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Fronts and patterns in a spatially forced CDIMA reaction
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DOI: 10.1039/b000000x

We use the CDIMA chemical reaction and the Lengyel-Epstein model of this reaction to study resonant responses of a pattern-
forming system to time-independent spatial periodic forcing. We focus on the 2:1 resonance, where the wavenumber of a
one-dimensional periodic forcing is about twice the wavenumber of the natural stripe pattern that the unforced system tends
to form. Within this resonance, we study transverse fronts that shift the phase of resonant stripe patterns by #. We identify
phase fronts that shift the phase discontinuously, and pairs of phase fronts that shift the phase continuously, clockwise and anti-
clockwise. We further identify a front bifurcation that destabilizes the discontinuous front and leads to a pair of continuous fronts.
This bifurcation is the spatial counterpart of the nonequilibrium Ising-Bloch (NIB) bifurcation in temporally forced oscillatory
systems. The spatial NIB bifurcation that we find occurs as the forcing strength is increased, unlike earlier studies of the NIB
bifurcation. Furthermore, the bifurcation is subcritical, implying a range of forcing strength where both discontinuous Ising
fronts and continuous Bloch fronts are stable. Finally, we find that both Ising fronts and Bloch fronts can form discrete families

of bound pairs, and we relate arrays of these front pairs to extended rectangular and oblique patterns.

1 Introduction

A canonical experimental model for studying stationary pat-
terns far from equilibrium is the chlorite—iodide—malonic acid
(CIMA) reaction !. This model reaction was used to verify, for
the first time, the prediction of Alan Turing? of a diffusion-
induced pattern-forming instability®, and it has served as a
major experimental tool for studying pattern-formation phe-
nomena in reaction-diffusion systems ever since*. A modified
version of that reaction, the chlorine dioxide—iodine—malonic
acid (CDIMA) reaction”, has been used to study pattern-
formation effects induced by periodic forcing. The CDIMA
reaction is photosensitive and can be forced in time or in space
by periodic illumination with white light. Periodic forcing of
this kind has been studied as a means of controlling patterns.
Periodic forcing can be used to lock and control the frequency
of periodic oscillations®® or the wavenumber of a periodic
pattern %14, to stabilize and enhance patterns ', or to induce
new controllable patterns &10-1115-19

There are two main mechanisms by which periodic forcing
can induce new patterns. The first is a new pattern-forming in-
stability of the original uniform state. In the case of temporal
forcing of an oscillatory system the forcing can induce a finite-
wavenumber Turing-like instability®!”. In the case of spatial
forcing of a pattern-forming system the forcing can induce
rectangular and oblique patterns'®. The second mechanism
is multiplicity of stable phase states. The unforced system has
a continuous translational symmetry, in time for an oscillatory
system and in space for a pattern-forming system, which re-
sults in a continuous family of periodic solutions (phase states)
whose phases span the whole circle. The forcing breaks this

continuous symmetry, leaving a discrete set of stable phase
states. Multistability of this kind allows for patterns compris-
ing alternating domains of different phase states *-16-20-21

We restrict our attention here to pattern formation phenom-
ena associated with bistability of two phase states in spatially
forced pattern-forming systems. The two phase states describe
periodic stripe patterns with a phase shift of 7 with respect to
one another. Bistability of this kind can be achieved when
the wavenumber of a one-dimensional (1d) periodic forcing
is about twice the wavenumber of the natural stripe pattern
that the unforced system tends to form. A characteristic fea-
ture of bistable systems in general is the possible existence
of stable front structures that are biasymptotic to the two sta-
ble states. In the present context, the fronts form localized
transition zones that shift the pattern phase by 7. Because of
the anisotropy of stripe patterns, there are two types of such
fronts: longitudinal fronts that are parallel to the stripes, and
transverse fronts that are perpendicular to the stripes. Studies
of a simple pattern formation model - the Swift-Hohenberg
equation - have uncovered two forms of each front type; a
front that shifts the phase discontinuously and a front that
shifts the phase gradually and smoothly??. These studies have
also identified longitudinal and transverse front bifurcations,
as the forcing strength is decreased, which destabilize fronts
that shift the phase discontinuously and give rise to pairs of
fronts that shift the phase continuously, either clockwise or
anticlockwise. These front bifurcations are the spatial coun-
terparts of the so-called nonequilibrium Ising-Bloch (NIB) bi-
furcation in temporally forced oscillatory systems?320. We
refer to fronts that shift the phase discontinuously and contin-
uously as Ising and Bloch fronts, respectively.
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In this paper we study the spatial NIB bifurcation for trans-
verse fronts in a spatially forced CDIMA reaction and in the
Lengyel-Epstein (LE) model that describes this reaction?’.
We further use the LE model to study numerically the inter-
actions between pairs of Ising and Bloch fronts and relate the
results of this study to the existence of rectangular and oblique
patterns.

