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ABSTRACT 

 Molecular dynamics simulations of planar elongational flow in a nematic liquid crystal 

model system based on the Gay-Berne fluid were undertaken by applying the SLLOD equa-

tions of motion with an elongational velocity field or strain rate. In order to facilitate the 

simulation, Kraynik-Reinelt periodic boundary conditions allowing indefinite simulations 

were used. A Lagrangian constraint algorithm was utilized to fix the director at different an-

gles relative to the elongation direction, so that the various pressure tensor elements could be 

calculated as a function of this angle. This made it possible to obtain accurate values of the 

shear viscosities which were found to agree with results previously obtained by shear flow 

simulations. The torque needed to fix the director at various angles relative to the elongation 

direction was evaluated in order to determine the stable orientation of the director, where this 

torque is equal to zero. This orientation was found to be parallel to the elongation direction. It 

was also noted that the irreversible entropy production was minimal when the director at-

tained this orientation. Since the simulated system was rather large and fairly long simulation 

runs were undertaken it was also possible to study the cross coupling between the strain rate 

and the order tensor. It turned out to be very weak at low strain rates but at higher strain rates 

it could lead to break down of the liquid crystalline order. 
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1. INTRODUCTION 

 Viscosities and shear flow of liquids have been studied by molecular dynamics simula-

tion since the 1970's, when the Lees Edwards sliding brick boundary conditions were intro-

duced to induce a shear stress and a velocity gradient [1]. Then the viscosity can be obtained 

as the ratio of these two quantities. At first simple liquids such as Lennard-Jones liquids were 

examined but then the simulations have been extended to more complex systems such as, for 

example, alkanes [2-4] that are of more practical interest since they, among other things, are 

constituents of lubricants. Also the flow properties of liquid crystals [5-8] have been studied. 

The simulation methodology was improved by the introduction of the SLLOD equations of 

motion [9] where the molecular velocity is divided into the streaming velocity and the molec-

ular thermal velocities, where the average of the sum of the squares of the latter velocities is 

proportional to the temperature. The SLLOD equations are an exact description of adiabatic 

shear flow and in the limit of zero shear rate the viscosity is equal to the viscosity in the linear 

or Newtonians regime also given by the Green-Kubo relation. When these equations are aug-

mented with a thermostat they can also be used to study non-Newtonian flow. Apart from 

obtaining numerical values of the viscosity it is also possible study various flow alignment 

phenomena. For example, the director of nematic liquid crystals orient at a constant angle 

relative to the stream lines [7, 8] and linear molecules such as alkanes are stretched out and 

aligned by the shear field thus becoming a kind of a nonequilibrium liquid crystal [2-4]. 

 One flow pattern that has been considerably less studied is elongational flow. It arises 

when a system is elongated in one direction and contracts in a perpendicular direction while 

the volume of the system remains constant. It is divergence free and irrotational. It is of tech-

nological interest in, for example, polymer processing operations such as spinning, extrusion, 

vacuum forming and flow close to a tank inlet or outlet. Elongational flow can also be studied 

by applying the SLLOD equations of motion with an elongational velocity field replacing the 

shear field. However, special care has to be taken when the periodic boundary conditions are 

selected and this could be one of the reasons why this flow has attracted less attention. The 

simplest applicable periodic boundary conditions consist of a lattice of unit cells contracting 

in one direction and expanding in the perpendicular direction but then the simulation can only 

continue as long as the width of the simulation cell exceeds twice the range of the intermolec-

ular interaction potential and thus there is definite length of the simulation. This could be 

enough if only short simulations are needed but it will be difficult to study transport phenom-

ena, where longer simulations are necessary. This obstacle was overcome by Daivis and Todd 

[10, 11] and by Baranyai and Cummings [12] utilizing two facts: Firstly, it is possible to ap-
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ply a theorem of Kraynik and Reinelt [13], according to which there is more than one equiva-

lent representation of a two-dimensional periodic lattice. In particular a lattice of quadratic 

unit cells can be represented by a lattice of unit cells shaped like parallelograms where the 

latter lattice can be exactly mapped onto the former lattice. Secondly, if the expansion and 

contraction directions of the elongational flow are oblique relative to the sides of the initial 

quadratic unit cells, they are transformed to parallelograms. Then it is possible to choose the 

elongation and contraction direction in such a way, that a lattice of parallelograms that can be 

remapped to the original lattice of quadratic unit cells forms after a certain simulation time 

and thus the simulation can continue indefinitely. These boundary conditions are easy to im-

plement in an existing molecular dynamics simulation program, so that elongational flow can 

be simulated just as readily as shear flow. 

 So far elongational flow of simple liquids such as Lennard-Jones liquids [14], low 

molecular liquids [15] and of polymer melts have been investigated [16, 17], and the purpose 

of this work is to extend these studies to a liquid crystal model system based on the Gay-

Berne potential [18-20] in order to evaluate the shear viscosities and to study alignment phe-

nomena. The article is organized in the following way: In section 2 the necessary theory is 

reviewed, in sections 3 the model system is described, in section 4 the results are presented 

and discussed and finally in section 5 there is a conclusion. 

 

2. THEORY 

2a. Order Parameter 

 The degree of ordering in a liquid crystal can be characterised by the scalar order pa-

rameter and a measure of the average orientation is given by the director. Many properties of 

an axially symmetric system such as a nematic liquid crystal become simpler when they are 

expressed relative to a director based coordinate system. These quantities can be defined by 

introducing the order tensor,  

 
1

3 1 1
ˆ ˆ

2 3

N

i i

iN =

 
= − 

 
∑u uQ 1  (2.1) 

where N is the number of molecules in the system, }1;ˆ{ Nii ≤≤u  is the unit vector in the direc-

tion of the axis of revolution of the molecule and 1 is the unit second rank tensor. Then the 

largest eigenvalue of this tensor is defined as the order parameter S. When the molecules are 

perfectly aligned in the same direction the order parameter is equal to unity and when the ori-

entation is completely random it is equal to zero. The director n is the eigenvector corre-
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sponding to the order parameter. In terms of the director and the order parameter the order 

tensor may also be expressed as 

 






 −= 1Q
3

1

2

3
nnS . (2.2) 

The order parameter and the director are functions of the position in space in a macroscopic 

system, but in this work we will only be interested in small systems where these quantities are 

the same over the whole system. The director angular velocity is given by  

 nnΩ &×= . (2.3) 

 

