2.270 

Li 5249 0.608 454 35.177 49.514 2.35 33.73 1.977 

Na 6650 0.315 445 34.324 21.219 1.85 35.37 1.579 

Mg 6437 5.437 446 1268.7 1297.2 1.91 121.2 2.326 
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Table 2. Spectroscopic and covalency properties of the overlap charge density for alkali halide, alkali-earth chalcogenide and alkali diatomic molecules. 
Absorption wavelength λ0 (nm) and its respective oscillator strength, f, Scattered λS photon wavelength (nm) and its respective scattering (Raman) cross-
section σRaman (10–26 cm2). Electron energy-loss cross-section σLoss (10–22 cm2). Overlap charge characteristic energy Ep (eV). Overlap polarizability αop (Å

3) and 
ionic specific valence υ. 

Diatomic λ0 f λS σRaman σLoss Ep αop υυυυ 

NaF 830 0.006 840 0.0012 0.0001 14.83 0.154 2.614 

NaCl 1002 0.006 715 0.0033 0.0002 12.28 0.208 2.562 

NaBr 935 0.003 754 0.0009 0.0000 13.17 0.131 2.577 

CaO 1058 0.035 689 0.0021 0.0035 11.63 0.842 5.442 

CaS 2237 0.539 513 0.5661 0.3232 5.50 10.58 5.654 

CaSe 2590 0.746 498 1.0294 0.5909 4.75 16.19 5.758 

MgO 2372 1.512 507 0.6158 1.8961 5.19 23.47 6.870 

MgS 3592 3.455 472 3.7339 8.7298 3.43 71.63 6.993 

MgSe 4536 6.546 460 9.6982 27.6603 2.71 151.3 7.289 

LiLi 4713 0.598 458 53.1470 0.4022 2.61 25.00 1.651 

NaNa 5191 0.485 454 76.4139 0.2956 2.37 24.94 1.489 

MgMg 16151 0.028 429 0.0012 0.0001 0.76 24.73 0.167 

 

Accordingly, the force constants of the diatomics follow this 

trend, whereas the solid-state systems follow a reverse trend. 

Indeed, this is observed in Table 2 that presents the results for 

the diatomics related to the solid-state systems (Table 1). 

Noteworthy that the overlap between the valence atomic 

orbitals of the species A–B in the chemical bond is strongly 

affected by the crystalline environment. For instance, the 

overlap in a chemical bond in the solid CaX (X = O, S, Se in 

Table S2) is larger than the overlap in the same bonds in the 

diatomic (Table S3), despite the bond distance in the diatomic 

being shorter than in the crystalline environment. In addition, 

the force constant in the isolated diatomic species is larger than 

the related bond in the solid-state, except for MgMg. The 

excitation energies related to the bonds in crystalline 

environments are larger than the isolated diatomic for all 

systems, except the metallic ones (Li, Na, Mg). These results 

and comparisons show the strong effects and relevance of the 

crystalline environment upon the parameters (R, ρ, k, ∆ε) of the 

chemical bonds. 

The calculated spectroscopic properties associated to the charge 

density in the overlap region of a chemical bond for NaY (Y = 

F, Cl, Br), MX (M = Ca, Mg and X = O, S, Se) and Li, Na, and 

Mg solids are presented in Table 1 and for their respective 

diatomic species are shown in Table 2. For some solid-state 

systems and diatomics, these properties have already been 

calculated and reported using different embedding scheme and 

computational methods. For the alkali-earth chalcogenides, a 

similar trend observed for the diatomic molecules is also 

present in the crystals, namely, the increase of the absorption 

wavelengths and the Raman scattering cross-sections with the 

increase in covalency.14 Indeed, for these systems, the results 

reported in Tables 1 and 2 suggest that the calculated oscillator 

strengths (0.002 – 5.5) and Raman cross-sections (1×10–26 – 

16×10–25 cm2) are quite large, being greater than the range of 

scattering cross-sections (~10–30 cm2 per molecule) in 

conventional Raman scattering in different type of materials28–

32 thus, suitable for measurements even with a low sensitive 

apparatus. The higher values of scattering cross-sections was 

obtained for systems that present large overlap polatizability. 