2 Experimental setup for the spatially forced
CDIMA reaction

The patterns were studied in a continuously-fed, unstirred,
one-sided reactor (CFUR). The reactor consisted of a 0.3 mm
thick 2% agarose (Fluka) gel layer with diameter of work-
ing area 25mm placed between a glass window and a
continuously-fed stirred tank reactor (CSTR), which served
as a feeding chamber. Between the CFUR and the CSTR
were two membranes: a cellulose nitrate membrane (What-
man, pore size 0.45um, thickness 0.12mm) beneath the gel
for enhanced contrast, and, to provide rigidity to the gel and
to separate it from the stirred feeding chamber, an anopore
membrane (Whatman, pore size 0.2 um, impregnated with 4%
agarose gel, overall thickness 0.10pum) placed underneath the
cellulose nitrate membrane. The CSTR was fed with three
reagent solutions: i) I, (Aldrich), ii) a mixture of malonic acid
(MA, Aldrich) and poly-(vinyl alcohol) (PVA, Aldrich, aver-
age molecular weight 9000-10000); and iii) CIO, prepared as
described in?®. The PVA is a binding agent for triiodide ions
and acts as a color indicator.

The initial concentrations of reagents fed into the CSTR
were the same in all experiments: [I,] = 0.4mM, [MA] =
2.1mM, [ClO,] = 0.14mM, and [PVA] = 10gL~!. Each of
the input solutions contained 10mM sulfuric acid (Fisher).
The residence time of the reagents in the CSTR was 160s.
The temperature was 4.0+0.2°C With these conditions, a
labyrinthine pattern develops spontaneously. A computer-
controlled DLP projector (Dell 1510X) was used to implement
the uniform and spatially periodic white light illumination of
the CFUR. The light intensity was measured with a Newport
1815 optical power meter. A CCD Pixelink camera was used
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to record images of the patterns. Snapshots were taken in am-
bient light of 0.6mW cm™~2 with no illumination projected on
the CFUR.

3 Mathematical model of the spatially forced
CDIMA reaction

We studied the modified Lengyel-Epstein (LE) model?® that
takes the effect of illumination into account:

duy
14 u?

uy 2

Here u and v are dimensionless concentrations of iodide and
chlorite ions, respectively; a,b,d, o are dimensionless param-
eters, and w(x) denotes the rate of the photochemical reaction.
In the present study, w is a one-dimensional periodic func-
tion of the spatial x-coordinate and is independent of the y-
coordinate.

In the experiments described in Section 2, we used a spatial
square-wave forcing. This forcing form can be captured in the
model by the function

W=a—u—

—w(x) 4 Vu,
ey

w(x) = wo+ 2 (1-+sign [cos(krx)])

where kj is the forcing wavevector, Y is the forcing strength
and wy represents the ambient light. This form can be ex-
panded as a Fourier cosine series,

b

w(x) =wo+ 2

+ Z Yacos(nkyx),
n=1

where
2y . (nm
y,,—m_[sm( 2 ) '
In the following, we will approximate w by considering only
the first and largest term in the expansion, n = 1):

R A 4
w(x) =wo+ 5 + p- cos(kyx).

2
We have checked that taking instead the full expansion, or the
square wave form, does not have any qualitative effect on the
results, and the quantitative effect is insignificant.

The LE model (1) with no forcing (Y = 0) has the stationary
uniform solution

a Wi
Uy = - —wo, V():(l—‘ru%) (Lt(())+1) .