2b. Linear phenomenological relations 

 In order to obtain the linear relation between the various thermodynamic forces and 

fluxes in a flowing liquid crystal, we start with the expression for the irreversible entropy pro-

duction of a liquid crystal undergoing a flow in general [21, 22], 

 { }1
: ( ) 2 (½ ) (1/3)Tr( )s s a

eqp
T

σ = − + × − + −u P u Ω u
o o
P P∇ ⋅ ∇ ∇ ⋅∇ ⋅ ∇ ∇ ⋅∇ ⋅ ∇ ∇ ⋅∇ ⋅ ∇ ∇ ⋅ , (2.4) 

where T is the absolute temperature, u is the streaming velocity, P is the pressure tensor, Ω is 

the director angular velocity and peq is the equilibrium pressure. The three pairs of thermody-

namic forces and fluxes are (i) the symmetric traceless pressure tensor and the strain rate, 

s
o
P  and ( )s

u
o

∇∇∇∇ , where a symmetric traceless part of a general tensor A is defined as 

(1/ 2)( ) (1/ 3)Tr( )s T= + −
o

A A A A 1  and 1 is the unit tensor, (note that the strain rate is the 

same as the symmetric traceless part of the velocity gradient), (ii) the pseudo vector dual of 

the antisymmetric pressure tensor and the difference between the director angular velocity and 

the rotational part of the streaming velocity, a
P  and (½ )× −u Ω∇∇∇∇ , where the pseudovector 

dual of the antisymmetric part of a general tensor A is given by (1/ 2) :a =A ε A , where ε is 

the isotropic third rank tensor or the Levi-Civita tensor, and finally (iii) the difference be-

tween the trace of the pressure tensor and the equilibrium pressure and the divergence of the 

streaming velocity (1/3)Tr( ) eqp−P and u∇ ⋅∇ ⋅∇ ⋅∇ ⋅ . The forces are externally given parameters 

whereas the fluxes are ensemble averages of phase functions, hence the angular brackets. 

 In an axially symmetric system such as a nematic liquid crystal the most general ex-

pression for the linear relation between the pressure tensor and the velocity gradient can be 

expressed in the following way [21-23], 

 1 32 ( ) 2 [( ) ( ) ] 2 ( ) [( ) : ( ) ]s s s s s s s sη η η= − − ⋅ −u nn u nn nn u
oo oo oo o o

% %P ∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇  
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22 [( ) (½ )] ( )s s sη ζ+ ⋅ ⋅ × − − ⋅nn ε u Ω nn u

o o
% ∇ ∇∇ ∇∇ ∇∇ ∇ , (2.5a) 

 1 2( ) (½ ) [( ) ( ) ]
2 2

a s sγ γ
= − − ⋅ × − − ⋅P nn u Ω nn u

% % oo
1 ∇ ∇∇ ∇∇ ∇∇ ∇  (2.5b) 

and 

 (1/ 3) Tr( ) ( ) ( )s s

eq Vp η κ− = − ⋅ −u nn : u
oo

P ∇ ∇∇ ∇∇ ∇∇ ∇ , (2.5c) 

where the quantitiesη , 1
~η  and 3

~η  are shear viscosities, 1
~γ  is the twist viscosity, Vη  is the vol-

ume viscosity, 2
~η  is the cross coupling coefficient between the difference between the rota-

tion of the streaming velocity and the director angular velocity and the symmetric traceless 

pressure. According to the Onsager reciprocity relations (ORR) [24] this coefficient is equal 

to 2/~
2γ , the cross coupling coefficient between the strain rate and the antisymmetric pres-

sure. The trace of the velocity gradient and the symmetric traceless pressure are related by the 

cross-coupling coefficient ζ, which, according to the ORR, is equal to the cross-coupling coef-

ficient κ between the strain rate and the difference between the trace of the pressure tensor and 

the equilibrium pressure. In the case of planar elongational flow the above equations can be 

shortened since the only thermodynamic force is the strain rate ( )s
u
o

∇∇∇∇ , so that only those 

terms that involve this quantity remain in equation (2.5). 

 In order to further simplify the relation (2.5) in the case of planar elongational flow it 

is useful to define three different coordinate systems: Firstly, we start with one original coor-

dinate system with the basis vectors ( , , )x y ze e e used in the actual calculations. Secondly, we 

define a coordinate system with the basis vectors ( , )x y z
′ ′ ′e e e  by rotation around the y-axis, so 

that x-axis becomes parallel to the elongation direction x
′e , 

y y
′ =e e  and the contraction direc-

tion becomes parallel to z
′e . The angle between x

′e and xe  is denoted by φ and it is positive for 

a rotation clockwise around the y-axis from xe to x
′e . In this coordinate system the angle be-

tween the director n and x
′e  is θ ′  and it is positive when the director is rotated clockwise from 

x
′e . Thirdly, we introduce a director based coordinate system with the basis vectors 1 2 3( , )e e e

obtained by rotation around the y-axis, where 1e is parallel to the director n, 2 y y
′= =e e e is par-

allel to the y-axis, and 3 2= ×e n e . The angle between 1e and x
′e is denoted by θ and it is posi-

tive for a rotation clockwise around the y-axis from 1e  to x
′e  so we have θ θ ′= − , see fig. 1. 
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 The relation between the various pressure tensor element and the strain rate become 

simpler in the director based coordinate system where 1 3cos sinx θ θ′ = −e e e , 

1 3sin cosz θ θ′ = +e e e and 2y y
′ = =e e e . Then the strain rate becomes: 

 

cos 2 0 sin 2

( ) ( ) 0 0 0

sin 2 0 cos 2

s

x x z z

θ θ
γ γ

θ θ

− 
 ′ ′ ′ ′= − =  
 − − 

u e e e e
o

∇∇∇∇ , (2.6) 

and only the following components of the pressure tensor are left: 

 3
11

2
2 cos 2

3

sp
η

η γ θ = − + 
 

o %
, (2.7a) 

 ( )22 1 3

2
cos 2

3

sp η η γ θ= − +o
% % , (2.7b) 

 1 3
33

2 4
2 cos 2

3 3

sp
η η

η γ θ = + + 
 

o % %
, (2.7c) 

 1
31 2 sin 2

3

sp
η

η γ θ = + 
 

o %
 (2.7d) 

and 

 
2 2 2

ˆ2 sin 2ap λ γ γ θ= = − % . (2.7e) 

This means that all the shear viscosities and the cross coupling coefficient between the strain 

rate and the antisymmetric pressure can be obtained by simulating an elongational flow. 

 Since the order tensor (2.1) and (2.2) is a symmetric traceless second rank tensor it 

also couples with the strain rate in the linear regime and in analogy with equations (2.7a-c) we 

have: 

 11 1 cos2S Qδ δ χ γ θ= = , (2.8a) 

 22 2 cos 2Qδ χ γ θ=  (2.8b) 

 and 

 33 3 cos2Qδ χ γ θ= , (2.8c) 

where eqQ Q Qαα αα ααδ = − , where{ }; 1,2,3Qαα α〈 〉 = are the ensemble averages of the order 

tensor elements, hence the angular brackets, and { }; 1, 2,3eqQαα α = are the corresponding equi-

librium values and 1χ , 2χ  and 3χ  are cross coupling coefficients between the strain rate and 

the change of the order tensor It is possible to derive Green-Kubo relations for these coeffi-

cients [7]. The effect of this cross coupling is maximal in the zero and 90 degree orientations 
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and minimal in the ±45 degree orientations. In a nematic liquid crystal the effect of this cross 

coupling is very small since the order parameter is rather large. In an isotropic liquid consist-

ing of linear molecules such as alkane chains this cross coupling gives rise to an order tensor 

when the system is undergoing shear flow since the velocity field in this case is a sum of a 

rotational and an elongational velocity field [2, 3]. This ordering causes shear birefringence. 

