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 QSPR study for ILs using MLR and SVM algorithms based on COSMO-RS molecular descriptors (Sσ-profile)   
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Abstract: In this study, two novel QSPR models are developed to predict the viscosity of ionic 

liquids (ILs) using multiple linear regression (MLR) and support vector machine (SVM) 

algorithms based on Conductor-like Screening Model for Real Solvents (COSMO-RS) molecular 

descriptors (Sσ-profile). A total data set of 1502 experimental viscosity data points under a wide 

range of temperature and pressure for 89 ionic liquids (ILs), is employed to train and verify the 

models. The Average Absolute Relative Deviation (AARD) of total data set of the MLR and SVM 

is 10.68% and 6.58%, respectively. The results show that both the MLR and SVM models can 

predict the viscosity of ILs, and the performance of nonlinear model developed by the SVM is 

superior to the linear model (MLR). Furthermore, the derived models also can throw some light 

onto what structural characteristics are related to the viscosity of ILs. 

 

1. Introduction 

Ionic liquids (ILs) are a novel class of room temperature molten salts composed of only 

organic cations and inorganic or organic anions, and have attracted enormous interests as the hot 

and state-of-the-art topic in green chemistry1, 2. ILs have many unique properties, as diverse as 

thermal and electrochemical stability, negligible vapor pressure, non-inflammability, and tunable 

property. In this context, ILs are ubiquitously applied in various fields of modern chemistry 

including organic synthesis, catalytic, extraction separation, and electrochemistry, etc3. 

Viscosity is one of the most important properties of ILs, which has great influences on the 

transfer performance of the IL containing system. However, because the combination of cation and 
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anion can yield 1018 IL systems1, it is experimentally time consuming, expensive and impossible 

by measuring all possible ILs to screening optimum IL for special purpose. Furthermore, to the 

best of our knowledge, unlike other properties, such as density, the comparable theoretical basis 

for the estimation of liquid viscosity has not been elucidated yet4. Hence, developing a 

cost-effective, accurate and reliable method for predicting the viscosity of ILs is important and 

timely.  

Currently, many models5-17 have been developed to predict the viscosity of ILs, and some 

have been good reviewed by Coutinho et al18. Among these, Group Contribution (GC) and 

Quantitative Structure-Property Relationship (QSPR) methods are most commonly applied. GC is 

a very important method to be utilized to predict a variety of physical and thermodynamic 

properties. The main advantage of GC is its simplicity and capability to give a reasonable 

accuracy if all the necessary group increments are obtained from the experimental data6. In 

previous study, Gardas and Coutinho16 proposed a GC method to predict the viscosity of ILs based 

on the Orrick-Erbar-type equation. The proposed model can be used to predict the viscosity of 

new ILs in wide ranges of temperature and can be extended to a larger range of ILs. However, the 

model has a drawback that it needs knowledge of density of ILs. Therefore, they proposed a new 

GC method using the Vogel-Tammann-Fulcher (VTF) equation to solve this problem13. The later 

proposed model presented an average deviation of 7.5%, and could easily be extended to other 

ILs. Recently, Paduszyński et al5 proposed a new GC model based on feed-forward artificial 

neural network (FFANN). The overall relative deviation of the whole data set is 11.4%. Although 

a large set of 1484 ILs covered a wide temperature (253-573 K) and pressure (0.06-350 Mpa) 

ranges were studied, the FFANN model requires as many as 242 descriptors.   

