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We report a reactive neural network potential for protonated water clusters
that accurately represents the density-functional theory potential-energy
surface.
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Investigating the properties of protons in water is essential for understanding many chemical processes in aqueous solution.
While important insights can in principle be gained by accurate and well-established methods like ab initio molecular dynamics
simulations, the computational costs of these techniques are often very high. This prevents studying large systems on long time
scales, which is severely limiting the applicability of computer simulations to address a wide range of interesting phenomena.
Developing more efficient potentials enabling the simulation of water including dissociation and recombination events with first-
principles accuracy is a very challenging task. In particular protonated water clusters have become important model systems to
assess the reliability of such potentials, as the presence of the excess proton induces substantial changes in the local hydrogen
bond patterns and many energetically similar isomers exist, which are extremely difficult to describe. In recent years it has been
demonstrated for a number of systems including neutral water clusters of varying size that neural networks (NNs) can be used
to construct potentials with close to first-principles accuracy. Based on density-functional theory (DFT) calculations, here we
present a reactive full-dimensional NN potential for protonated water clusters up to the octamer. A detailed investigation of this
potential shows that the energetic, structural, and vibrational properties are in excellent agreement with DFT results making the
NN approach a very promising candidate for developing a high-quality potential for water. This finding is further supported by

first preliminary but very encouraging NN-based simulations of the bulk liquid.
Keywords: Neural networks, density-functional theory, protonated water clusters, potential energy surfaces.

1 Introduction

Water, the most important solvent, is of vital importance for
countless chemical systems from biochemistry to large-scale
industrial processes. Consequently, it has received consider-
able attention in numerous experimental as well as in theoret-
ical studies. !> Although a lot of insights have been gained
in its structure, in its physical properties and in its interac-
tion with other molecules, % our understanding of water and
its role in solvation, which governs most chemical reactions in
aqueous solutions, is far from complete. Consequently, further
investigations are urgently needed to unravel the role of water
at the atomic level for a variety of processes being as different
as the stabilization of large biomolecules under physiological
conditions and the formation of the famous double layer in
electrochemical systems. >-1°

Water has two remarkable properties, which are responsi-
ble for its unique role in chemistry: First, water forms strong
hydrogen bonds, which are the reason why water is a liquid
at ambient conditions. Second, water has the ability to disso-
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ciate by forming a hydronium and a hydroxide ion. Conse-
quently water is able to act as an acid as well as a base and
can provide protons and hydroxide ions in chemical reactions.
In combination with the flexible hydrogen bond network, the
species emerging in the auto-dissociation process show char-
acteristic mobilities, arising e.g. from the Grotthuss mecha-
nisms of proton transport, ' "!> while the more complex solva-
tion and mobility of the hydroxide ion is still controversially
discussed. 314

Computer simulations based on molecular dynamics (MD)
can provide many details of chemical processes in water at
the atomic level. A mandatory condition for obtaining reliable
results is an accurate description of the atomic interactions.
While the current state-of-the-art in the simulation of liquid
water is the application of ab initio MD (AIMD) !> rely-
ing on the determination of the energy and forces by density-
functional theory (DFT) on-the-fly, the computational costs
of these simulations are enormous, which prevents the in-
vestigation of many interesting questions. Consequently, to
extend the length and time scales of simulations of water,
a vast number of more efficient potentials have been devel-
oped, but most of them are rigid body potentials, like TIP3P, !’
TIP4P,'7 SPC,!8 and ST2,!° which cannot describe the mak-
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ing and breaking of chemical bonds and thus the dissocia-
tion and recombination of water molecules.’ To overcome
these limitations, many different types of more advanced po-
tentials for water have been developed. Some potentials built
especially for protonated water clusters include empirical va-
lence bond potentials (EVBP),?!-2* multi-state empirical va-
lence bond (MS-EVB) potentials,?* the Kozack and Jordan
potential (KJ),? fitted to gas phase data and the anisotropic
site potential (ASP)2° developed using monomer properties
for the long-range interactions and perturbation theory for the
short-range terms. Further, also potentials based on very flexi-
ble functional forms to represent electronic structure data with
very high accuracy have been proposed, like a potential based
on permutation invariant polynomials by Bowman and co-
workers for the protonated water dimer?’ and a correction to
DFT calculations to almost coupled cluster quality for water
by Gaussian approximation potentials by Csanyi and cowork-
ers.”82% Those approaches rely on a many-body expansion
(MBE) of the total energy, usually truncated after the three-
body term. Since the chemical composition of the interact-
ing monomers changes during a proton transfer reaction, the
extension of MBE-based potentials to larger protonated wa-
ter clusters is not straightforward. However, very recently a
generalization of the MBE method has been suggested that in
principle also enables the treatment of chemical reactions. >
In recent years, protonated water clusters have become im-
portant model systems to develop potential-energy surfaces
(PESs) that are able to include the dissociation of water
molecules in MD simulations, and the goal is to reach a quality
in the description of the atomic interactions close to electronic
structure methods. Considering the dissociation products of
water in the construction of these potentials explicitly is very
important, as the presence of a proton or hydroxide ion can
change the local water structure including the hydrogen-bond
network considerably. 3!3% In the case of small protonated wa-
ter clusters (H* (H,0),, up to n = 3), extensive work has already
been carried out to understand their structure and vibrational
frequencies at various levels of theory.33 #4445 Hodges and
Stone?® proposed that, with increasing cluster size, the Eigen
model rules over the Zundel configuration, since the intra-
molecular free OH bonds become stronger, while the hydro-
gen bonding network of the whole system gets weaker. For
larger clusters, ab initio calculation become computationally
expensive as the number of possible isomers grows drastically,
while empirical models are often not sufficiently accurate.