5 3)

This solution goes through a Turing bifurcation to station-
ary periodic patterns as b is decreased below a critical value

updk3

br = —— 1T
TTS50+8)”

“4)

2| Journal Name, 2010, [vol]1-8

This journal is © The Royal Society of Chemistry [year]

Page 2 of 9



Page 3 of 9

Physical Chemistry Chemical Physics

where

(u(z) — 1) Vo
(G+1)’

and k7 is the Turing wavenumber. The stationary uniform
solution also goes through a Hopf bifurcation to uniform
oscillations as b is decreased below another critical value
by = k7 (k3 +10) (1 +u}) /50up. In all studies that follow,
we chose values of a,0,d so that by < by. This guaran-
tees that the Turing instability is the first to be encountered
as b is decreased. We focus on the 2:1 resonance, for which
ky ~ 2kr. Since the experiments are limited to ky < 2k7, we
restrict ourselves to this range also in the model studies. The
range ky > 2k is interesting because rectangular and oblique
patterns are ruled out'®. This case will be considered in a fu-
ture study.

I3 =-5+2V5 +1

; &)

4 Bistability of fronts in the CDIMA reaction

4.1 Data analysis

Ising and Bloch fronts are localized structures that separate
one resonant stripe pattern from a symmetric stripe pattern
whose phase is shifted by 7. Assuming a forcing wavevec-
tor ky = kX, where ky is sufficiently close to 2kz, the com-
mon wavevector K = kX of the two symmetric stripe pat-
terns is locked to the forcing wavevector in a 2:1 resonance,
(kf:k)=(2:1). This resonant response occurs in a ks range
whose size depends on the forcing strength. A stripe pattern
that contains an Ising or Bloch front can be approximated as

u(x,y) =~ ug+A(x,y)e +cc+ ..., (6)

where c.c. is the complex conjugate, the ellipses denote higher
order harmonic contributions, and u(x,y) represents the ex-
perimental data, or the numerically computed u field in the
LE model (a similar expression holds for the v field in the
LE model with the amplitude factor A replaced by cA, where
c is a constant). Longitudinal fronts are captured by ampli-
tudes A(x) that are independent of y, while transverse fronts
are captured by amplitudes A(y) that are independent of x. We
note that, since the system sizes (both in the experiment and
model) are much larger than both the pattern wavelengths and
the front widths, any boundary effects are negligible.
Transverse Ising fronts can be distinguished from transverse
Bloch fronts by plotting phase trajectories in the complex-A
plane that are parameterized by y*1623. Trajectories that go
through the origin (A = 0) describe Ising fronts*, whereas tra-
jectories that bypass the origin describe Bloch fronts. To ob-
tain the complex valued amplitude A, we project u(x,y) onto

* Since Ising fronts involve a discontinuous phase jump, the modulus |A| must
vanish to avoid a singularity in A.

exp (ikpx/2):

1 L "
Aly) = I /0 u(x,y)e”"fx/zdx, (7)

where L is the system size, chosen to be an integer multiple of
the pattern’s wavelength.

4.2 Experimental results

We studied transverse Ising and Bloch fronts, varying the forc-
ing strength, starting both from Ising-front and Bloch-front
initial conditions. Initial conditions in the experiments were
prepared as follows. After a labyrinthine pattern of the un-
forced reaction becomes stationary, the system is brought to
a spatially uniform steady state using homogeneous illumina-
tion for 2min with intensity 100mW cm~2. Then a mask is
placed between the source light and the reactor, and the im-
age of the mask is focused on the surface of the gel. The il-
lumination through the mask is applied for 60 min, and the
maximum light intensity that reaches the gel is chosen to be
6.0mW cm 2. The mask consists of two patterns with a phase
shift of 7, as Fig. 1 shows. Both patterns have wavenum-
bers ky equal to the intrinsic (natural) wavenumber k7 of the
labyrinthine Turing patterns that form in the absence of illu-
mination. Two types of this mask are used, one that mimics an
Ising front (left panel in Fig. 1) and one that mimics a Bloch
front (right panel in Fig. 1). These mask types create initial
conditions that result in transverse Ising and Bloch fronts, re-
spectively, when the 2:1 forcing is applied. The 2:1 forcing is
achieved by illuminating the gel for 60 min through a second
mask (not shown) with wavenumber twice as large, ky = 2k,
and aligned with the patterns from the first mask. The forc-
ing strength is varied by changing the maximum intensity of
transmitted light.

10 10p
8 8
£ 6 56
= =
— 4 !
S S
2 2
0O 2 4 6 8 10 0O 2 4 6 8 10
x (1/kr) x (1/kr)

Fig. 1 Masks used to create transverse Ising (left) and Bloch (right)
fronts. The mask shown is 10 wavelengths with wavelength
A =0.37mm.