QSPR is an effective method to connect physical or chemical properties to a set of molecular 

descriptors, which is not only capable of estimating and screening the compound with the desired 

property, but also is capable of uncovering the underlying relationship between micro-structure 

and macro-property19, 20. QSPR has been profusely employed to investigate the properties of ILs, 

e.g., melting point21-25, density26, 27, refractive indices28, gas solubilities in ILs29, surface tension26, 

30, and toxicity31, 32, etc. In order to progress in predicting the viscosity of ILs, Tochigi et al33 

proposed a QSPR model to predict IL viscosity, but the correlation coefficient R2 of the data set 

was below 0.9, and the deviation between experimental values and calculated values is too large 
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for some systems. In Han’s study34, the CODESSA software was used to build four QSPR models, 

but the established models have some disadvantages. Firstly, only a small amount of data of 

imidazolium-based ILs was used to build the model. Secondly, the established models can only be 

adopted to predict the viscosity at 298.15K. Mirkhani et al35 presented a GFA-based QSPR model 

for predicting the viscosity of ILs. A large set of 435 data points of 293 ILs based on imidazolium, 

pyridinium, piperidinium, pyrrolidinium, pyrroline, oxazolidinium, ammonium, phosphonium, 

sulfonium, guanidinium, amino acids, morpholinium, isoquinolinium were studied. The involved 

data covered a wide viscosity range (5.7-2824 cP) and temperature range (253-273 K), but the 

correlation coefficient R2 is relatively low as 0.8096, and the absolute average deviations (AAD) is 

8.77%. Recently, Chen et al20 applied CODESSA software to develop eight QSPR models under 

different temperatures (283, 293 298, 303, 313, 323, 333, 343 K). All the correlation coefficients 

(R2) of the eight models are above 0.82. However, these models can only be suitable to ILs whose 

anions are [Tf2N]-, and thus its application is limited. 

Klamt and co-workers36-39 put forward the Conductor-like Screening Model for Real Solvents 

(COSMO-RS) approach and developed the COSMOtherm software. In the COSMOtherm, the 

viscosity is predicted using QSPR model which employs the computed sigma-moments and other 

parameters as independent variables. Torrecilla et al40 pioneered in the use of COSMO-RS for 

predicting the viscosity of ILs, but the results are unsatisfactory, one possible reason is that the 

coefficients of the QSPR model are derived from a set of 175 room temperature viscosities of 

organic liquids instead of ionic liquids. Moreover, the QSPR model can only predict the viscosity 

under specific temperature due to it does not include a temperature dependency term. All 

afore-mentioned QSPR investigations are performed only at atmospheric pressure so far. Although 

the viscosity of ILs at low pressure is influenced mainly by temperature, the influence of pressure 

at higher ranges becomes crucial for particular purposes41. Thus, it is very significant to develop 

and create new models to investigate the viscosity of different ILs at wider temperature and 

pressure ranges. 

Distribution area of σ-profile (Sσ-profile) is an a priori quantum-chemical descriptor that 

quantitatively represents the molecule’s polar surface screen charge on the polarity scale, and can 

be achieved from the histogram function σ-profile given by COSMO-RS computation. It has been 

used effectively as a parameter in QSPR/QSAR models to predict the density42 and toxicity32 of 
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ILs, and the advantages have been proved. Therefore, in this work, Sσ-profile is utilized as a 

parameter to predict the viscosity of ILs.  

QSPR can be implemented in two ways: linear and non-linear algorithms. The linear 

approach is very easy and can intuitively show the impact of each parameter on properties due to 

the equation parameters have clear meanings. However, it is incapable of processing complex 

problems. Considering many real-world scenarios cannot be simplified to linear problems, 

non-linear algorithms are more suitable for accurate prediction. SVM is an increasingly popular 

non-linear algorithm in various fields of chemistry which can effectively avoid the over-fitting 

problem of artificial neural networks (ANN), and thus is widely used in QSPR due to its excellent 

generalization performance43. 

In this work, firstly, a large amount of viscosity data was collected from literature under a 

wide range of temperature and pressure. Secondly, the multiple linear regression (MLR) and SVM 

algorithms are utilized to construct the linear and nonlinear QSPR models for predicting the 

viscosity of ILs based on the Sσ-profile descriptors. The characteristic parameters that have great 

impact on the viscosity of ILs were screened, and the performances of the obtained models were 

investigated and verified. 