 

2c. Equations of motion 

 In a general planar elongational flow where the angle between the elongation direction 

and the x-axis is equal to φ the velocity gradient becomes ( )x x z zγ ′ ′ ′ ′= −u e e e e∇∇∇∇ , where 

cos sinx x zϕ ϕ′ = −e e e and sin cosz x yϕ ϕ′ = +e e e are the elongation and contraction directions, 

respectively. Inserting this gradient in the SLLOD equations of motion [9-12] gives 

 ( )i i
i i i x x z z

m m
γ ′ ′ ′ ′= + ⋅ = + ⋅ −

p p
r r u r e e e e& ∇∇∇∇  (2.9a) 

and  

 ( )i i i i i x x z z iγ ξ′ ′ ′ ′= − ⋅ − = − ⋅ − − −p F p u β F p e e e e p β& ∇∇∇∇ , (2.9b) 

where ir and ip  are the position and peculiar momentum of molecule i, iF  is the force exerted 

on molecule i by the other molecules, m is the molecular mass, u is the streaming velocity and 

γ is the strain rate. The multiplier β is a proportional feedback multiplier added to keep the 

linear momentum constant since it tends to drift [25]. If the arithmetic were exact, this multi-

plier would remain exactly zero, however, in practice it remains very small and its influence 

on the ensemble averages of phase functions and time correlations functions is negligible. The 

thermostatting multiplier ξ is determined by the requirement that the peculiar kinetic energy 

should be a constant of motion,  

[ ]
1

2

1

( )
N

i i i x x z z i

i

N

i

i

γ
ξ =

=

′ ′ ′ ′⋅ − ⋅ − ⋅
=

∑

∑

F p p e e e e p

p

. (2.10) 

When these equations are used in practice special periodic boundary conditions must be used. 

They are easy to implement in an existing molecular dynamics simulation program but it is 

somewhat complicated to derive them, so they are explained in the next section.  

 Since the molecules consist of rigid ellipsoids of revolution it is convenient to employ 

the Euler equations in angular space, 

 i iI =ω Γ& , (2.11) 
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where I is the moment of inertia around the axes perpendicular to the axis of revolution, iω is 

the angular velocity of molecule i and iΓ is the torque exerted on molecule i by the other mol-

ecules. The relation between the rate of change of the molecular axis vectors ˆ /id dtu and the 

molecular angular velocity is expressed in terms of quaternions [26]. 

 Since many relations of liquid crystals become simpler when they are expressed in a 

director based coordinate system it is convenient to fix the director in space so that the coor-

dinate system becomes an inertial frame. This can be done by adding two Lagrangian con-

straint torques to the Euler equations [20], 

 
yx

i i x y

i i

I λ λ
∂Ω∂Ω

= + +
∂ ∂

ω Γ
ω ω

& , (2.12) 

where xλ  and yλ  are Lagrangian constraint multipliers determined in such a way that the di-

rector angular acceleration becomes a constant of motion. If the initial director angular accel-

eration and velocity are equal to zero the director will remain fixed in space for all subsequent 

times. 

 When the viscosities are evaluated, various element of the pressure tensor are calculat-

ed. In this case, the Irving and Kirkwood expression [27] for the pressure tensor is used, 

 
1

1 1 1

N N N
i i

ij ij

i i j im

−

= = = +

= −∑ ∑ ∑
p p

r FP , (2.13) 

where 
ij j i= −r r r is the distance vector between molecule i and molecule j and 

ijF is the force 

exerted on molecule i by molecule j and N is the number of molecules. 

 

2.d Periodic boundary conditions for elongational flow 

 The most immediate way to handle the periodic boundary conditions for SLLOD 

equations (2.9) is to use a periodic lattice of rectangular simulation cells expanding in the x-

direction and contracting in the z-direction, i.e. φ = 0, under constant volume whereby the 

cells become rectangular parallelepipeds. However, then the simulation must cease when the 

width in the z-direction has diminished to twice the range of the intermolecular interaction 

potentials, so that there this a time limit of the simulation length for a given system size. This 

difficulty was circumvented by Daivis and Todd [10, 11] and by Baranyai and Cummings 

[12], who devised a method for handling the periodic boundary conditions that allows simula-

tions of planar elongational flow of arbitrary length and that is easy to implement. However, 

the derivation of the method is rather complicated, so only a simplified explanation on the 
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practical application will be given here, for a detailed derivation the reader is referred to the 

references [10-13]. 

 The method is based on two observations: Firstly, a theorem of Kraynik and Reinelt 

[13] according to which there is more than one equivalent representation of a two-dimensional 

periodic lattice. Consider a periodic lattice of quadratic unit cells, six of which arranged three 

by two are depicted in fig. 2. Then a parallelogram P where the vectors of the sides are 

0 (2 )x zL +e e and 0 ( )x zL +e e , where 0L is the length of the sides of the quadratic unit cells, can 

be constructed. This parallelogram partially covers the six periodic copies 1 to 6 of the quad-

ratic unit cells. The part of P outside the quadratic unit cell 1 can be divided into three trian-

gles a', b' and c' located in the quadratic unit cells 2, 4 and 5, respectively. These triangles are 

equivalent to the triangles a, b and c located in unit cell 1. The triangles a, b and c together 

with the remaining triangle of P in unit cell 1 completely fill this cell without overlapping or 

leaving any empty space. Thus a periodic lattice of these parallelograms and the periodic lat-

tice of quadratic unit cells are equivalent and there is a 1:1 mapping between them. The initial 

quadratic unit cell can be transformed to the parallelogram P by the transformation matrix, 

 
2 1

1 1

 
=  

 
M . (2.14) 

Note, however, that the parallelogram P is not unique. Any symmetric matrix with integer 

elements and a determinant equal to unity transforms the quadratic unit cells into parallelo-

grams forming an equivalent periodic lattice. 

 Secondly, if the elongation and contraction directions are oblique relative to the sides 

of the quadratic unit cells of the initial lattice, this lattice will be transformed to a lattice of 

parallelograms. Then, if the eigenvectors of the matrix M are chosen as the elongation and 

contraction directions, x
′e  and z

′e , it can be shown that the initial quadratic lattice eventually 

will become an equivalent lattice of the parallelograms that can be remapped onto the original 

lattice. It can be shown that this occurs when the elongation and contraction are equal to the 

largest and smallest eigenvalues, respectively, of M. Since the elongation is equal to exp( )tγ  

there is a point in time tr such that  

 
1

lnrt λ
γ

= , (2.15) 

where 1/2
(3 5 ) / 2λ = +  is the largest eigenvalue of M. 

