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We use the CDIMA chemical reaction and the Lengyel-Epstein model of this reaction to study resonant responses of a pattern-

forming system to time-independent spatial periodic forcing. We focus on the 2:1 resonance, where the wavenumber of a

one-dimensional periodic forcing is about twice the wavenumber of the natural stripe pattern that the unforced system tends

to form. Within this resonance, we study transverse fronts that shift the phase of resonant stripe patterns by π . We identify

phase fronts that shift the phase discontinuously, and pairs of phase fronts that shift the phase continuously, clockwise and anti-

clockwise. We further identify a front bifurcation that destabilizes the discontinuous front and leads to a pair of continuous fronts.

This bifurcation is the spatial counterpart of the nonequilibrium Ising-Bloch (NIB) bifurcation in temporally forced oscillatory

systems. The spatial NIB bifurcation that we find occurs as the forcing strength is increased, unlike earlier studies of the NIB

bifurcation. Furthermore, the bifurcation is subcritical, implying a range of forcing strength where both discontinuous Ising

fronts and continuous Bloch fronts are stable. Finally, we find that both Ising fronts and Bloch fronts can form discrete families

of bound pairs, and we relate arrays of these front pairs to extended rectangular and oblique patterns.

1 Introduction

A canonical experimental model for studying stationary pat-

terns far from equilibrium is the chlorite–iodide–malonic acid

(CIMA) reaction1. This model reaction was used to verify, for

the first time, the prediction of Alan Turing2 of a diffusion-

induced pattern-forming instability3, and it has served as a

major experimental tool for studying pattern-formation phe-

nomena in reaction-diffusion systems ever since4. A modified

version of that reaction, the chlorine dioxide–iodine–malonic

acid (CDIMA) reaction5, has been used to study pattern-

formation effects induced by periodic forcing. The CDIMA

reaction is photosensitive and can be forced in time or in space

by periodic illumination with white light. Periodic forcing of

this kind has been studied as a means of controlling patterns.

Periodic forcing can be used to lock and control the frequency

of periodic oscillations6–9 or the wavenumber of a periodic

pattern10–14, to stabilize and enhance patterns15, or to induce

new controllable patterns 6,10,11,15–19.

There are two main mechanisms by which periodic forcing

can induce new patterns. The first is a new pattern-forming in-

stability of the original uniform state. In the case of temporal

forcing of an oscillatory system the forcing can induce a finite-

wavenumber Turing-like instability8,17. In the case of spatial

forcing of a pattern-forming system the forcing can induce

rectangular and oblique patterns18. The second mechanism

is multiplicity of stable phase states. The unforced system has

a continuous translational symmetry, in time for an oscillatory

system and in space for a pattern-forming system, which re-

sults in a continuous family of periodic solutions (phase states)

whose phases span the whole circle. The forcing breaks this

continuous symmetry, leaving a discrete set of stable phase

states. Multistability of this kind allows for patterns compris-

ing alternating domains of different phase states9,16,20,21.

We restrict our attention here to pattern formation phenom-

ena associated with bistability of two phase states in spatially

forced pattern-forming systems. The two phase states describe

periodic stripe patterns with a phase shift of π with respect to

one another. Bistability of this kind can be achieved when

the wavenumber of a one-dimensional (1d) periodic forcing

is about twice the wavenumber of the natural stripe pattern

that the unforced system tends to form. A characteristic fea-

ture of bistable systems in general is the possible existence

of stable front structures that are biasymptotic to the two sta-

ble states. In the present context, the fronts form localized

transition zones that shift the pattern phase by π . Because of

the anisotropy of stripe patterns, there are two types of such

fronts: longitudinal fronts that are parallel to the stripes, and

transverse fronts that are perpendicular to the stripes. Studies

of a simple pattern formation model - the Swift-Hohenberg

equation - have uncovered two forms of each front type; a

front that shifts the phase discontinuously and a front that

shifts the phase gradually and smoothly22. These studies have

also identified longitudinal and transverse front bifurcations,

as the forcing strength is decreased, which destabilize fronts

that shift the phase discontinuously and give rise to pairs of

fronts that shift the phase continuously, either clockwise or

anticlockwise. These front bifurcations are the spatial coun-

terparts of the so-called nonequilibrium Ising-Bloch (NIB) bi-

furcation in temporally forced oscillatory systems23–26. We

refer to fronts that shift the phase discontinuously and contin-

uously as Ising and Bloch fronts, respectively.
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In this paper we study the spatial NIB bifurcation for trans-

verse fronts in a spatially forced CDIMA reaction and in the

Lengyel-Epstein (LE) model that describes this reaction27.