2. Data and methods 

 

2.1. Viscosity data points and Sσ-profile of ILs  

In the present work, all the experimental data points are collected from IL Thermo Database44. 

A total of 1502 experimental viscosity data points of 89 ILs mainly based on alkyl-substituted 

cations, including imidazolium [Im]+, piperidinium [Pip]+, pyrrolidinium [Pyr]+, pyridinium [Py]+, 

morpholinium [Mor]+, ammonium [N]+, phosphonium [P]+, Sulfonium [S]+, and different anions, 

such as hexafluorophosphate [PF6]
-, tetrafluoroborate [BF4]

-, nitrate [NO3]
-, acetate [Ac]-, 

ethylsulfate [EtSO4]
-, pentafluoroethyltrifluoroborate [C2F5BF3]

-, n-butylsulfate [C4SO4]
-, 

dicyanamide [DCA]-, bis(trifluoromethylsulfonyl)imide [BTI]-, trifluoromethyltrifluoroborate 

[CF3BF3]
-, octylsulfate [C8SO4]

-, bis(pentafluoroethylsulfonyl)imide [BETI]-, thiocyanate [SCN]-, 

trifluoromethylsulfonate [TfO]-, methylsulfate [MeSO4]
-, trifluoroacetate [TfA]-, halide [X]-, are 

investigated. The collected viscosity data points (8.28-142000 cP) cover a wide range of pressure 

(1-3000 bar) and temperature (253.15-395.32 K) (see Table 1). To develop a reliable model, all the 
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selected experimental data points are divided into a training set of 1205 data points to develop the 

models and a test set of the remained 297 data points to verify its prediction performance. Each 

category (nearly 80% of the data as training set, 20% as test set) of the total data points is 

separated at random. The detailed information of ILs investigated in this work are listed in 

Supporting Information. 

COSMO-RS is a new method for quantitative calculation of solvation phenomenonon on the 

basis of continuous medium solvation theory in combination with statistical mechanics mehtod. 

Sσ-profile represents molecule area of surface screening charge density, which is an a priori 

two-dimensional quantum-chemical parameter to characterize electronic stucture and molecular 

size of ILs. The detailed introduction of the Sσ-profile can be found in literature32. All the Sσ-profile of 

ILs in this study are taken from the COSMO IL database, which were calculated in terms of the 

BP-TZVP quantum chemical level38. 

Table 1 Temperature, pressure, viscosity range, and data points for different ILs 

No. Class Temperature (K) Pressure (KPa) Viscosity (cP) Data points 

1 Imidazolium 258.15-395.32 100-300000 7.83-142000 1380 

2 Pyridinium 283-353.15 101.325 10-464.49 62 

3 Pyrrolidinium 283.1-353.1 101.325 13.1-167.8 20 

4 Phosphonium 293.15-303.15 101.325 268.63-2077.91 8 

5 Ammonium 283.1-353.1 101.325 14.1-1017 17 

6 Morpholinium 298.15 101.325 466-1035 2 

7 Piperidinium 298.15 101.325 102-456 5 

8 Sulfonium 253.15-313.15 101.325 12.1-120 15 

*All the literature sources of data points can be found from Supporting Information 

2.2. Multiple linear regression (MLR) algorithm 

MLR45 is a commonly used algorithm within QSPR to quantify the relationship between 

several independent x and a dependent variable y. The following information can be achieved from 

the general MLR form given in equation (1): which independent has great impact on dependent 

variable; direction of impact for each independent; the model can be used to anticipate the value of 

dependent variable y when the value of current independent variable is given. 

1 1 2 2 n n 0ln( ) ...= + + + +y b x b x b x b  (1)
 

where b1 to bn are the regression coefficients of the descriptors and b0 is the intercept. The 
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parameters (x1 to xn) comprised in the equation (1) are employed to explain the chemical structure 

of compounds, and n is the number of the parameters to seek the best model. 