 More specifically, at time zero the sides of the initial quadratic unit cells are given by  

 1 0 0(cos sin )x z xL Lϕ ϕ′ ′= + =L e e e  (2.16a) 
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and 

 3 0 0( sin cos )x z zL Lϕ ϕ′ ′= − + =L e e e , (2.16b) 

where 1L  and 3L  denote the sides of the unit cell initially parallel to the x- and z-directions, 

respectively and 1/2 1/2 1/2
cos 10 (5 5 )ϕ −= +  or φ ≈ 31.7º. 

 After a time t the system has been elongated by a factor exp( )tγ  in the x
′e -direction 

and contracted by a factor of exp( )tγ−  in the 
z
′e -direction, so that the sides of the unit cells 

become 

 1 0( ) [cos exp( ) sin exp( )]x zt L t tϕ γ ϕ γ′ ′= + −L e e  (2.17a) 

and 

 3 0( ) [ sin exp( ) cos exp( )]x zt L t tϕ γ ϕ γ′ ′= − + −L e e . (2.17b) 

This means that the unit cells have become parallelograms where the angle ( )tα  between the 

x-axis and 1( )tL is given by 
1 1tan ( ) ( ) / ( )z xt L t L tα =  and it is smaller than φ. At time rt  the 

initially quadratic unit cell has been transformed to a parallelogram with the sides 

 1 0( ) (2 )r x zt L= +L e e  (2.18a) 

and  

 3 0( ) ( )r x zt L= +L e e . (2.18b) 

This is the parallelogram P in fig. 2 and the system can be remapped onto the original cell and 

the simulation can continue. 

 It is rather difficult to calculate the distances between the interacting molecules located 

in different periodic copies in a system composed of parallelograms with bases relative to the 

x-axis. Therefore the system is rotated by an angle ( )tα− around the y-axis so that the bases of 

the parallelograms become parallel to x-axis and an ordinary monoclinic lattice is obtained 

where the distances between the interacting pairs can be evaluated without complications. 

Then the system is rotated back by the angle ( )tα  to compute the forces and torques and to 

update the positions and velocities. 

 

3. MODEL SYSTEM AND TECHNICAL DETAILS 

 In order to test the above expressions for the various viscosity coefficients and to de-

termine the preferred director orientation, we have simulated a system composed of molecules 

interacting via a purely repulsive version of the commonly used Gay-Berne potential [18-20]: 
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where 12 2 1= −r r r  is the distance vector from the centre of mass of molecule 1 to the centre of 

mass of molecule 2, 12r̂ is the unit vector in the direction of 12r  and 12r  is the length of 12r . 

The parameter 0σ  is the length of the axis perpendicular to the axis revolution, i.e. the minor 

axis of a prolate ellipsoid of revolution. The strength and range parameters are given by 
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where the parameter χ  is equal to 
2 2

( 1) / ( 1)κ κ− + , where κ  is the ratio between the axis of 

revolution and the axis perpendicular to the axis revolution, χ ′ is equal to, 1/2 1/2
( 1) / ( 1)κ κ′ ′− +  

where κ ′ is the ratio of the potential energy minima of the side by side and end to end config-

urations, and 0ε  denotes the depth of the potential minimum in the cross configuration, where 

12r̂ , 1û  and 2û  are mutually perpendicular. The parameters κ  and κ ′ have been given the 

values 3.0 and 5.0, respectively. Note that the potential is purely repulsive, so there are no 

potential minima but the value of κ ′  that has been optimised for the attractive Gay-Berne 

potential has been retained.  

 The reason why this purely repulsive potential has been chosen is that there are accu-

rate simulation data on the viscosity of a nematic liquid crystal available based on this poten-

tial [8]. This is very useful for a comparison with the results obtained in the present work in 

order to confirm that the algorithm and the computer program are correct. Another advantage 

is that this potential is very short-ranged, so that it is possible to obtain accurate estimates of 

the pressure without any corrections for long-ranged interactions. This is important since the 

viscosity is obtained from the ensemble averages of the pressure tensor components. 

 The numerical results in the present work are expressed in length, energy, mass and 

time units of 0σ , 0ε , m, the molecular mass, and 2/1

00 )/( εστ m= . Thus the units of the pres-

sure, temperature, density, strain rate and torque density become 3

0 0/ε σ , 0 / Bkε , 3

0σ − , 
1τ −
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and 3

0 0/ε σ . The moments of inertia around the axes perpendicular to the axis of revolution 

were given the value 2

0σm . The system consisted of 12000 molecules. The equations of mo-

tion were integrated by a fourth order Gear predictor–corrector method with a time step of 

1/2
0.001 ln(3 5 ) / 2 0.0009624τ τ× + ≈ . Then, according to equation (2.15), there will be 

2 × 10
5
, 4 × 10

5
 and 8 × 10

5
 timesteps between the remapping of the unit cells when strain 

rates of 0.005
1τ −
, 0.0025

1τ −
 and 0.00125

1τ −
 are applied. The cutoff radius beyond which the 

forces and the torques were set equal to zero was 4.5 0σ . The side of the initial cubic unit cell 

was equal to 47 0σ  which equal to about 15 molecular lengths. In the most elongated state the 

length of the system is equal to 100 0σ and the width is equal to 20 0σ . Thus the smallest di-

mension of the system is still equal to more than six molecular lengths. The expressions for 

the forces and the torques that are very complicated are given in ref. [28]. In order to decrease 

the work needed to create the neighbour list, a cell code was used. The system that we simu-

late is rather large, so the computational work needed to integrate the equations of motion is 

too great for an ordinary work station. Therefore we used a replicated data code that we ran 

on a parallel processor. 

 

4. CALCULATIONS, RESULTS AND DISCUSSION 

 Among other things there are four problems that can be studied by simulating elonga-

tional flow of liquid crystal model systems: Firstly, it is possible to determine how the liquid 

crystal orients relative to the elongation and contraction directions, secondly, it is possible to 

evaluate the shear viscosities, thirdly the influence of the strain rate on the order parameter 

can be analysed and finally it is possible to study the irreversible entropy production as a 

function of the director alignment. 

 Beginning with the first mentioned problem, it can be noted that, when no external 

torques act on the liquid crystal, the antisymmetric pressure tensor is equal to zero. According 

eq. (2.7e) this is the case for the zero degree and the 90 degree orientations, i.e. when the di-

rector is parallel to the elongation direction or to the contraction direction. In order to deter-

mine which one of these directions that is preferred, an elongational velocity field was applied 

and the director was left free to assume any orientation. Then the angular distribution of the 

director was obtained by accumulating a bar chart where the order number of the bar is pro-

portional to the centre of an interval of angles between the director and the elongation direc-

tion and the height of the bar is proportional to the number of times the director falls into this 
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interval. A strain rate γ of 0.005
1τ −
 was applied and the bar chart was formed during a run 

length of 100 million timesteps. The director orientation was evaluated every fifth timestep 

and the widths of the angular intervals were 0.25 degrees. The result is shown in fig. 3, where 

it can be deduced that there is an approximately Gaussian distribution of the director orienta-

tion around the zero degree orientation or the elongation direction. If simulations are started 

with the director oriented in another direction than the elongational direction it moves to this 

direction or at least close to this direction.  