Notice that these values are larger for the alkali-earth 

chalcogenides (solids or diatomics) than those obtained for the 

alkali halides (oscillator strengths in range of 0.002–0.006 and 

Raman cross-sections in range of 0.001×10–26 – 0.02×10–26 

cm2),14 which indicate that more covalent chemical bonds lead 

to larger absorption or scattering. In addition, the calculated 

electron-energy cross-sections are in the same range of usual 

experimental values (10–22 – 10–23 cm2)33 and present similar 

trends observed for the Raman scattering with respect the 

covalency. However, the electron-energy cross-sections are 

much less sensitive to the covalency than the Raman scattering, 

but the energy loss cross-sections for the alkali-earth 

chalcogenides are very higher (three orders of magnitude) when 

compared with the values obtained for the alkali halides 

(crystals or diatomics).14 

An interesting relationship between the ionic specific valence 

(υ) quantities and the absolute value of the sum of the Mulliken 

electronegativities BA χ+χ  was observed as depicted in Figure 

4. Indeed, the sum of the atomic electronegativities is an index 

of the compactness of the valence orbitals of the atoms in the 

chemical bond A–B and have already been related to some 

chemical bond concepts such as the charge-shift resonance 

energy.34 On the other hand, the ionic specific valence (υ) 
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quantifies the shared charge in bond A–B. In this sense, it is 

expected that the lower values of BA χ+χ  would give larger 

values of υ, given that less compact valence orbitals in atoms A 

and B may be more favorable to the sharing of electrons. This 

trend in observed at Figure 4 for fixed alkaline or alkaline-earth 

in series: NaF > NaCl > NaBr; CaO > CaS > CaSe; and MgO > 

MgS > MgSe. Thus, the results regarding the ionic specific 

valence corroborate our previews discussions8 about the 

relations between this quantity and the meaning of the 

electronegativity in a chemical bond. 

 

 
Figure 4. Calculated ionic specific valence (υ), sum of electronegativity 

χA + χB , and overlap polarizability αOP  (Å3) for the alkali-earth 

chalcogenides and alkali-earth metals obtained with the Frozen Density 

Embedding approach for solid-state systems. 

 

In Figure 4, the variation of BA χ+χ  for different systems is 

quite evident with respect to the OPα  for the same alkaline or 

alkaline-earth series: NaF > NaCl > NaBr; CaO > CaS > CaSe; 

and MgO > MgS > MgSe. This trend may be a consequence of 

the fact that OPα  quantity represents the polarization capacity of 

the valence overlap region between the atoms in the bond A–B. 

In this sense, a more compact valence (high value of BA χ+χ ) 

should result in a less polarizable shared charge density and, 

consequently, small values of OPα . 

Alkali-earth sulfides and selenides presented very large overlap 

polarizability. These results may be interpreted by the atomic 

electronegativity and polarizability. For instance, the oxygen 

atom has a very large electronegativity (χO = 3.61), but a small 

polarizability (αO = 0.8 Å3), whereas the sulfur atom, compared 

to oxygen, has a smaller electronegativity (χS = 2.59) and a 

large polarizability (αS = 2.9 Å3), while the selenium atom has 

the smaller electronegativity (χSe = 2.43) and the greatest 

polarizability (αSe = 3.77 Å3) of the series O, S, Se (all atomic 

polarizabilities were obtained from the literature35). Thus, in the 

series O, S, Se, the oxygen atom is less prone to share its 

electrons because its electronegativity is the largest and its 

atomic polarizability is the smallest. Thus, the electron sharing 

propensity for this series increases in the order O > S > Se. In 

addition, because sulfur and selenium atoms have larger 

polarizabilities, it is expected that they should be more 

polarized upon the formation of a chemical bond compared to 

the oxygen atom. As a consequence, a chemical bond formed 

by more polarizable species and that exhibits more shared 

electronic density will present a more polarizable overlap 

region (larger OPα ), which is observed in Figure 4.  