Apart from the approaches mentioned above, also artificial
neural networks (NNs) have been used to address the PES
of water. In 1998 Gassner et al. developed a water model
based on rigid water molecules to improve the description of
ions in solution.*? Also the PESs of the free water molecule*®
and of the water dimer*’ have been constructed using NN,
and an extension of the TIP4P model to include polarization

has been published in 2002.%% Apart from total energy sur-
faces, NNs have also been applied very successfully to ex-
press atom-centered electrostatic multipoles to generally im-
prove the quality of classical force fields for water. 479

Recently, we have shown that high-dimensional NN po-
tentials>!>2 can be constructed for neutral water clusters in-
cluding all degrees of freedom explicitly and that a very close
agreement with reference electronic structure calculations can
be achieved.>3~>3 In this work we investigate if NN potentials
are able to describe the PES of small protonated water clus-
ters with the accuracy of first-principles. We have chosen DFT
as reference method to construct the NN potential, since our
long-term goal is to develop a reactive and fully flexible poten-
tial for liquid water enabling the dissociation and recombina-
tion of water molecules and having the same applicability and
accuracy as ab initio MD, which is typically DFT-based. !> On
the other hand, due to its efficiency, a NN potential would al-
low to address much larger systems containing thousands of
molecules on long time scales. While other electronic struc-
ture approaches like coupled cluster®® provide quantitatively
more accurate results for water clusters and although they have
also been applied to construct PESs of such systems,>’ cur-
rently only DFT will allow us to carry out the required num-
ber of reference calculations of periodic systems needed for
the construction of a PES for liquid water. Further, selecting
DFT as reference method will enable extending the PES step
by step by further subsystems, which are difficult or even im-
possible to study by wavefunction-based methods, like metal
surfaces.

Specifically, the aim of the present work is to investigate
if NN potentials are able to describe the structural, vibra-
tional, and energetic properties of protonated water clusters
with an acccuracy comparable to that of electronic structure
methods. For this purpose we use DFT employing the gen-
eralized gradient approximation (GGA) as reference method,
which represents a PES of a very similar complexity like the
PES obtained from wavefunction-based methods. Using clus-
ters ranging from a protonated water molecule up to the proto-
nated octamer we demonstrate that all investigated properties
are in excellent agreement with the underlying DFT data in-
dependent of the system size using a single fit. Apart from
the global and local minima of the PESs, also intermediate
non-equilibrium structures are very well represented, which is
another important prerequisite for future applications to MD
simulations. Finally, first preliminary results are given ad-
dressing the NN-based simulation of liquid water.
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2 High-Dimensional Neural Network Poten-
tials

In recent years a lot of progress has been made in the con-
struction of atomistic potentials based on a combination of
electronic structure calculations and machine learning tech-
niques.>® Several methods have been developed for the rep-
resentation of PESs, based, e.g., on the modified Shepard in-
terpolation employing Taylor expansions,>® permutation in-
variant polynomials,® and Gaussian processes.?®6! All these
methods have in common that they are not relying on a func-
tional form derived from physical considerations. Instead,
they use very simple but flexible functional forms to repro-
duce a given set of electronic structure data as accurately as
possible.

Another important class of machine learning potentials,
which has first been proposed by Blank et al. in 1995,
is based on artifical neural networks.% In the following two
decades the development of NN potentials has seen enormous
progress, and they have now been employed to a wide range
of systems, % from small molecules in the gas phase to con-
densed systems. In the present work, we use the NN potential
method proposed by Behler and Parrinello,>'>%¢ which al-
lows to construct high-dimensional PESs of systems contain-
ing a large number of atoms with and without periodic bound-
ary conditions. Since this method is applicable to systems of
different size, it enables constructing a single PES for proto-
nated water clusters with varying numbers of water molecules.
In its most basic form, the total energy expression is given by

N atom

Eiotal = Z E; (D
i=1

where the E; are atomic energy contributions depending on
the local chemical environments of the atoms, and the sum is
running over all Ny atoms i in the system. The E; are pro-
vided by individual atomic NN as a function of input vectors
consisting of sets of many-body symmetry function values, ®®
which serve as structural fingerprints to describe the geometric
environments of the atoms up to a cutoff radius R.. For each
atom, a separate atomic NN is used to construct the functional
relation between the chemical environment and the atomic en-
ergy contribution. It should be noted that, as atomic energies
are no quantum mechanical observables, the parameters of the
individual atomic NNs are adjusted to yield the correct total
energies as a function of the atomic configuration, while indi-
vidual reference atomic energies are not required to train the
NNS.

Any electronic structure method can be used to generate the
reference data required to determine the NN parameters, and
apart from total energies also forces can be used. The latter do
not represent independent additional target output nodes of the

NN, but since the NN forces are exact analytic derivatives of
the NN total energy expression, the DFT forces can directly
be used to complement the training of the PES. In order to
ensure permutation symmetry of the potential with respect to
the interchange of like atoms, which is very challenging for
machine learning potentials, there is one set of NN parameters
and one specific NN structure for each element, i.e., in case
of water there is an atomic NN for hydrogen and an atomic
NN for oxygen. Both NNs are evaluated as many times as
there are atoms of the respective elements. More details about
the high-dimensional NN approach and the functional forms
of the employed many-body symmetry functions can be found
elsewhere, >2:6>-60

High-dimensional NN potentials have the important advan-
tage that they do not contain any system-specific terms and
that they are generally able to describe all types of atomic in-
teractions from covalent bonds to metallic bonding and dis-
persion interactions. This has been demonstrated in many ap-
plications. ®-73 Alternatively, it has also been shown that it is
possible to construct the total energy as a sum of environment-
dependent atom pairs.”# Still, in this case the computational
costs are higher than for the atom-based energy expression of
Eq. 1, as for a given structure the number of pairs is much
larger than the number of atoms. The typical errors of high-
dimensional NN potentials are in the order of a few meV per
atom for total energies and 0.1-0.3 eV/Bohr for forces. Con-
cerning the efficiency, the NN potential enables the calculation
of the energies and forces of about 100-200 atoms per com-
pute core and per second, and the method is easy to parallelize
as each atom can be computed separately on a different core
and only the atomic energies and forces need to be collected
to yield the final result.