We further use the LE model to study numerically the inter-

actions between pairs of Ising and Bloch fronts and relate the

results of this study to the existence of rectangular and oblique

patterns.

2 Experimental setup for the spatially forced

CDIMA reaction

The patterns were studied in a continuously-fed, unstirred,

one-sided reactor (CFUR). The reactor consisted of a 0.3mm

thick 2% agarose (Fluka) gel layer with diameter of work-

ing area 25mm placed between a glass window and a

continuously-fed stirred tank reactor (CSTR), which served

as a feeding chamber. Between the CFUR and the CSTR

were two membranes: a cellulose nitrate membrane (What-

man, pore size 0.45µm, thickness 0.12mm) beneath the gel

for enhanced contrast, and, to provide rigidity to the gel and

to separate it from the stirred feeding chamber, an anopore

membrane (Whatman, pore size 0.2µm, impregnated with 4%

agarose gel, overall thickness 0.10µm) placed underneath the

cellulose nitrate membrane. The CSTR was fed with three

reagent solutions: i) I2 (Aldrich), ii) a mixture of malonic acid

(MA, Aldrich) and poly-(vinyl alcohol) (PVA, Aldrich, aver-

age molecular weight 9000-10000); and iii) ClO2 prepared as

described in28. The PVA is a binding agent for triiodide ions

and acts as a color indicator.

The initial concentrations of reagents fed into the CSTR

were the same in all experiments: [I2] = 0.4mM, [MA] =

2.1mM, [ClO2] = 0.14mM, and [PVA] = 10g L−1. Each of

the input solutions contained 10mM sulfuric acid (Fisher).

The residence time of the reagents in the CSTR was 160s.

The temperature was 4.0±0.2 ◦C With these conditions, a

labyrinthine pattern develops spontaneously. A computer-

controlled DLP projector (Dell 1510X) was used to implement

the uniform and spatially periodic white light illumination of

the CFUR. The light intensity was measured with a Newport

1815 optical power meter. A CCD Pixelink camera was used
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to record images of the patterns. Snapshots were taken in am-

bient light of 0.6mW cm−2 with no illumination projected on

the CFUR.

3 Mathematical model of the spatially forced

CDIMA reaction

We studied the modified Lengyel-Epstein (LE) model29 that

takes the effect of illumination into account:

ut = a−u−
4uv

1+u2
−w(x)+∇2u ,

vt = σ

[

b

(

u−
uv

1+u2
+w(x)

)

+d∇2v

]

.

(1)

Here u and v are dimensionless concentrations of iodide and

chlorite ions, respectively; a,b,d,σ are dimensionless param-

eters, and w(x) denotes the rate of the photochemical reaction.

In the present study, w is a one-dimensional periodic func-

tion of the spatial x-coordinate and is independent of the y-

coordinate.

In the experiments described in Section 2, we used a spatial

square-wave forcing. This forcing form can be captured in the

model by the function

w(x) = w0 +
γ

2

(

1+ sign
[

cos(k f x)
])

,

where k f is the forcing wavevector, γ is the forcing strength

and w0 represents the ambient light. This form can be ex-

panded as a Fourier cosine series,

w(x) = w0 +
γ

2
+

∞

∑
n=1

γn cos(nk f x) ,

where

γn =
2γ

nπ
sin

(nπ

2

)

.

In the following, we will approximate w by considering only

the first and largest term in the expansion, n = 1):

w(x) = w0 +
γ

2
+

2γ

π
cos(k f x) . (2)

We have checked that taking instead the full expansion, or the

square wave form, does not have any qualitative effect on the

results, and the quantitative effect is insignificant.

The LE model (1) with no forcing (γ = 0) has the stationary

uniform solution

u0 =
a

5
−w0, v0 = (1+u2

0)

(

w0

u0
+1

)

. (3)

This solution goes through a Turing bifurcation to station-

ary periodic patterns as b is decreased below a critical value

bT =
u0dk4

T

5(1+u2
0)

, (4)
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