Figures 2 and 3 show examples of transverse Ising and
Bloch fronts observed in the CDIMA reaction after the sec-
ond mask has been used. While in Fig. 3 |A| is bounded away
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from zero, indicating a Bloch front, in Fig. 2 it approaches
zero at a point (within the limited experimental resolution),
indicating an Ising front. The smooth phase change across the
Bloch fronts vs. the phase jump across the Ising front (which
necessitates a zero of the amplitude) is also seen in the patterns
themselves.

4 ) S

:\3jﬂm ~ 27 ‘ iz\m
Zof T W Gl o —L—
: : NS | —

=1 T2t 13 ol ]

Al =
0 A —4L L L L d S g L L L
0 1 2 3 —-4-20 2 4 0 1 2 3
X (mm) Re(A) y (mm)

Fig. 2 An observed transverse Ising front in the CDIMA reaction
with forcing intensity / = 28 mW cm 2. The phase trajectory in the
complex amplitude plane goes through the origin (middle panel) and
the modulus of the amplitude vanishes there (right panel). The front
shifts the pattern’s phase discontinuously by 7 (right panel)

|A|

(LI}

>1

ar;

220 2 4 o 1 2 3
Re(A) y (mm)

*“oo
g(A)
30 N0 A

Fig. 3 An observed transverse Bloch front in the CDIMA reaction
with forcing intensity / = 28 mW cm 2. The phase trajectory in the
complex amplitude plane bypasses the origin (middle panel) and the
modulus of the amplitude is bounded away from zero (right panel).
The front shifts the pattern’s phase continuously by 7 (right panel).

Varying the forcing strength up and down, starting both with
Ising and Bloch fronts as initial conditions, we found that both
fronts are stable in the experimentally realizable forcing range,
as Fig. 4 shows. The bistability of Ising and Bloch fronts al-
lows for mixed-front patterns in which the transverse front that
separates the 7-shifted patterns consists of both Ising parts and
Bloch parts.

5 A subcritical front bifurcation in the LE
model

We also found transverse Ising and Bloch fronts in numeri-
cal studies of the LE model (Equations (1) and (2)), in a pa-
rameter range that corresponds to the reaction conditions, as
Figs. 5 and 6 show. By scanning a wide enough range of forc-
ing strengths, we were able to observe a NIB bifurcation. As
Fig. 8 shows, the bifurcation is subcritical, implying a bistabil-
ity range of Ising and Bloch fronts, as found in the experiment.

min |A|

0.0

20 25 30 35 20
I(mW cm—2)

Fig. 4 Bistability of Ising and Bloch fronts in the CDIMA reaction.
The blue (upper) dots represent Bloch fronts while the black (lower)
points represent Ising fronts.

Note that Ising fronts destabilize to Bloch fronts as the forcing
strength is increased, unlike earlier studies of the NIB bifur-
cation, where Bloch fronts appear as the forcing strength is
decreased!’.

0.5 : 04—
40 ~ = 02—\

= 0.0 ——1

. — OO - o sentee E

20 £ < T =
7% ]

0 . B —

o 20 40 "2%35 00 05 0 20 40
X Re(A) y

Fig. 5 A transverse Ising front in the v field of the LE model. The
phase trajectory in the complex amplitude plane goes through the
origin (middle panel), and the modulus of the amplitude vanishes
there (right panel). Parameters: a =12, d =1, 0 =50, wy =0,
Y=0.6, ky = 1.8kr, and b = 0.38.

The reverse nature of the spatial NIB bifurcation in the LE
model can be understood, at least partly, by deriving an ampli-
tude equation for stripe patterns in the LE model (assuming an
infinite system). Approximating a solution of the LE model as
in (6), the amplitude A satisfies the equation