The same analogy may be employed for the alkali-earth metals, 

where χLi = 0.91 and αLi = 24.3 Å3; χNa = 0.86 and αNa = 24.1 

Å3, which shows that the lithium and sodium atomic 

polarizabilities are practically the same, so the larger 

electronegativity of lithium suggests that this element would 

form less covalent bonds than sodium. We may then infer that 

the Li–Li chemical bond would share less charge density than a 

Na–Na bond in solid metals. Indeed, this trend may be observed 

from the overlap polarizability values in Table 1. For the 

chalcogenide series, the selenide compounds present the more 

favorable balance between the atomic electronegativity and 

polarizability, which makes the shared electron density in the 

overlap region more polarizable. This rationalization fails if 

only the atomic electronegativies (χX) or polarizabities (αX) 

were employed, thus indicating that the combination of the 

ionic specific valence and the overlap polarizability becomes an 

interesting descriptor to qualify and quantify the shared electron 

density and its polarizability in a chemical bond. In fact, the 

balance between the atomic quantities χX and αX are implicitly 

taken into accounted within the framework developed for the 

overlap region of a chemical bond. 

The comparisons between the values presented in Tables 1 and 

2 can provide qualitative and quantitative information about the 

effects of the crystalline environment on the overlap properties 

of a chemical bond. For instance, it is observed a general trend 

in the variation of αOP in respect to the type of material. The αOP 

of bonds in diatomics are larger than those αOP of bonds in 

solids, where the crystalline environment was taken into 

account by frozen densities, when the system is dominated by 

an ionic character (Figures 5a, 5b and 5c). In contrast, for the 

homonuclear/metallic systems (LiLi, NaNa and MgMg) the αOP 

is larger in the solid-state than in the isolated species. These 

results showed that the bond overlap charges are less 

polarizable (smaller αOP) in the solid-state for dominantly ionic 

behavior as determined by the Pauling electronegativity 

differences, indicating that the chemical bond becomes less 

covalent in solids than in diatomics. Furthermore, this trend 

becomes even more evident for the ionic specific valence 

quantities, as can be observed Figure 5e. 
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Figure 5. Calculated overlap polarizability αOP (Å3) and ionic specific valence υ for chemical bonds in alkali halides, alkali-earth chalcogenides, alkali and alkali-earth 

metals in isolated diatomics and in solid-state obtained with the Frozen Density Embedding approach. 

The closeness of the characteristic energies (Ep) associated to 

the overlap density of chemical bonds in crystalline systems 

with some structures or peaks that appear in solid-state optical 

properties has already been pointed out14 and shall be further 
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elaborated. Indeed, several of these optical property data show 

peaks or structures that were either ambiguously assigned or 

simply not assigned to any known behavior. The results 

presented in Tables 1 and 2 indicate that the spectroscopic 

properties of the polarizability of the electron density in the 

overlap region of a chemical bond could be measured in the 1–

20 eV spectral region, where inter- and intra-band transitions, 

excitons, surface plasmons and the so-called zone boundary 

collective state (ZBCS) are observed. As pointed out 

previously,14 the calculated overlap characteristic energies 

obtained for some alkali halides are close to the experimentally 

observed bands usually assigned as excitons. These results were 

corroborated by the embedding scheme proposed in this 

contribution and a similar behavior was observed for the alkali-

earth chalcogenides. Indeed, several structures and shoulders 

that are arbitrarily assigned as excitons or surface plasmon 

because they are not present in any theoretical predictions of 

band structure calculations36–38 and have transition energies 

smaller than the energy band gap. However, these features in 

the spectra are within the range of calculated spectroscopic 

properties of the charge density in the overlap region as 

summarized in Table 3. 

 

Table 3. Characteristic energies of the overlap density, Ep (eV), and 
experimental, Eexp (eV), structures or shoulders with ambiguous or no 
assignments. ZBCS = zone boundary collective state. 