 Another way of determining the preferred director orientation is to use the Lagrangian 

constraint algorithm (2.12) to fix the director at different angles θ ′  relative to the elongation 

direction x
′e to evaluate the torques needed to keep the director at these angles. Then, as ex-

plained in section 2b and in fig. 1, θ ′  is positive for a clockwise rotation of the director 

around the y-axis from x
′e  and a positive torque rotates the director clockwise. The director 

was fixed at angles between -90 and +90 degrees at intervals of 15 degrees between the direc-

tor and the elongation direction at strain rates of 0.00125
1τ −
, 0.0025

1τ −
 and 0.005

1τ −
. The 

results are shown in fig. 4 and table 1, where the y-component of the antisymmetric pressure 

a

yp〈 〉  is close to zero in the -90, zero and +90 degree orientations, it is negative between -90 

and zero degrees and minimal in the -45 degree orientation. It is positive between zero and 90 

degrees and maximal in the +45 degree orientation and it follows the relation (2.7e), i.e. it is 

proportional to sin 2θ ′ . Since the antisymmetric pressure is equal to the sum of the external 

torques acting on the system, in this case the Lagrangian constraint torques, a positive torque 

is required to keep the director oriented in the positive direction and a negative torque is re-

quired to keep it oriented in the negative direction. Since the external torque cancels out the 

torque exerted by the velocity gradient, this means that this gradient acts in the negative direc-

tion when the director is displaced in the positive direction from the zero degree orientation 

and vice versa. Consequently, the orientation parallel to the elongation direction is stable. On 

the other hand, when the director assumes a positive orientation angle slightly less than 90 

degrees relative to the elongation direction, the external torque is positive so that the torque 

exerted by the velocity field is negative thus twisting the director back towards the zero de-

gree orientation and when the director assumes an orientation angle slightly greater than -90 

degrees the external torque is negative so that the torque exerted by the velocity field is posi-

tive thus twisting the director towards the zero degree orientation again. Thus the 90 degree 

orientation is unstable. 
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 Note also that this orientation phenomenon also occurs in ordinary isotropic liquids 

consisting of elongated molecules, such as for example unbranched alkanes [2-4, 7, 29], when 

they are sheared, since the shear field is a sum of an elongational velocity field and rotational 

velocity field. Then the elongational velocity field stretches out the molecules and orients 

them in the elongation direction, which in the case of shear flow is oriented at an angle of 45 

degrees relative to the stream lines, so that a nonequilibrium liquid crystal arises oriented in 

the 45 degree orientation. This orientation causes shear birefringence since the refractive in-

dex becomes different in different directions. 

 Turning the attention to the second problem - the evaluation of the various shear vis-

cosities - they can be obtained by calculating the ensemble averages of the pressure tensor 

elements and inserting them in the phenomenological relation (2.7). This was done by using 

the constraint algorithm (2.12) to fix the director at constant angles θ relative to the elongation 

direction so that the pressure tensor elements could be evaluated in a director based coordi-

nate system as functions of θ. Note that the angle θ is positive for a clockwise rotation of the 

elongations direction x
′e  from the director, so that θ θ ′= − , see fig. 1. Strain rates of  

0.00125
1τ −
, 0.0025

1τ −
 and 0.005

1τ −
 were applied. In figs. 5 and 6 the diagonal elements 

11 ( )sp t°〈 〉  and 
33( )sp t°〈 〉 are displayed as function of θ for the two lower strain rates and com-

pared to a curve fit to cos 2θ . It is found that they conform very well to this function as they 

should according to equation (2.7). It is interesting to note that 11 ( )sp t°〈 〉 and 33( )sp t°〈 〉  are al-

most equal in magnitude but display opposite sign. Thus 
22( )sp t°〈 〉  must be very small since the 

sum of the diagonal elements is equal to zero. This is also been found to be the result - 

22( )sp t°〈 〉  is barely larger than the error bars. The physical reason why 11 ( )sp t°〈 〉  and 33( )sp t°〈 〉 are 

minimal and maximal, respectively, in the zero degree orientation is that the elongation gives 

rise to a stress response in the opposite direction, i.e. the x
′−e direction, and the contraction 

give rise to a positive stress response in the z
′e -direction. The reverse is true in the 90 degree 

orientation. Meanwhile, the stress in the y-direction is more or less unaffected by the flow, so 

that 
22( )sp t°〈 〉  remains close to zero In fig. 4 and fig. 7 the antisymmetric pressure 

2 ( )ap t〈 〉  and 

the off-diagonal element and 
31( )sp t°〈 〉  are shown and compared to a curve fit to sin 2θ  since 

they should be proportional to this quantity according to equation (2.7). Also here the agree-

ment is very good. This shows that the two lower applied strain rates fall within the linear 

regime and that the linear phenomenological relations (2.7) between the pressure tensor and 
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the strain rate are fulfilled. The maxima and minima of 
31( )sp t°〈 〉  as a function of θ in the ±45 

degree orientations are of the same origin as those of 
11 ( )sp t°〈 〉  and 

33( )sp t°〈 〉 , namely the nor-

mal stress difference caused by the elongation and compression. This can be realized by not-

ing that a shear stress is equivalent to a normal stress difference if the coordinate system is 

rotated by 45 degrees. 

 There are four independent elements of the pressure tensor and four independent vis-

cosity coefficients. They can be found by inserting the various calculated pressure tensor ele-

ments in the phenomenological relations (2.7) and solving them for the viscosity coefficients, 

 3 11
1 ( )

lim
3 2 cos2

s

t

p tη
η

γ θ

°

→∞

〈 〉 + = − 
 

%
, (4.1a) 

 ( ) 22
1 3

1 ( )
/ 3 lim

2 cos 2

s

t

p t
η η

γ θ

°

→∞

〈 〉
+ = −% % , (4.1b) 

 1 3 33
2 1 ( )

lim
3 3 2 cos2

s

t

p tη η
η

γ θ

°

→∞

〈 〉 + + = 
 

% %
, (4.1c) 

 1 31
1 ( )

lim
6 2 sin 2

s

t

p tη
η

γ θ

°

→∞

〈 〉 + = 
 

%
 (4.1d) 

and 

 2
2

( )
2 lim

sin 2

a

t

p t
γ

γ θ→∞

〈 〉
= −% . (4.1e) 

In principle it is possible obtain estimates of all the shear viscosities by fixing the di-

rector at one arbitrary angle except 0, ±45 and ±90 degrees (because either the diagonal or the 

off-diagonal pressure tensor elements are zero at these angles) and calculating the ensemble 

averages of the pressure tensor elements. However, if maximal signal-to-noise ratios are to be 

obtained the diagonal elements should be evaluated at the 0, or ±90 degree orientations where 

they display maximal absolute magnitudes and the off diagonal elements should be evaluated 

at the ±45 degree orientations. 