2
A

2

@ iv) i

TdA = uA —n|APA+TA* + 2%

, (8)

where A* is the complex conjugate of A, u represents the
distance from the Turing bifurcation, v = kr —ky /2 is the
wavenumber detuning from exact 2:1 resonance, and I' is a
function of the forcing strength y. The explicit forms of these
parameters, as well as those of &, T, 1], are given elsewhere *°
This equation cannot describe the observed patterns in the
CDIMA reaction in any quantitative manner, because the re-
action has been conducted far from the onset of the Turing
instability. It does show, however, that the coefficient I' of
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Fig. 6 A transverse Bloch front in the v field of the LE model. The
phase trajectory in the complex amplitude plane bypasses the origin
(middle panel), and the modulus of the amplitude is bounded away
from zero (right panel). Parameters: a = 12, d =1, 0 = 50, wy = 0,
Y=0.6,k; = 1.8kr and b =0.35.

the forcing term A*, which in simple systems is proportional
to the forcing strength ¥, depends non-monotonically on 7y as
shown in Fig. 7. This implies the possible existence of forcing
intensities in which the effect of the forcing on the chemical
reaction decreases upon strengthening the forcing, which may
explain the reverse nature of the NIB bifurcation.

0.015
0.010
0.005

I 0.000

~0.005

~0.010

~0.015
0.

Fig. 7 The dependence of the coefficient I" in Eq. (8) on the forcing
strength, ¥, for different values of the parameter a and for
ky = 1.8ky (I is independent of d and o).

6 Front pairs as building blocks for extended
patterns

The periodic spatial forcing can induce extended rectangular
and oblique patterns, as shown in the simulations of the LE
model presented in Fig. 9. The power spectra of these patterns
show the presence of the oblique modes, exp (tkyvx £ ikyy),
and the wave-vector components k, = k¢ /2 and k, satisfying
k2 + k§ = k% indicate that these patterns are resonant>!. Note
that the difference between rectangular and oblique patterns
lies in the relative weights of the two oblique modes: equal
(unequal) absolute values of their amplitudes imply rectangu-
lar (oblique) modes. We found extended resonant rectangu-
lar patterns in the CDIMA reaction, too, as Fig. 10 shows.
Note the strong presence of a resonant stripe mode with wave-

25

1.5} 1
1.0t 1
0.5} i

Re(A)

0.0 _
—0.5

24 2.6 2.8 3.0 32

Y
Fig. 8 NIB bifurcation in the LE model (1). The blue (upper) dots
represent Bloch fronts while the black (lower) points represent Ising
fronts. Parameters: a =30,d =1, 6 = 100, wy =0, b= 1.7 and
kp=1.8kr.

vector kyR, and its complex conjugate mode at —k¢R, in the
power spectrum of the rectangular pattern, which imparts to
this pattern a rhombic form. This can be attributed to the reso-
nance condition between this stripe mode and the two oblique
modes, Ky +k_ +ks& =0, where kK = f%fﬁq: kyy.

The question we now address, using the LE model, is
whether there exists a relation between the extended rectan-
gular and oblique patterns and the localized Ising and Bloch
fronts. The motivation for this question is mainly visual - rect-
angular patterns appear similar to arrays of Ising-front pairs,
and oblique patterns appear similar to arrays of Bloch-front
pairs. The existence of two types of Bloch fronts is consistent
with the existence of two types of oblique patterns. In order
for an array of front pairs to form a stable extended pattern,
the front interactions cannot be attractive at any inter-front dis-
tance. We therefore used the LE model to study the interac-
tions between pairs of Ising fronts and pairs of Bloch fronts
in the range ky < 2ky where rectangular and oblique patterns
exist. Figure 11 shows plots of the asymptotic distance dy be-
tween a pair of Ising fronts and the initial distance (upper left
panel) and similar plots for pairs of Bloch fronts (lower left
panel). At longer initial distances the fronts are too far to in-
teract significantly, and the final distance equals the initial one.
As the initial distance is decreased, a step-like graph appears
for both Ising and Bloch fronts, indicating the existence of dis-
crete solution families describing stable bound front pairs with
decreasing distances down to a typical minimal distance.