3 Computational Details

The reference DFT calculations to construct the NN poten-
tial for protonated water clusters have been carried out using
the program FHI-aims.”> FHI-aims is an all-electron code em-
ploying atom-centered orbitals as basis functions, which are
given numerically on spherical grids. In the present work we
have selected the ’tier 2’ basis set and a real-space cutoff for
the basis functions of 8 A providing a convergence of a few
meV per atom for energy differences. For this type of basis
functions the basis set superposition error (BSSE) is usually
very small. For the water dimer we have found a BSSE of
only 0.64 meV per atom, and consequently no BSSE correc-
tion has been required. Another advantage of using atomic
orbital basis sets is the possibility to carry out periodic and
non-periodic calculations in a consistent way, which will be
important for an extension of the present work to liquid wa-
ter by adding periodic water structures to the training set. The
PBE functional by Perdew, Burke and Ernzerhof 777 has been
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selected to describe electronic exchange and correlation for all
reference calculations.

The selection of the structures to be included in the refer-
ence set is a crucial step, because, if important structures are
missing, the NN potential will not be reliable for the corre-
sponding atomic configurations. If, on the other hand, the
reference set is too large, carrying out the DFT calculations
requires a significant amount of CPU time, and the training
process to determine the parameters of the NN potential can
also become very demanding as a lot of data needs to be pro-
cessed.

Here we follow an iterative procedure to improve the NN
potential consisting of the construction of preliminary poten-
tials and tests of these potentials to identify missing configu-
rations in the training set, which has been suggested by Artrith
and Behler.® In essence, based on a first set of available DFT
data several initial NN potentials are constructed, which are
then used to find structures that are not well described. This
is achieved by comparing the NN predictions for energies and
forces obtained from the different NN potentials. Only if all
NN potentials predict very similar energies and forces, the NN
is assumed to be reliable. If different NN potentials predict
different energies and forces, then there is not enough infor-
mation about the respective part of the configuration space in
the training data and more reference calculations are needed.
This procedure can be repeated with improved NN potentials
until a self-consistent potential has been obtained and the pre-
dictions are reliable in all relevant situations. Typically, the
probe structures are generated by the same type of applica-
tions that will also be run with the final potential, e.g. geom-
etry optimizations, MD, replica exchange molecular dynam-
ics (REMD)”® or Monte Carlo simulations. In the present
work, the training set consists of neutral and protonated wa-
ter monomers, as well as protonated water clusters up to the
octamer. For setting up the first preliminary NN potentials,
random clusters, structures from the literature,”® as well as
randomly distorted configurations of these minimum geome-
tries have been calculated by DFT.

In particular for larger clusters (N>5), the identification
of energetically favorable random structures is challenging.
Therefore, in these cases we have used low-energy struc-
tures found in Car-Parrinello molecular dynamics simulations
(CPMD)'® to generate reasonable reference geometries em-
ploying the CPMD program.3° The resulting CPMD simula-
tions do not require a high level of convergence since we are
interested only in the generation of thermally accessible and
thus relevant reference configurations but not in their ener-
gies. Selected structures from the simulated trajectories have
then been recalculated by FHI-aims for their inclusion in the
reference set. In the further refinement of the potential, most
structures have been obtained from REMD runs using the code
TINKER®! and its replica exchange extension TiReX ®” based

on preliminary NN potentials.

For a given set of DFT reference data, the NN potential is
constructed by first splitting the data set into a training set (=
90 %), which is used to determine the parameters of NN, and
an independent test set (= 10 %), which is not used for fitting
but provides an estimate for the accuracy of the potential for
structures not included in the training process. The flexibility
of the NN is determined by the number of fitting parameters,
which is given by the structure of the NN, i.e., the number
of hidden layers and nodes per layer. If the NN is too flexi-
ble, overfitting can occur resulting in a poor performance for
structures not included in the training set. If a too small NN
is used, it will not be able to resolve all fine details of the PES
resulting in notable residual errors. The most efficient way to
determine the optimum NN size is to simply test different NN
structures and to choose the one with the smallest errors of the
data in the training and the test set. For each tested NN size,
the weight parameters have been determined by minimizing
the errors of the energies and force components of the training
structures employing the global extended Kalman filter.%3 The
error function is given by

1 Natruct . . 2 3N’£l0m
Ein— Ebpr)? + ———
(Exn DFT) 3N

atom  j=1

I =

Natruct i=1

where Ngyuct 18 the total number of structures, Ngtom is the
number of atoms in structure i, EI{IN and Ef)FT represent the
NN and DFT energies, and Fjyy and Fipgy are the x, y, and
z force components of all atoms, respectively. For each struc-
ture in each iteration, the weights are adjusted until the root
mean squared error (RMSE) values for the energies and forces
in the test set reach a minimum. The relative influence of the
energies and forces on the fitting process can be controlled by
a parameter (.