2.3. Support Vector Machine (SVM) algorithm 

SVM was originally proposed by Cortes and Vapnik et al46, which is a relative new and very 

promising classification and regression algorithm based on the statistical learning theory and 

structural risk minimization principle. In the SVM, the input data is first mapped to 

high-dimensional feature space through kernel function, and then the linear regression will happen 

in the feature space47. The nonlinear feature mapping allows the treatment of nonlinear problem in 

a linear space. More detailed introduction of the SVM theoretical basis can be referred in some 

excellent books and tutorials48, 49.  

2.4. Evaluation of the model performance 

   Model performance can be measured by different metrics. R
2, which gives the fraction of 

explained variance for a data set, is utilized to evaluate the model’s fit performance. Average 

absolute relative deviation (AARD) and mean squared error (MSE) are applied to measure the 

model’s predictive effectiveness, as shown by the following equations: 

p

p

1

AARD (%) = 100 /
=

−
×∑

N

i

N
y y

y

expcal

exp

i i

i  

   (2) 

expcal
p 2

i

p

i=1
( - )

MSE =
∑

N

i
y y

N
 

(3) 

Where exp

iy is the experimental property, cal

iy is the actual prediction of the models, and NP is the 

number of compounds of the data set. 

3. Results and discussion 

3.1. Results of MLR model 

Based on the collected ILs viscosity data points, the MLR equation (4) is established by using 

stepwise regression algorithm: 
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6
10 A0.004 A0.02 C0.003

A0.012 A 0.022

Log ( / cp) 0.017 0.047 0.072 3.82 10 0.036

0.016 43.091 7.425

−

−

= − − + + × +

− + +

η T S S P S

S S          

(4)

 

(n=1205, R2=0.803, S=0.2616, F=699.199) 

where η stands for the viscosity of ILs, S represents distribution area with a specific surface 

screening charge density, subscript A is anion, C is cation, and the numerical value after A or C 

represents surface screening charge density of ILs. T and P are the temperature and pressure 

respectively. As shown in Table 2, all of the linear correlation coefficient of any two parameters is 

less than 0.8, which suggests that there is no strong linear relation between the descriptors50. It is 

observed that all the descriptors contained in the MLR model have physical meaning, and these 

parameters can account for structural features affecting the viscosity of the ILs studied.  

Table 2 Correlation matrix of seven descriptors 

 T SA0.004 SA0.02 P SC0.003 SA0.012 SA-0.022 

T 1       

SA0.004 0.098 1      

SA0.02 0.069 0.086 1     

P 0.137 0.086 0.082 1    

SC0.003 0.004 0.101 0.079 0.077 1   

SA0.012 0.094 0.077 0.236 0.115 0.089 1  

SA-0.022 0.079 0.053 0.025 0.036 0.124 0.048 1 

In equation (4), positive sign in front of a parameter means positive correlation between the 

parameter and ILs viscosity, and negative sign stands for negative correlation. The structure 

descriptors in equation (4) have been arranged in the descending order of t-test values so that the 

most improtant one comes firsy. Thus, T is the most improtant descriptor, which is agreement with 

reference51 that ILs’s viscosities are very sensitive to temperature. The negative sign before T 

reveals that the temperature contributes negatively to the viscosity of ILs. The second descriptor is 

SA0.004 in the non polar range (-0.0082 < σ < 0.0082 e Å-2) having a negative sign, and thus 

indicates that the values of viscosity decrease as SA0.004 increase. This might be used to explain 

some experimental phenomena for e.g., as shown in Figure 1. When ILs have the same cation 

[Bmim]+, the volume trend of these anions is as [BF4]
- < [CF3BF3]

- < [C2F5BF3]
-, and the viscosity 

of these ILs shows as follows: [BF4]
- > [CF3BF3]