To test whether extended rectangular and oblique patterns
can be viewed, respectively, as arrays of Ising and Bloch front
pairs, we superimposed bound pair front solutions on the ex-
tended solutions. As Fig. 12 shows, the spatial profile in
the y direction of the shortest-distance Ising-front pair nicely
overlaps the rectangular pattern and, similarly, the shortest-
distance Bloch-front pair overlaps the oblique pattern. These
results support the view of Ising-front bound pairs and Bloch-

This journal is © The Royal Society of Chemistry [year]
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Fig. 9 Resonant 2:1 rectangular pattern (top row) and oblique
pattern (bottom row) in the LE model. The left and middle frames
show the v and u-field patterns in the (x, y) plane. The right frames
show the corresponding spatial Fourier transform of u in the (ky, k)
plane. The shading of the circles in the Fourier plane indicates the
strength of the modes (darker is higher). Note the asymmetry in the
strength of the two oblique modes for the oblique pattern and the
presence of the forcing wave-vector in the rectangular pattern.
Parameters: a =12, d =1, 0 =50, wp =0, y= 0.6, ky = 1.8k7,
and b = 0.38 (rectangular pattern) and » = 0.35 (oblique pattern).

front bound pairs as building blocks of rectangular and oblique
patterns, respectively, provided that we focus on the shortest-
distance bound pairs.

7 Conclusions

We studied here the NIB bifurcation for transverse fronts using
a spatially forced CDIMA reaction and the Lengyel-Epstein
(LE) model. We demonstrated the existence of a spatial NIB
bifurcation and showed that it is a subcritical bifurcation,
implying bistability of stable transverse Ising and transverse
Bloch fronts. Subcritical NIB bifurcations have been found
earlier in the context of temporally forced oscillations3>33.
Unlike earlier studies of the NIB bifurcation, both in tempo-
ral and spatial contexts, Ising fronts here were found to lose
stability to Bloch fronts as the forcing strength is increased
rather than decreased. We also studied the interactions be-
tween pairs of Ising fronts and between pairs of Bloch fronts
and found discrete families of bound Ising-front pairs and of
bound Bloch-front pairs>? with increasing inter-front distance.
We further showed that rectangular patterns can be viewed as
arrays of Ising-front bound pairs and oblique patterns as arrays
of Bloch-front bound pairs, where in both cases the bound
pairs are the shortest-distance ones. These findings connect
the two distinct mechanisms by which periodic spatial forc-
ing induces new patterns: a nonuniform instability of a uni-

Fig. 10 Resonant 2:1 rectangular pattern in the spatially forced
CDIMA reaction (left) and the corresponding 2d Fourier plane,
which shows the strong presence of two oblique modes (right).
Forcing parameters: kf = 1.67kyp, Lygx = 7.6mW cm 2, Snapshots
were taken 2h after the start of forcing.

form state to rectangular or oblique patterns, and bistability of
phase states and patterns consisting of front pairs as building
blocks, i.e., patterns of alternating phase states.

The results described above imply the existence of a forc-
ing range where three different 1d front solutions, all shifting
the pattern phase by 7, are stable: an Ising front and a pair of
Bloch fronts. Multiplicity of stable 1d front solutions allows
for 2d localized structures, as front lines that shift the phase
by 7 can consist of different front solutions with an interven-
ing transition zone that forms the 2d localized structure. In
temporally forced oscillatory systems transition zones of this
kind between counter-propagating Bloch fronts form spiral
vortices>*. In spatially forced pattern forming systems, such
transitions zones form dislocation-type defects. The availabil-
ity of a stable Ising front allows for an additional type of 2d lo-
calized structure - a structure that that forms a transition zone
between the Ising front and one of the Bloch fronts. Struc-
tures of this kind and additional structures have been found
both in the experiments and in the model simulations and call
for further studies.

The CDIMA reaction may be a good candidate for studying
dual-mode fronts. In the absence of fronts, decreasing b below
the Hopf bifurcation threshold, by, may not give rise to oscil-
lations. This is because the large amplitude Turing mode is
likely to damp the small amplitude Hopf mode through non-
linear coupling. However, in the presence of an Ising front,
where the amplitude A vanishes, the nonlinear damping may
be too weak to prevent the local growth of the Hopf mode.
Such a growth should lead to oscillating Ising fronts 333,
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Fig. 11 Numerical solutions showing the asymptotic distance d
between a pair of Bloch fronts vs. the initial distance (upper left
panel, » = 0.35) and a similar plot for pairs of Ising fronts (lower
left panel, » = 0.38). The staircase forms describe bound front-pair
solutions at increasing distances. The right panels show the
corresponding shortest-distance front pairs. Parameters: a = 12,
d=1,0=50,wy=0,k;=1.8kr and y=0.6.
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We use experiments on a chemical reaction and model analysis to study localized
phase fronts in stripe patterns and their roles as building blocks of extended rect-

angular and oblique patterns.