The construction of the NN potential has been carried out
with our in-house program RuNNer.%* The employed sym-
metry functions, which are described in detail elsewhere,®
are given by the parameters in the supplementary informa-
tion. A cutoff radius of 19.0 Bohr (=~ 10 A) has been used
in the present work to define the energetically relevant lo-
cal atomic environments. For this purpose, convergence tests
with different cutoff radii have been carried out. Apart from
the short-range atomic energy contributions discussed in Sec-
tion 2, which are a function of the atomic environments up to
the employed cutoff radius, in principle also an electrostatic
energy contribution based on environment-dependent atomic
charges could be used.>>’? In the present work, the electro-
static term has been omitted, because the protonated water
clusters are sufficiently small and all atoms in the clusters are
located within the cutoff radii of all other atoms. Therefore,
all electrostatic energy contributions can be described by the
“short-range” atomic energy term.

4|  Journal Name, 2010, [voll1-26
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The global and local minima of the protonated water clus-
ters reported below have been identified in REMD simulations
similar to our previous work for neutral water clusters. *3
The relative stabilities of these clusters have been assessed us-
ing the binding energy per water molecule Ey;,q,

Eping [H (H,0),,] =

E [ (1,0),] ~ (- DE[,0) - EH,0'] ()

which corresponds to the energy gained by forming the proto-
nated cluster containing n monomers from n — 1 neutral water
molecules and a H; O* ion, and the energy of formation Eform,
which is defined as the energy change upon adding another
water molecule to a protonated cluster already containing n— 1
monomers,

Eform [H+(H20>n] =
E [H"(H,0),] — E [H" (H,0),-1] —E[H,0] . )

The harmonic normal mode analyses using the NN potential
and DFT have been performed by computing the Hessian from
finite differences of the atomic forces.

4 Results

4.1 Neural network potential for protonated water clus-
ters

The final DFT training set consists of 29,851 structures includ-
ing the neutral water monomer, the protonated water monomer
as well as a large number of protonated water clusters from the
dimer to the octamer. The test set used to check the reliability
of the potential for atomic configurations not included in the
training set contains 3,231 structures. Various NN architec-
tures have been tested and several initial sets of random weight
parameters have been used to find the optimum NN potential
to represent these data. We found that many different NNs
yield similar errors of the energies and forces. Accordingly,
the final potential is not very sensitive to the actual choice of
the number of hidden layers and nodes per layer. We have then
selected the NN with the smallest errors of the energies and
forces in the test set. The best potential we obtained contains
a NN with two hidden layers and 80 nodes per layer for each
element. Still, the resulting number of NN fitting parameters
is not the same for both elements due to the different number
of input symmetry functions (cf. supplementary information),
they are 8,481 for hydrogen and 8,161 for oxygen. Although
the number of NN parameters is thus substantial, this num-
ber has to be related to the amount of information that is used
to determine the values of these parameters. In Table 1 the
numbers of structures for the individual cluster sizes and their
RMSE values for the training and the test sets are compiled.

Since we use the total energies and the force components of all
atoms to train the NN potential, in total 555,952 pieces of in-
formation about the PES are available, which is substantially
larger than the number of fitting parameters.

The overall energy RMSEs of the training and the test
set are only 0.97 meV/atom and 1.08 meV/atom. The
corresponding values for the force RMSEs are 40.11 and
40.95 meV/Bohr. The negligible differences between the
training and the test set errors indicate that no significant over-
fitting is present, which would give rise to a much higher error
for structures not used for training the NNs. While the energy
errors remain in the order of about 1 meV/atom for all clusters,
as can be seen in Table 1 there is a slight increase in the force
errors with growing cluster size. Still, even the force RMSE
of the octamer is only about 50 meV/Bohr. As will be dis-
cussed below, this small force error does not affect the global
and local minima found using the NN potential.

For each cluster size, the distribution of the DFT binding
energies of the reference geometries according to Eq. 3 and
their corresponding energy RMSE values are plotted in Fig. 1.
As the size of the clusters increases, more reference structures
are included because of the growing complexity of the sys-
tem. It can also be seen that the most stable structures with the
lowest binding energies have smaller errors than high-energy
structures, which is an advantage for applications like geom-
etry optimizations. Still, even the high-energy structures have
small errors well below 2 meV per atom.

4.2 Structural and energetic properties of protonated
water clusters

4.2.1 Global minima and vibrational frequencies The
first test of the NN potential has been the determination of
the global minima for the protonated water clusters up to the
octamer by REMD simulations. The results are summarized
in Table 2, which also includes figures of the NN optimized
geometries. For comparison these structures have also been
reoptimized by DFT. For all clusters, the binding energy dif-
ference between DFT and the NN potential is very small, the
largest deviation of 2 meV per molecule occured for the dimer,
which in contrast to the larger clusters exhibits a symmetric
hydrogen bond corresponding to a Zundel cation.

Several quantities have been used to characterize the struc-
tural properties of the clusters: the average length of the free
OH bonds R¢(OH), the average length of the shorter OH dis-
tance in the hydrogen bonds R,(OH), the average oxygen-
oxygen distance in hydrogen bonds R(OO), and the aver-
age difference of both OH distances in the hydrogen bonds
5(OH). We find (cf. Table 2) that R;(OH) reduces slightly
with increasing cluster size, and we will see later that this trend
correlates with the trend in their stretch frequencies. Similarly,
R;(OH) decreases with cluster size due an increase in the num-

This journal is © The Royal Society of Chemistry [year]
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ber of hydrogen bonds in the system. While H;O} is a Zundel
cation, the larger clusters from H,O% to H,;0j§ have 2, 3, 5,
6, 9, and 11 hydrogen bonds, respectively. S(OH) increases
with cluster size indicating a more pronounced asymmetry of
the hydrogen bond. The weakening of the hydrogen bond with
increasing cluster size is also evident in the trend of R(0O).
For all clusters, the non-averaged structural properties R(OO),
R;(OH), 6(OH) are plotted and analyzed in Fig. 2.