Crystal Ep Eexp Assignment Type of measure 

CaO 7.78 7 Exciton effect36 EELF 

CaS 4.95 5 Exciton effect36 EELF 

CaSe 5.54 -- 
  

MgO 7.14 ca. 5 Not assigned38 
 

 
 6.2 Surface transition38 

 

 
 7.2 Excitonic absorption37 EELF; reflectivity 

MgS 4.68 -- -- -- 

MgSe 4.02 -- -- -- 

Li 2.35 3.5–4.5 ZBCS39,40 EELF 

Na 1.85 1.25–2.2 ZBCS39 Optical absorption 

Mg 1.91 4.6 Not assigned40 Optical absorption 

 

Noteworthy that the model is robust to provide consistent 

results even for homonuclear diatomics and alkali and alkali-

earth metals. Regarding the experimental spectral data, they 

show anomalous features in spectral regions below the known 

interband transitions.39–41 For the Li and Na metals, these peaks 

have been associated to a zone boundary collective state 

(ZBCS).39,40 Indeed, quite some time ago, it was suggested39 

that in these cases, because the electrons are embedded into a 

periodic lattice, the electron energies are strongly perturbed 

near the zone boundary and the minimum photon energy 

needed to excite an electron from the Fermi surface to just 

above the energy gap at the zone boundary is close to the 

energy range of the anomalous effects found in these alkali-

metals. By expressing the optical absorption as linear 

combinations of the self-consistent Hartree response functions39 

and applying it to the one reciprocal-lattice vector model, it was 

suggested that the low-energy peaks (below the interband 

transitions) should be associated with these Brillouin-zone 

boundaries effects. However, the characteristic energies of the 

overlap density in the chemical bond of alkali-metal systems 

are very close to these experimental anomalous peaks in the 2–

4 eV spectral range. These agreements do reinforce the 

proposal that these effects are connected to the local oscillation 

of the confined overlap electron density in the chemical bond. 

At this point, we are not claiming a direct equivalence between 

the overlap density characteristic energy and the ZBCS effects, 

but we do believe that they are connected at least by their 

localized nature. In particular, the Li experimental results41 

have an interesting relation with the overlap density given that 

the EELF plasmon at 4.0 eV, assigned to ZBCS effects, have 

anisotropies in the momentum symmetry directions [100], [110] 

and [111], where a higher momentum transfer occurs in the 

[110] direction. This anisotropic behavior may be associated 

with the anisotropic character of the chemical bond, where for a 

diatomic homonuclear bond one must have two non-equivalent 

overlap polarizabilities (parallel and perpendicular to the 

internuclear axis) related with the directionality of the chemical 

bond. However, it must be emphasized that the current 

approach to determine the overlap polarizabilities of chemical 

bonds does not allow this kind of analysis directly. In fact, an 

extension of the current theoretical and computational approach 

to treat the anisotropy of overlap polarizabilities is one of the 

main perspective of this work. 

Conclusions 

It was shown that the Frozen Density Embedding approach is 
efficient and consistent to mimic the crystalline effects on the 
localized properties of chemical bonds. Noteworthy that 
consistent results were obtained using an appropriate 
computational protocol that involved a balanced description of 
the frozen and self-consistent cluster sizes. Also, allowing for 
the rearrangement of the density within the fragments self-
consistently due to their mutual interactions is very important to 
achieve converged properties. The results showed that in solids 
with ionic character, the bond overlap charges are less 
polarizable than in the isolated diatomics, which according to 
the relationship between the overlap polarizability and 
covalency, suggest that the chemical bond becomes less 
covalent in the solid-state than in the isolated diatomic. The 
calculated overlap electron density characteristic energies for 
some solid-state systems such as alkali halides, alkali-earth 
chalcogenides, alkali and alkali-earth metals, are quite close to 
the experimental transition energies ambiguously assigned as 
excitons or ZBCS effects. Therefore, the spectral properties of 
the confined overlap density could be an alternative assignment 
to these observed features in the 1–20 eV energy range. Despite 
the approximations employed in the calculations of the 
properties (characteristic energy, oscillator strength, cross-
section, polarizability) of the overlap charge density confined in 
a chemical bond, the present treatment provide energies that 
coincide with several experimental transitions and the trends 
may be consistently interpreted by combining the polarizability 
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and the ionic specific valence quantities. Considering the wide 
range of bonding situations and the consistency of the results 
obtained for these systems, the model is quite reliable regarding 
its accuracy, robustness, chemical and physical soundness as 
well as its importance as a probe to the covalency of molecules 
and materials. 
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