However, before the estimates of the viscosities are presented the influence of the 

strain rate on the order parameter should be discussed. According to equation (2.8a) the 

change of the order parameter induced by the strain rate is given by 1 cos 2Sδ χ γ θ= . Thus 

the order parameter should vary slightly with the orientation angle and the effects should be 

maximal in the zero and 90 degree orientations and there should be no effect in the 45 degree 

orientation. By inspecting the order parameter as a function of the orientation angle at the 

lowest strain rate of 0.00125
1τ −
, see table 2a, we find that this parameter is more or less equal 
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to the equilibrium value of 0.7513 ± 0.0005 in the 45 degree orientation and that it has in-

creased by about 1 percent in the zero degree orientation and decreased by the same amount 

in the 90 degree orientation. Thus we can conclude that the order parameter at least approxi-

mately follows equation (2.8a) and the value of 1χ is equal to about 7 ± 1τ . When the strain 

rate is doubled to 0.0025
1τ −
 the order parameter in the 45 degree orientation is more or less 

unchanged, in the 0 degree orientation it has increased by 2 percent but in the 90 degree orien-

tation it has decreased by 5 percent, see table 2b. Thus we have the linear behaviour between 

0 and 45 degrees but in the angular interval between 45 and 90 degrees nonlinear effects have 

become important and the absolute value of Sδ  is larger than the predicted by equation 

(2.8a). Finally when the strain rate is doubled once again to 0.005
1τ −
 the order parameter in 

the 45 degree orientation is still more or less unchanged, in the 0 degree orientation it has in-

creased by 3 percent, so there is still an approximately linear behaviour between 0 and 45 de-

grees but if the orientation angle is greater than 60 degrees the order parameter decreases to 

zero and the liquid crystalline order breaks down. Note also that the fact that the order param-

eter in the 45 degree orientation is more or less equal to the equilibrium value even at the 

highest strain rate indicates that the influence of the boundary conditions on this parameter is 

negligible. 

 These effects on the order parameter should be kept in mind when the values of the 

combinations of viscosity coefficients on the right hand side of equation (4.1) given in table 2 

are examined. Nevertheless, the effects are very small for orientation angles of 45 degrees or 

less at the two higher strain rates and for any angle at the lowest strain rate, so these results 

can still be regarded as very accurate and they agree within the error bars with the results ob-

tained with this potential for a system consisting of 256 particles using the ordinary SLLOD 

equations for shear flow and the Lagrangian constraint algorithm (2.12) to fix the director [8]. 

However, the relative errors are smaller in the present work since the system is about 50 times 

larger. For the sake of completeness the values of each one of the shear viscosities η , 1η%  and 

3η%  and the cross coupling coefficient 2γ% are given in table 3.  

 It can be concluded that simulation of elongational flow together with appropriate 

boundary conditions and the Lagrangian constraint algorithm (2.12) is a powerful and accu-

rate method to obtain shear viscosities of nematic liquid crystals. 

 Knowing the values of the shear viscosities makes it possible to study the irreversible 

entropy production as a function of the alignment angle. In the case of elongational flow the 
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only thermodynamic force is the strain rate and the conjugate thermodynamic flux is the 

symmetric traceless pressure so that the irreversible entropy production (2.4) simplifies to: 

 ( )11 33 31

1 1
: ( ) cos 2 2 sin 2s s s s sp p p

T T
σ θ θ γ = − = − 〈 〉 − 〈 〉 − 〈 〉 u

o o o
o o
P ∇∇∇∇  

 
2 21

3

1 2
4 2 cos 2

3T

η
η η θ γ = + + 

 

%
% . (4.2) 

This expression is minimal in the zero and ±90 degree orientations and maximal at the ±45 

degree orientations when 3η% is negative and vice versa when this coefficient is positive. In the 

present case 3η% was found to be negative, see table 3a-b. This means that the entropy produc-

tion is minimal at the zero degree and 90 degree orientations, where the former is the pre-

ferred stable orientation. Thus the director assumes the orientation that minimises the entropy 

production. It could seem counterintuitive that there are equally deep minima both at the zero 

degree orientation and the 90 degree orientation. However, in the zero degree orientation 

where the director is parallel to the elongation direction, the molecules also are oriented in 

this direction to a large extent when the order parameter is high. This means that they can pass 

each other very easily since they are streamlined in this direction. This lowers the overall fric-

tion in the system and decreases the entropy production. In the 90 degree orientation a large 

portion of the molecules are more or less parallel to the contraction direction, so that the fric-

tion of the flow in this direction is decreased thus decreasing the overall friction. On the other 

hand, in the 45 degree orientation the molecules are to a large extent oriented in this direction 

relative the steam lines both in the elongation and contraction directions. This means that 

side-to-side collisions become more frequent, so that the friction and thereby the entropy pro-

ductions increases. 

 Since the irreversible entropy production must be positive according to the second law 

of thermodynamics, it follows that the three shear viscosities must satisfy the following ine-

quality for the preferred alignment angle 0θ , 

 
21

3 0

2
4 2 cos 2 0

3

η
η η θ+ + >

%
% . (4.3) 

 Finally, it is interesting to note that nematic liquid crystals also in other cases tend to 

assume the orientation relative to an external dissipative field such as a velocity gradient or a 

temperature gradient where the irreversible entropy production is minimal. This has been not-

ed both in simulations [8, 30] and experimentally [31] for nematic liquid crystals undergoing 

shear flow, where the director approximately assumes an angle relative to the stream lines that 
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minimises the irreversible entropy production. When a nematic phase of a model system con-

sisting of elongated molecules is subjected to a temperature gradient the director orients per-

pendicularly to this gradient [32] whereby the heat flow and thus the entropy production is 

minimised since the perpendicular component of the heat conductivity is smaller than the par-

allel component of this conductivity. The reverse has been found for liquid crystals consisting 

of discotic molecules. 

 

5. CONCLUSION 

 A nematic phase of a liquid crystal model system based on a purely repulsive version 

of the Gay-Berne potential undergoing planar elongational flow has been investigated by mo-

lecular dynamics simulation in order to determine the preferred alignment angle and the shear 

viscosities by substituting the elongational velocity field into the SLLOD equations of mo-

tion. Then a particular problem that must be handled correctly is the periodic boundary condi-

tions. The simplest way of doing this for elongational flow is to use a lattice of rectangular 

unit cells expanding in one direction and contracting in the perpendicular direction. However, 

then the simulation must cease when the system has contracted to a dimension equal to twice 

the range of the intermolecular interaction potential. Therefore, a more advanced method de-

veloped by Daivis and Todd and by Baranyai and Cummings based on the Kraynik-Reinelt 

boundary conditions [10-13] was used where the elongation and contraction directions are 

oblique relative to the sides of the initial quadratic simulation cell. This causes an initial quad-

ratic periodic lattice to be transformed to a lattice of parallelograms. For certain angles be-

tween the elongation and contraction directions and the sides of the initial quadratic simula-

tion cell the parallelograms will after a certain time form a periodic lattice that is equivalent to 

the initial periodic quadratic lattice and then parallelograms can be remapped onto the initial 

quadrates so that the simulation can continue indefinitely. 