The trend in the binding energy per water molecule of
the global minima with increasing cluster size is shown in
Fig. 3a. The strongest binding per water molecule of about -
880 meV/H,O is found for the protonated water trimer. H;O3
exhibits a weaker binding energy per molecule compared to
that of the H,O% cluster, since it is a Zundel ion where the cen-
tral hydrogen atom is shared by both water molecules. From
H,0j to H;,;0%, the binding energy decreases continuously.
The trend in the formation energies in Fig. 3b indicates that
the largest energy gain is obtained when forming the HsO3 ion
from H;O" and a water molecule. For larger clusters the en-
ergy gain when adding an additional water molecule decreases
to about 600 meV.

For the global minimum structures of the protonated wa-
ter clusters a harmonic normal mode analysis has been car-
ried out. In Fig. 4a the NN and DFT values of all harmonic
normal mode frequencies of the minimum geometries of the
protonated water clusters are compared, and we find excel-
lent agreement. This plot also illustrates different regions of
the spectrum, like the high frequency OH stretches between
3500 and 4000 cm ™!, hydrogen bond stretches between 3000
and 3500 cm™!, H3O+ stretches between 2000 and 3000 cm !
and low frequency bending motions below 2000 cm™'. In all
regions, the NN frequencies are very close to the DFT re-
sults, which confirms an accurate representation of the PES
by the NN potential. Some important stretch frequencies are
also listed in the supplementary information and compared to
experimental values.

The NN predicted average red shift of the OH stretch fre-
quencies Vy(OH) of the protonated water clusters with respect
to the neutral water molecule is compared to DFT and avail-
able experimental results in Fig. 4b. When a H* ion is added
to a neutral water molecule, the oxygen atom attracts the H*
and forms an Eigen cation H;O™ resulting in an increase in its
R;(OH) as shown in Fig. 4b. This is followed by increased
OH stretch amplitude and thus red shift of the respective fre-
quencies by about 230 cm™!.

As a water molecule is added to the hydronium ion, a Zun-
del ion is formed accompanied by a considerable red shift of
its stretch frequency. All other hydrogen atoms are bonded to
the respective oxygen atom and act as free OH bonds char-
acterized by a shorter bond length (Fig. 4c). Thus, v/(OH)
of HyO3 is blue shifted compared to the protonated water
monomer. As the size of the clusters increases, more neutral

water molecules are added and more OH bonds are available
in the system. The deviation observed between the experimen-
tal and DFT shifts is because of the anharmonicity and also
because of the limitations of the employed exchange correla-
tion functional. In order to stabilize the cluster, several of the
OH bonds participate in hydrogen bonding, which allows the
free OH bonds to become shorter and vibrate much faster than
that of the smaller clusters. This phenomenon is described in
Fig. 4b and Fig. 4c. The slight deviation in the NN predic-
tion for R¢(OH) in case of H;50% and H;,Oj is correlated to
a similar deviation in their corresponding v;(OH) as seen in
Fig. 4b, and V;(OH) approaches the neutral water OH stretch
frequency with increasing cluster size. Fig. 4d shows a direct
correlation between the increase in R s(OH) of the protonated
water clusters and the shift in their corresponding stretch fre-
quencies.

4.2.2 Local minima, potential scans, and non-
equilibrium structures Apart from a description of the
global minima and their structural and vibrational properties,
also an accurate representation of non-equilibrium structures
is of crucial importance for obtaining a reliable PES for
protonated water clusters. In Fig. 5 the global minima and
some local minima that we have identified in the REMD
simulations are shown. We have reoptimized these structures
by DFT to determine their DFT binding energies, which are
shown along with the NN potential-based binding energies in
Fig. 6. In spite of the very small energy difference between the
different isomers, the energetic sequence of most structures
is very well described by the NN potential with only few
exceptions for e.g. structures B and C of the tetramer, which
are energetically very similar, and it should be noted that also
in case of the reference DFT calculations the selected PBE
functional does not allow for an unambiguous assessment of
the energetic order of these structures.

In Fig. 7 the one-dimensional energy landscape correspond-
ing to the inversion symmetry of H;O" is presented. The di-
hedral angle between the plane of the three hydrogen atoms
and one of the three equivalent hydrogen-oxygen bonds has
been varied. The inversion pathway has been generated by the
PATH program of the TINKER®! package. This cut through
the PES represents the low frequency umbrella normal mode
and the NN potential predicts the energies in close agreement
with DFT. A second one-dimensional cut through the PES of
H,O" in Fig. 8 describes the dissociation of a hydrogen atom
from the hydronium ion. It should be noted that the reference
data set used to train the NN does not contain structures with
any OH distance longer than 1.2 A. Still, the NN potential
describes the dissociation PES accurately up to much longer
bond lengths, which underlines at least limited extrapolation
capabilities of the potential. In general, whenever such an ex-
trapolation situation occurs, the NN program issues a warning,
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which can be used to further extend the reference set system-
atically.