- > [C2F5BF3]
-, which is consistent with the order 

of SA0.004 of these anions. The reason may be that with the decrease of the volume of anion, the 
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negative charge of anion cannot be effectively distributed, so that the coulomb force increasing, 

which causes the increase of the viscosity. The next descriptor is SA0.02 which is the surface of the 

0.02 molecule surface screening charge density of anion. The charge density value (0.02) of anion 

is higher than the cutoff 0.0082, which implys these anionic fragments may contribute to hydrogen 

bonds as acceptors. Thus the descriptor SA0.02 manifests the ablity of accepting hydrogen bonds of 

anion which has a positive influence on the viscosity of ILs. The fourth descriptor is P, the 

positive sign of this descriptor discloses that the pressure contributes positively to viscosity. The 

fifth descriptor is SC0.003, and the charge density 0.003 of cation located at non polar range too, 

thus the surface of non polar charge density of cation has a positive impact of viscosty of ILs. 

Finally, the last two descriptors, SA0.012 and SA-0.022, are both at polar range, and thus indicates the 

surface of polar charge density of anion has also certain influence on viscosity of ILs.  

-0.020 -0.015 -0.010 -0.005 0.000 0.005 0.010 0.015

0

5

10

15

20

25

30

p
x
(σ
)
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2
]

 BF4

 C2F5BF3

 CF3BF3

 
Fig. 1. Surface polarization charge density and σ-profile of representative anions of [Bmim] ionic liquids 

From the foregoing, some results are obtained: (1) the interionic electrostatic interaction 

plays a more important role on the viscosity of ILs than hydrogen bonding interaction, and similar 

result was obtained by literature34. (2) the surface of non polar charge density of ILs is more 

critical than the surface of polar charge density.  
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 Fig. 2. Calculated versus experimental viscosities using the MLR algorithm for all ionic liquids 

Equation (4) with R2=0.803, MSE=0.171 which is established by 1250 data points could be 

useful for predicting the viscosity of ILs, but the deviation is still higher. As shown in Figure 2, 

most of the data points of viscosity are close to the diagonal line, and it can be observed from 

Figure 3 that relative deviation of most substances are within 20%, but quite a number of data 

points are greater than 20%, and some even reach to 68%. This demonstrates that viscosity 

pridciton of ILs is not a simple linear problem, and QSPR model established by the MLR linear 

algorithm has certain limitation. Thus, a nonlinear algorithm is required to establish model to 

predict viscosity of ILs more accurately. 
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Fig. 3. Relative deviation of calculated using the MLR algorithm versus experimental viscosity values 

3.2. Results of SVM model and comparison 

The same descriptors applied by the MLR algorithm were utilized as the input parameters to 
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establish an accurate nonlinear model by the SVM. The performance of the SVM depends on the 

combination of C, ε, and the corresponding parameter r of the kernel function. Gaussian radial 

basis function (RBF) is commonly applied in many works due to its good generalization ability. In 

this study, the RBF was applied too. The optimization of SVM parameters was carried out by 

systemically varying the value and calculating the MSE of the training set. The lowest MSE is 

selected as the best condition. When C=80, ε=0.0213, r=5.25 with 176 support vectors, the best 

model was obtained. The predicted viscosities, experimental values, and absolute relative 

deviations are shown in Supporting Information. The plot of predicted in comparison with 

experimental viscosity logarithm values for each data set is recorded in Fig. 4. The statistical 

parameter R2 for the training, test and whole sets are 0.948, 0.930 and 0.944 respectively. Relative 

deviations of the predicted viscosity values vs. experimental data are depicted in Fig. 5. After 

taking into account the experimental uncertainties of viscosity data points published in the paper, 

such errors are acceptable. 
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Fig. 4. Calculated versus experimental viscosities using the SVM algorithm for all ionic liquids 
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Fig. 5. Relative deviation of calculated using the SVM algorithm versus experimental viscosity values  

The relative deviation distribution for all the data set is shown in Fig. 6. It is seen that most of 

the associated prediction error (77.3%) of the entire data set lies in the range of 0-10%. The 

maximum calculated absolute deviation from experimental values is 28.2% for [C2mim][C4SO4], 

which may occur randomly, probably by the source of error for the impurity effect on the viscosity 

of ILs. The presence of chloride contamination, for example, increasing Cl- concentration from 

0.01 to 0.5 m in [C4mim][BF4] will increase the viscosity from 154 to 201 cP52.  