 The preferred orientation of the director relative to the elongation direction was deter-

mined by leaving the director free to assume any direction. This led to that an approximately 

Gaussian angular distribution of the director around the elongation direction was obtained. In 

order to crosscheck this result a Lagrangian constraint algorithm was applied to fix the direc-

tor at angular intervals of 15° between -90° and +90° relative to the elongation direction and 

the angular dependence of the antisymmetric pressure tensor was evaluated. This quantity is 

equal to the sum of the external torques exerted on the system, in this case the Lagrangian 

constraint torques, and they are equal in magnitude but opposite in sign compared to the 

torque exerted by the strain rate. It was found that the antisymmetric pressure obeys the linear 
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phenomenological relation (2.7) according to which the torque is zero in the parallel and per-

pendicular orientations relative to the elongation direction. However, if the director deviates 

from the elongation direction, the strain rate exerts a torque twisting it back to this orientation 

but if it deviates from the contraction direction, the torque exerted by the strain rate twists the 

director away from this direction back to the parallel orientation. Thus the parallel orientation 

is stable and the perpendicular orientation is unstable. 

 Then the shear viscosities were evaluated by calculating the various elements of the 

pressure tensor and comparing them with the linear phenomenological relations between the 

pressure and the strain rate for three different strain rates in the linear regime. According to 

these relations the diagonal pressure tensor elements are proportional to cos 2θ  where θ is the 

angle between the director and the elongation direction and the off-diagonal element and the 

antisymmetric pressure are proportional to sin 2θ and this was found to be the case within 

relative errors of a few percent. The estimated values of the shear viscosities agreed very well 

with estimates from conventional shear flow simulations and from Green-Kubo relations. 

Thus simulation of elongational flow is a powerful and accurate method to obtain shear vis-

cosities of nematic liquid crystals.  

 Since the order tensor and the strain rate both are symmetric traceless second rank 

tensors, there is a linear cross coupling between them. By symmetry the relation between the 

change of the order tensor and the strain rate is proportional to cos 2θ  in the linear regime, so 

that the change of the order tensor and thereby the order parameter should be maximal in the 

zero degree and 90 degree orientations and there should be no effect in the 45 degree orienta-

tion. This linear behaviour is observed over the whole angular interval at a strain rate of 

0.00125 
1τ −
. At the two higher strain rates of 0.0025

1τ −
and 0.005

1τ −
the linear behaviour is 

found between zero and 45 degrees, whereas the order parameter decreases more than pre-

dicted by the linear relation for orientation angles greater than 45 degrees, and when the larg-

est strain rate is applied the liquid crystalline order breaks down if the orientation angle is 

greater than 60 degrees. However, at the lowest strain rate and for orientation angles of 45 

degrees or less at the higher strain rates the order parameter changes by at most 2 percent or 

less so the influence on the estimates of the shear viscosities is very low. Note that this cross 

coupling gives rise to shear induced alignment and shear birefringence in isotropic liquids 

under shear since the shear field is the sum of rotational and an elongational velocity field, 

where the latter field stretches out and orients the molecules. 
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 Finally, the irreversible entropy production was analysed. In the linear regime it is 

proportional to the sum of a constant and 
2

3 cos 2η θ% , so that it is maximal or minimal in the 

zero, ±45 and ±90 degree orientations depending on the sign of the shear viscosity 3η% . In the 

present case this viscosity was found to be negative, so the entropy production is minimal in 

the zero degree orientations or in elongational direction and in the 90 degree or contraction 

direction. However, only the former direction is stable, so this means that the director assumes 

the orientation that minimises the entropy production. This is an additional example of a ne-

matic liquid crystal orienting in such a way that the irreversible entropy production is mini-

mised. This has also been found in simulations of nematic liquid crystal model systems sub-

ject to a temperature gradient where the director orients in such a way that the heat flow is 

minimised. In shear flow simulations it does not follow directly from the linear phenomeno-

logical relations that an orientation minimising the irreversible entropy production is assumed. 

However, both in simulations and in experimental measurements it has been found that such 

an angle is approximately assumed. 
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FIGURE CAPTIONS  

 

Fig. 1 

 The three different coordinate systems: (i) the system with the basis vectors ( , , )x y ze e e  

used in the actual calculations and where the omitted y-axis is perpendicular to the image 

plane and points away from the observer, (ii) a system obtained by rotation around the y-axis 

with the basis vectors ( , )x y z
′ ′ ′e e e where x

′e is parallel to the elongation direction, 
y y
′ =e e is par-

allel to the y-axis and the contraction direction is parallel to z
′e , and (iii) a director based coor-

dinate system with the basis vectors 1 2 3( , )e e e obtained by rotation around the y-axis where 1e is 

parallel to the director n, 
2 y y

′= =e e e is parallel to the y-axis, and 3 2= ×e n e . The angle be-

tween x
′e and xe  is denoted by φ and it is positive for a rotation clockwise around the y-axis 

from xe to x
′e  so it is negative in the figure. The angle between n and x

′e is denoted by θ ′  and 

it is positive for a rotation clockwise of n from x
′e  around the y-axis, so it is also negative in 

the figure. Finally, the angle between the elongation direction x
′e and the 1e  in the director 

based coordinate system is denoted by θ and it is positive when x
′e  is rotated clockwise from 

1e , so it is positive in the figure and θ θ′ = − . 

 

Fig. 2 

 The parallelogram (dashed lines) partially covers the squares (1-6). The triangles a', b' 

and c' in the parallelogram are periodic copies of the triangles a, b and c in square 1.  

 

Fig. 3 

 The angular distribution of the director as a function of the angle θ ′  between the di-

rector and the elongation direction at a strain rate of 0.005
1τ −
. The error bars are of the size of 

the symbols. 

 

Fig. 4 

 The antisymmetric pressure tensor a

yp〈 〉  in the coordinate system with the basis vec-

tors ( , )x y z
′ ′ ′e e e , where x

′e  is parallel to the elongation direction, as a function of the angle be-

tween the director and the elongation direction θ ′ . Note that this angle is positive when the 

director is rotated clockwise from the elongation direction and that a positive torque rotates 
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the director in this direction. The strain rates are 0.0025
1τ −
 (squares) and 0.00125

1τ −
 (dia-

monds) and the error bars are of the size of the symbols. The dashed lines are curve fits to 

sin 2θ ′ . 