Fig. 9 describes the energy barrier for the proton trans-
fer in H5O3 for several fixed oxygen-oxygen distances Roo.
The structures have been optimized using the NN potential
as well as DFT by fixing the two oxygen atoms and the
central hydrogen atom. For all investigated values of Rpo
there is an excellent agreement between the NN potential and
DFT. For the equilibrium distance there is a single minimum
with 6(OH) = 0 corresponding to the Zundel cation, while
for larger oxygen-oxygen separations a double well potential
emerges. It is evident that the barrier for proton transfer in-
creases with Rop. At larger separation, the preferred Zundel
struction changes to an Eigen model with two minima.

In the case of protonated water trimer, three distinct minima
have been identified differing in their hydrogen-bond pattern.
The global minimum structure A in Fig. 10a is of C; symme-
try. Another local minimum labeled B has Cs; symmetry with a
mirror plane along the free OH axis of the central Eigen com-
plex is found within 0.15 meV from the global minimum. A
high energy local minimum marked C with C; symmetry is
about 3.07 meV higher in energy than the global minimum.
Fig. 10b describes the interconversion pathway between the
three minima. Fig. 10a shows the corresponding pathway
from A, where one water molecule bound to the central hy-
dronium ion is stationary, while the other rearranges to form
C. From there, both the terminal water molecules reorient to
form B. This pathway is consistent with earlier publications
where the DFT BLYP/aug-cc-pVDZ level of theory has been
used.?” Fig.10b compares the NN and corresponding single
point DFT reference energies of the pathway.

As the complexity of the energy landscape increases rapidly
with the size of the clusters, the largest cluster we have inves-
tigated in more detail is the protonated tetramer. The global
minimum structure A in Fig. 11a is an extended Eigen com-
plex with a central hydronium ion hydrogen bonded to three
dangling water molecules in its periphery. The structure with
the next lowest energy is an extended Zundel complex B with
two water molecules hydrogen bonded to the Zundel ion in
trans fashion. Slightly higher in energy is the third local min-
imum structure C, which is again an extended Zundel com-
plex with two water molecules hydrogen bonded to the Zun-
del ion in cis alignment. The high energy minimum D is a
cyclic structure formed by four hydrogen bonded chain of wa-
ter molecules with a central Eigen type hydronium ion. A
disconnectivity graph® is used to visualize the total PES of
H,yOj in the form of super basins containing the minima. All
the minima are connected in the order of their transition state
energies. From the resulting graph, we can ascertain the rela-
tive ease in reaching different minima from any starting struc-
ture.8® We find three super basins where the super basin I in
Fig. 11b consist of minima B and C since the energy barrier

between these two minima is very low. Super basin II includes
minima B, C and D. Although minimum D has the highest en-
ergy, it enters super basin II before A since the transition state
connecting B, C and D is lower in energy than the transition
state between minima B, C, and A. The global minimum to-
gether with the other three local minima forms the final super
basin III.

Finally, in order to unravel the quality of the representa-
tion of arbitrary configurations, we have investigated a large
number of structures emerging in the REMD simulations. In
Fig. 12 we show a comparison of the NN and DFT energies
for a number of structures of the H;503 cluster. Like for all
other cluster sizes that we studied, the NN predictions are very
close to DFT.

4.3 Outlook: Towards liquid water

High-dimensional neural networks are not limited to neutral
and protonated water clusters but they are also applicable to
the condensed phase. Currently,” we are working on the
development of full-dimensional and reactive NN potentials
for bulk water, which will be applied to study condensed wa-
ter under various conditions and also allow the description of
proton-transfer reactions in the liquid. Several NN potentials
are under construction based on different approximations of
the exchange-correlation functional and trained to a large set
of periodic water configurations in the liquid and crystalline
state.

As afirst test of a PBE-based NN potential we show here the
radial distribution function of liquid water obtained from an
NN simulation of 128 water molecules in the NVT ensemble
averaged over a 1 ns trajectory (cf. Fig. 13). For comparison,
results from AIMD simulations for a simulation containing
64 molecules are shown. 38 Both simulations lead to an over-
structured and undercooled liquid compared to experiment,
which is a well-known feature of the underlying PBE PES.
Due to the high computational costs, the simulation time of
the AIMD simulations is limited to the picosecond timescale,
which might not be sufficient to properly equilibrate the under-
cooled liquid. With NN potentials however, simulation times
of several nanoseconds can be routinely accessed, which en-
sures converged results and also allows to compute thermo-
dynamic properties that are beyond reach of on-the-fly AIMD
simulations.

To illustrate the capability of NN potentials to simulate
proton transfer in the condensed phase, Fig. 14 shows the
free-energy profile (potential of mean force) along the pro-
ton transfer coordinate of an excess proton in a periodic box
with 32 water molecules obtained from NN simulations. De-
spite the fact that the potential was only parametrized using
distorted configurations of neutral water molecules without
explicit charged defects it is able to describe the structural
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diffusion of the H ion in the liquid. The proton transfer
barrier is below kg7 and about half as large as the one ob-
tained from AIMD simulations based on a different density-
functional (BLYP, Ref. 89). It will be interesting to further
refine the NN potential and to study the influence of density-
functional, system size and nuclear quantum effects on the
structure and dynamics of H" and OH™ ions in liquid water.
This work is currently in progress. 3’

5 Summary

A high-dimensional neural network potential for protonated
water clusters up to the protonated octamer has been con-
structed and analyzed using DFT calculations as reference
method employing the PBE functional. For all investigated en-
ergetic, structural and vibrational properties we find excellent
agreement between the NN predictions and DFT data, which
have been obtained for comparison. There is no significant
difference in the accuracy for global and local minima as well
as for non-equilibrium structures along transition pathways or
structures extracted from REMD simulations. In all cases we
find very small energy errors of only a few meV per atom and
forces, which deviate from the corresponding DFT values typ-
ically by less than 50 meV/Bohr.