A summary of the performance of the MLR and SVM models for all the data set is given in 

Table 3. In general, according to R
2, MSE and AARD, the nonlinear model by SVM performs 

better (higher R2 and lower error) than the linear model by the MLR, which indicates the proposed 

SVM model has better predictive power and general performance. This means that the relationship 

between viscosity and the Sσ-profile descriptors are not just linear, and nonlinear modeling is more 

rational. Table 4 compares different models for correlation and prediction of the viscosity of ILs. It 

can be seen that the QSPR and GC are the most frequently employed. Although the models in the 

Ref. [6] and [53] present lower overall deviations than the models in this work, their models 

require more parameters, which will increase the complexity of the models. In addition, most of 

the reported models can only be used at atmospheric pressure. Therefore, the model presented here 

is suitable to wider application range. 

Page 12 of 16Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



12 
 

0.8%
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35.2%

42.1%

 42.1% within 0-5%

 35.2% within 5-10%

 3.2% within 15-20%

 18.7% within 10-15%

 0.8% within 20-29%

 

Fig. 6. Percent of value in different deviation range of the SVM model  

42.1% of the viscosities are estimated within 0-5% (relative deviation range %); 35.2% within 5-10%, 18.7% 

within 10-15%, 3.2% within 15-20%, 0.6% within 20-25%, and 0.2% within 25-29%. 

Table 3. Comparison of the statistical parameters by the MLR and SVM algorithms 

Algorithms Data set No. R
2 MSE %AARD 

 

MLR 

Training 1205 0.803 0.171 10.70 

Test 297 0.800 0.187  10.61 

Total 1502 0.803 0.171 10.68 

 

SVM  

Training 1205 0.948 0.021  6.58 

Test 297 0.930 0.025  6.75 

Total 1502 0.944 0.022 6.58 

 

Table 4. The comparison of different models for viscosities of ILs 

Method Np NIL Trange/K Pressure/MPa % AARD Reference 

GC 13 29 293–393 0.1 7.7 16 

GC 12 25 293–393 0.1 7.7 13 

GC 18 146*a 293–363 0.1 4.17 53 

Correlation  72 253-373 0.1  54 

QSPR+GC 27 300*a 263–353 0.1  17 

QSPR 24 125 298 0.1 a little poor 55 

QSPR 7 293 253-373 0.1 8.77 35 

GC 242 1484 253-573 0.06-350 11.4 5 

QSPR+GC 17 26 258.15-433.15 0.101 2.45 6 

QSPR(SVM) 7 89 253.15-395.32 0.1-300 6.58 This work 

NP is the number of parameters, NIL is the number of ILs, and *a is the data points  

4. Conclusions 

In this work, two novel QSPR models are established to predict the viscosity based on the 

Sσ-profile descriptor and 1502 experimental data points of 89 ILs. The results show that both the 
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linear (MLR) and nonlinear (SVM) models can provide acceptable results. The SVM model 

predicts the viscosity of ILs more effectively than the MLR model over a wide range of 

temperature (253.15-395.32 K), and pressure (1-3000 bar). These results provide important 

information for the synthesis and screening of ILs of suitable viscosity. Moreover, since the 

viscosity is the function of Sσ-profile of ILs, the presented derived models can provide some insight 

into what structural features are connected with the viscosity of ILs.  
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