 

Fig. 5 

 The pressure tensor component 
11

sp〈 〉
o

 in a director based coordinate system as a func-

tion of the angle θ between the elongation direction and the director. Note that this angle is 

equal to θ ′− . The strain rates are 0.0025
1τ −
 (squares) and 0.00125

1τ −
 (diamonds) and the 

error bars are of the size of the symbols. The dashed lines are curve fits to cos 2θ . 

 

Fig. 6 

 As in fig. 5 but the pressure tensor component is 
33

sp〈 〉
o

. 

 

Fig. 7 

 As in fig. 5 but the pressure tensor component is 
31

sp〈 〉o

 and the dashed lines are curve 

fits to sin 2θ . 

 

Fig. 8 

 The irreversible entropy production divided by the square of the strain rate, 2
/σ γ (di-

amonds) as a function of the director alignment angle θ at a strain rate of 0.00125
1τ −
. The 

dashed line is a curve fit to 
2cos 2θ . 
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Table captions 

 

Table 1a 

 The viscosity combinations obtained by dividing the diagonal elements of the pressure 

tensor by the factor 2 cos 2γ θ , i. e. 
3 11/ 3 / 2 cos 2spη η γ θ+ = −〈 〉

o

% , 

1 3 22( ) / 3 / 2 cos 2spη η γ θ+ = −〈 〉
o

% %  and 
1 3 33/ 3 2 / 3 / 2 cos 2spη η η γ θ+ + = 〈 〉

o

% % , see equation (4.1), 

evaluated at different angles θ in a director based coordinate system at a strain rate of  

0.00125
1τ −
. 

 

Table 1b 

 As in table 1a but the reduced strain rate is equal to 0.0025
1τ −
. 

 

Table 1c 

 As in table 1a but the reduced strain rate is equal to 0.005
1τ −
. 

 

Table 2a 

 The viscosity combination 
1 31/ 6 / 2 sin 2spη η γ θ+ = 〈 〉

o

% and the cross coupling coeffi-

cient 
2 22 / sin 2apγ γ θ= − 〈 〉%  and the order parameter S evaluated at different angles θ in a di-

rector based coordinate system at a strain rate of 0.00125
1τ −
. 

 

Table 2b 

 As in table 2a but the strain rate is equal to 0.0025
1τ −
. 

 

Table 2c 

 As in table 2a but the strain rate is equal to 0.005
1τ −
. 

 

 

Table 3a 

 The shear viscosities η , 1η%  and 3η%  as functions of θ in a director based coordinate at a 

strain rate of 0.00125
1τ −
. 
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Table 3b 

 As in table 3a but the strain rate is equal to 0.0025
1τ −
. 

 

Table 3c 

 As in table 3a but the strain rate is equal to 0.005
1τ −
. 
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TABLES 

Table 1a 

θ 
3 / 3η η+ %  1 3( ) / 3η η+% %  1 3/ 3 2 / 3η η η+ +% %  

0º 2.74±0.05 -0.02±0.07 2.72±0.08 

15º 2.72±0.06 -0.07±0.03 2.65±0.05 

30º 2.70±0.13 -0.0±0.1 2.68±0.06 

60º 2.82±0.30 -0.09±0.08 2.79±0.09 

75º 2.92±0.40 -0.12±0.05 2.69±0.04 

90º 2.79±0.02 -0.06±0.04 2.73±0.02 

 

Table 1b 

θ 
3 / 3η η+ %  1 3( ) / 3η η+% %  1 3/ 3 2 / 3η η η+ +% %  

0º 2.74±0.05 -0.02±0.06 -2.72±0.08 

15º 2.72±0.04 -0.05±0.03 -2.66±0.04 

30º 2.69±0.05 -0.04±0.07 -2.65±0.06 

60º 2.54±0.04 -0.11±0.06 -2.70±0.06 

75º 2.84±0.03 -0.08±0.04 -2.76±0.04 

90º 2.94±0.03 0.00±0.05 -2.94±0.06 

 

Table 1c 

θ 
3 / 3η η+ %  1 3( ) / 3η η+% %  1 3/ 3 2 / 3η η η+ +% %  

0º 2.67±0.03 -0.05±0.03 2.62±0.02 

15º 2.66±0.02 -0.06±0.03 2.61±0.02 

30º 2.67±0.04 -0.07±0.02 2.61±0.02 

60º 2.62±0.03 -0.07±0.03 2.55±0.02 
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Table 2a 

θ 
1 / 6η η+ %  2γ%  S 

0º   0.7576±0.0004 

15º 5.2±0.1 -13.9±0.3 0.7565±0.0001 

30º 5.2±0.1 -13.8±0.2 0.7543±0.0004 

45º 5.1±0.1 -13.6±0.3 0.749±0.001 

60º 5.4±0.1 -14.2±0.1 0.744±0.001 

75º 5.12±0.1 -13.7±0.2 0.739±0.001 

90º   0.740±0.001 

 

Table 2b 

θ 
1 / 6η η+ %  2γ%  S 

0º   0.7622±0.0003 

15º 5.19±0.04 -13.9±0.1 0.7625±0.0004 

30º 5.21±0.05 -13.9±0.2 0.7576±0.0003 

45º 5.16±0.04 -13.7±0.1 0.7497±0.0003 

60º 5.27±0.03 -13.9±0.1 0.738±0.0012 

75º 5.1±0.1 -13.6±0.1 0.719±0.002 

90º   0.709±0.002 

 

Table 2c 

θ 
1 / 6η η+ %  2γ%  S 

0º   0.7740±0.0002 

15º 5.2±0.1 -14.1±0.2 0.7714±0.0004 

30º 5.22±0.02 -14.00±0.04 0.7640±0.0003 

45º 5.18±0.02 -13.70±0.03 0.7502±0.0003 

60º 5.14±0.03 -13.4±0.2 0.7203±0.003 
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Table 3a 

 

 η  
1η%  3η%  

15º 4.41±0.10 4.8±0.2 -5.1±0.2 

30º 4.38±0.07 4.9±0.5 -5.0±0.2 

60º 4.47±0.08 4.4±0.6 -4.8±0.3 

75º 4.44±0.08 4.5±0.3 -4.9±0.2 

 

Table 3b 

 η  
1η%  3η%  

15º 4.38±0.08 5.0±0.2 -5.0±0.10 

30º 4.43±0.07 5.0±0.4 -5.1±0.2 

60º 4.44±0.07 5.0±0.3 -5.5±0.2 

75º 4.39±0.05 4.2±0.3 -4.7±0.2 

 

Table 3b 

 η  
1η%  3η%  

15º 4.40±0.04 5.0±0.1 -5.2±0.1 

30º 4.40±0.02 5.0±0.1 -5.2±0.1 

60º 4.3±0.1 4.9±0.2 -5.1±0.1 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 

 

  

θ' 
 

 

Page 34 of 38Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 

 

 

 

 

  

 

 

 

Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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