Although the construction of the NN potential requires a
substantial number of reference data from electronic structure
calculations to ensure that the right topology of the PES is
obtained, the evaluation of the final potential is many orders
of magnitude more efficient than DFT enabling significantly
faster simulations of a comparable quality.

One of the major aims of the present work has been to in-
vestigate if NN potentials are able to describe the properties of
protonated water clusters with the same accuracy that has been
achieved in previous work for neutral water clusters. Although
the structure of free protonated water clusters is very different
from the solvation pattern of hydronium ions in the bulk, still
the capability of the NN to capture the structural features of
protonated water clusters varying strongly with cluster size is
a stringent test for the general applicability of NN potentials.
Our findings, along with first preliminary but very encourag-
ing results for liquid water, demonstrate that NN potentials
are a very promising tool to construct highly accurate PESs for
bulk water, which necessarily has to provide a reliable descrip-
tion of the dissociation and recombination of water molecules
close to first-principles accuracy. Such work on a reactive
NN PES for liquid water employing our high-dimensional NN
method is currently in progress.®” As NNs have been shown
to provide reliable energy landscapes for other materials like
metals® and oxides,”? also an extension to the solid-liquid
interface is expected to be an interesting application of NN
PESs.
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Table 1 Root mean squared errors (RMSEs) of the energies
normalized per atom and of the forces for the full data set (“all”’) and
for each individual cluster size. The values refer to the training set,
while the numbers in parentheses correspond to the structures in the
independent test set not used for fitting the neural network

parameters.
data number RMSE energies RMSE forces
set of structures [ meV / atom ] [ meV / Bohr ]
All 29851 (3231) 0.97 (1.08) 40.11 (40.95)
H,0 796 (92) 0.31 (0.14) 2.32(2.26)
H,0" 1273 (143) 0.3 (0.28) 5.28 (4.99)
H, 03 1321 (145) 1.06 (1.09) 17.2 (16.41)
H,03 2408 (296) 0.73 (0.76) 24.77 (17.28)
H, 0% 3426 (373) 0.71 (0.80) 19.52 (19.37)
H,,0% 3196 (348) 0.69 (0.68) 23.33 (24.41)
H,,0¢ 4700 (509) 1.12 (1.28) 40.37 (40.01)
H,;07 5985 (639) 1.07 (1.10) 41.47 (39.81)
H,,0% 6746 (686) 1.17 (1.42) 49.43 (54.02)
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Table 2 Global minimum geometries and binding energies Eping of the protonated water clusters HsO3 to H,Of optimized with the neural
network (NN) potential and with density-functional theory (DFT). M is the number of water monomers in the cluster. Rf(OH) is the average
length of the free OH bonds not participating in hydrogen bonds, R;(OH) is the average length of the shorter OH distances in the hydrogen
bonds, R(0O) is the average distance between the oxygen atoms of neighboring molecules, and 5 (OH) denotes the average absolute
difference of both OH distances in a hydrogen bond. |DFT — NN| is the absolute deviation between the DFT and the NN values.

M cluster method Eyna Ry(OH) R(OH) R(0O) &(OH)
[meV/H,0] [A] [A] [A] [A]

2 DET 804 0976 1211 2417  0.000
NN 806 0976 1210 2415  0.000
IDFT — NN| 20000 0001 0002  0.000
>

3 DET 880 0972  1.064 2491  0.367
NN 881 0972  1.062 2491 0370
IDFT — NN| 1 0000 0002 0000 0003

[ *]
4 & DET 871 0971  1.030 2557  0.500
NN 870 0972  1.029 2556  0.501
¢ IDFT — NN| 10001 0001 0001 0001

?/“‘.\Q
5 o DET 821 0971 0997 2673  0.672
A, NN 822 0972 0996 2674 0675
“n‘;tx IDFT — NN| 1 0001 0001 0001 0003

[~

DFT -783  0.970 1.015 2.641 0.626

v
o fﬂv NN -784  0.970 1.018 2.645 0.625
; ‘%‘ |DFT — NN| 1 0.000 0.003 0.004 0.001
o
7 p
b [ Q DFT -755 0.970 1.003 2.719 0.765

| \# v NN 756 0972 1.002 2745  0.795
IDFT —NN| 10002 0001 0026 0.030
v
8 Wt

; é’ DFT 741 0969 0997  2.694  0.701
1 Y NN 741 0971 1.009  2.681  0.684
m IDFT — NN| 0 0002 0012 0013 0017

g :

o
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Fig. 1 Number of reference geometries utilized to generate the neural network (NN) potential for each cluster size as a function of the binding
energy is shown in (a). The NN potential has been constructed using the combined data for all cluster sizes. In (b) the root mean squared
errors (RMSEs) of the energies, which have been normalized per atom, are given for each group of structures. The most stable structures of
each cluster size have the lowest errors.
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Fig. 2 Analysis of the structural trends in the global minimum geometries of the protonated water clusters. In panel (a) all inter-atomic
distances of the protonated water clusters are shown. With the exception of the protonated water dimer, all structures have an Eigen-type
central hydronium ion, which can be confirmed from the 6 (OH) values representing the difference of the two OH bond lengths of the
hydrogen bond. R(OO) are the oxygen-oxygen distances between hydrogen-bonded molecules, and R;(OH) are the shorter oxygen-hydrogen
distances in hydrogen bonds. In panel (b) it is demonstrated that §(OH) decreases with growing R;(OH) as the excess proton moves towards
an equidistant position from both oxygen atoms for smaller clusters. Panel (c) shows how 6(OH) increases with R(OO) since the excess
proton localizes in the vicinity of one of the two nearest water molecules and forms an Eigen ion if the distance between the monomers
increases. Panel(d) shows how R;(OH) decreases with growing R(OO) indicating as well a more asymmetric hydrogen bond for extended
molecular separations. The line represents the OH bond length in a free neutral water molecule.
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Fig. 3 Binding energy per water monomer as a function of the cluster size is shown in (a) (cf. Table 2 ). The protonated water trimer is found
to have the highest energetic stability. The plot of the formation energy in (b) shows that the energy gain per additional water molecule in the
protonated water clusters decreases with system size. In the special case of the protonated dimer, the binding and the formation energy are
related by Eform [HS O;—} =2-Epind [HS 03_]
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Fig. 4 The neural network (NN)-predicted harmonic frequencies of the optimized structures of the protonated water clusters are in excellent
agreement with the density-functional theory (DFT) data for all clusters as can be seen in panel (a). An isolated neutral H,O molecule has
been used as reference and the shifts in the averaged stretch frequencies AV, (OH) and averaged free OH bond lengths R;(OH) for the
individual clusters are shown in panels (b) and (c), respectively. The experimental shifts of the vibrational frequencies have been taken from
Ref. 44 for the neutral water molecule and the hydronium ion and from Ref. 45 for the protonated dimer and larger clusters. Correlation
between the shift in the averaged stretch frequencies AV, (OH) and the average length of the free OH bonds not participating in hydrogen
bonds R;(OH) is seen in panel (d).

This journal is © The Royal Society of Chemistry [year] Journal Name, 2010, [vol], 1-26 | 15



Physical Chemistry Chemical Physics Page 18 of 28

S T.... *M

H,O0%-A H,0#-B H,0#-C e Hgoz-Aqj H,O0;-B L3

g % “"A“

H,Of-C HOD

OF-E

07-D H,

=

“_ -
v( H,;08-1 - H,;0%-J

Fig. 5 Local minima of protonated water clusters optimized employing the neural network (NN) potential. The geometries have been
confirmed by subsequent density-functional theory (DFT) calculations. In case of the larger clusters, from H,;Of onwards, a large number of
local minima exists and thus only selected structures are presented for these clusters.
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Fig. 6 Binding energies per water monomer for the local minima from the trimer to the octamer structures as shown in Fig. 5. Only in a few
cases there are differences in the energetic ordering between density-functional theory (DFT) and the neural network (NN) potential. The
relative stabilities of different isomers vary only by a few meV per molecule and the uncertainty of the NN predictions is in the order of the

RMSE of the NN potential.
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Fig. 7 One-dimensional potential-energy surfaces describing the
inversion of the H;O* ion obtained from density-functional theory
(DFT) and the neural network (NN) potential. The energy difference
AE refers to the energy of the optimized structure.
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Fig. 8 One-dimensional potential-energy surface describing the
detachment of a hydrogen atom/proton from the H;O" ion obtained
from density-functional theory (DFT) and the neural network (NN)
potential. The constrained OH distance is given by R(OH) and the
positions of all other H atoms have been relaxed for each structure.
The dotted line indicates the maximum OH bond length that has
been used to train the NN potential. Even for larger separations the
NN potential is still able to predict energies close to DFT and only
beyond 1.4 A the deviations become larger than the overall error of
the NN potential. The equilibrium OH bond length in the hydronium
ion corresponding to the minimum of the curve is 0.987 A.
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Fig. 9 One-dimensional binding energy curves for a proton transfer
within the protonated water dimer for different fixed oxygen-oxygen
distances Rop. The binding energies obtained with
density-functional theory (DFT) and the neural network (NN) are in
very close agreement in all investigated cases. While for a short
intermolecular distance there is only one minimum corresponding to
a Zundel ion, for larger separations of both water monomers there
are two equal minima with asymmetric OH distances.
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Fig. 10 Structures along the interconversion pathway between

minima A, B, and C of the protonated water trimer are shown in (a).

Binding energy along the interconversion pathway connecting these

three minima are given in (b).
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Fig. 11 Pathways connecting the minima A, B, C, and D as well as
the intermediate transition states of the protonated water tetramer
are shown in (a). The disconnectivity graph is shown in (b).
Disconnectivity graph of the potential-energy surface of the
protonated water tetramer showing basins I, II, and III. The minima
(A, B, C, and D) have been determined using the neural network
(NN) potential and density-functional theory (DFT)-based geometry
optimizations, and the DFT energies for the transition states (Tap,
Tgc Tpc) have been obtained by recalculating the NN-derived
transition state structures.
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Fig. 12 Comparison of the density-functional theory (DFT) and
neural network (NN) energies for a number of non-equilibrium
structures of the protonated water heptamer obtained in replica
exchange molecular dynamics simulations.
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Fig. 13 Oxygen-oxygen radial distribution function goo of liquid
water at 300 K from simulations with the neural network potential
(NN) compared to results from ab initio simulations (AIMD, Ref.
88).
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Fig. 14 Distribution function P of the proton transfer coordinate &
of an excess proton in liquid water at 300 K (a) and the
corresponding free-energy profile AF(§) (b) obtained from neural
network (NN) simulations based on the PBE functional. For
comparison data from ab initio simulations (AIMD, Ref. 89) using
the BLYP functional is shown. The red dahed line indicates the
thermal energy kpT at 300 K.
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