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With the help of a recently developed non-equilibrium ap-

proach, we investigate the ionic strength dependence of the

Hubbard–Onsager dielectric decrement. We compute the

depolarization of water molecules caused by the motion of

ions in sodium chloride solutions from the dilute regime

(0.035 M) up close to the saturation concentration (4.24

M), and find that the kinetic decrement displays a strong

non monotonic behavior, in contrast to the prediction of

available models. We introduce a phenomenological modi-

fication of the Hubbard–Onsager continuum theory, which

takes into account the screening due to the ionic cloud at

mean field level and, which is able to describe the kinetic

decrement at high concentrations including the presence

of a pronounced minimum.

More than thirty years ago, in what was one of the last ar-

ticles written by L. Onsager, he and J. P. Hubbard made a

captivating prediction that has eluded direct observation until

now. They stated that in a saline solution, due to the motion of

ions, polar solvent molecules should show a tendency to ori-

ent against any external, static electric field, in apparent con-

tradiction with electrostatics.1–3 According to the continuum

model of Hubbard and Onsager, the rotational current induced

in the solvent by ionic currents should generate a net solvent

depolarization that survives in the zero frequency limit. As

a consequence, a decrement of the static permittivity of the

solution should be observed, even though the effect is purely

dynamic, and as such can not be explained in terms of molec-

ular configurations only. Systems containing free charges can

be thought as being infinitely polarizable, since the positive

and negative ions in a pair can be brought at infinite distance

by a static electric field. The static dielectric permittivity of an

electrolyte solution can not be strictly speaking measured, in-

stead, the real part of the dielectric spectrum at low (but finite)
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frequencies is used as a measure of the permittivity. To date,

however, no direct experimental proof of the kinetic decre-

ment exists, because its detection is complicated by the pres-

ence of dielectric saturation, from which it can not be easily

separated.4–8

A quantitative picture of the kinetic contribution to the di-

electric decrement is therefore key to the investigations of ion

solvation properties, which rely on a correct estimate of the

static contribution of the decrement.9–11

The continuum theory of the kinetic decrement predicts that

the static permittivity ε0 of a solvent should change upon ad-

dition of salt by an amount (in CGS units)

∆εHO =−4πpστ(ε0 − ε∞)/ε0, (1)

due to a subtle interplay between ion motion and rotational

orientation of the solvent molecules. Here, σ denotes the con-

ductivity of the solution and τ is the time constant of the Debye

relaxation process that characterizes the dielectric susceptibil-

ity of the solvent, and ε∞ is the infinite frequency dielectric

constant.1,2 The factor p can take values between 2/3 and 1,

depending on the type of boundary condition at the surface of

the ion (full slip and no slip, respectively). Strictly speaking,

the continuum theory is valid only in the infinite dilution limit,

and for large ionic radii.3

Despite these limitations, the formula for the decrement

bears an enthralling elegance, and explains qualitatively the

dependence of the dielectric permittivity of electrolyte solu-

tions on their conductivity, even well within the concentrate

solution regime.12 However, the kinetic decrement is not the

only effect that is expected to lower the dielectric permittiv-

ity of electrolyte solutions. The strong local electric field in

the vicinity of the ions tends to polarize solvent molecules

more than any external electric field in the linear regime.

Such a high field saturates the dielectric response of solvent

molecules next to ions, effectively reducing the dielectric per-

mittivity of the solution. This effect depends on the salt con-

centration c and, implicitly, on the conductivity σ. For this rea-

son it becomes hard, if not impossible, to separate the kinetic

contribution from dielectric saturation experimentally.4,5,7,8

This situation prevents not only a direct observation of the ki-

netic decrement, but also a precise evaluation of the effect of
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saturation6 and, consequently, a correct estimate of the num-

ber of solvent molecules coordinated by the ions.

Here, we use a non-equilibrium molecular dynamics ap-

proach to compute the kinetic decrement over an unprece-

dented wide range of concentrations, which is not accessible

with conventional, equilibrium approaches.13 Moreover, we

present a simple phenomenological theory that gives a quanti-

tative account of the features of the kinetic decrement at higher

concentrations.

The kinetic decrement can be seen as the sum of two com-

plementary contributions: the first is the depolarization due

to the moving ions, which exerts a torque on the solvent

molecules; the second, more subtle effect, is a change in the

imaginary part of the ion conductivity, a lag in the response

of ions induced by the rotation of solvent molecules which are

orienting along the external electric field. The two contribu-

tions must have exactly the same value, as a consequence of

Onsager reciprocal relations. A straightforward way to see this

is through the Green–Kubo expression for the kinetic decre-

ment. The change in solvent polarization current Jp due to the

ionic one Ji leads to a contribution to the conductivity spec-

trum ∆σpi(ω) = β/(3L3)
∫ ∞

0 exp(iωt)〈Jp(t)Ji(0)〉dt, where β
is the inverse thermal energy, L3 the simulation box volume,

and 〈·〉 is a suitable ensemble average. This change in con-

ductivity reflects a change in permittivity, since ε(ω)− 1 =
i4πσ(ω)/ω,14 and results in the first contribution to the ki-

netic decrement ∆εpi = limω→0 4πi∆σpi(ω)/ω. Owing to the

symmetry of the current cross-correlation function, the second

contribution , which originates from the action of the rotating

solvent molecules on the ions, is ∆εip = ∆εpi. The total kinetic

decrement is therefore twice the first contribution, ∆ε= 2∆εpi.

However elegant, the Green–Kubo expression is not very

much suited for the computation of the kinetic decrement, be-

cause the signal-to-noise ratio at extreme dilutions would be

too small for any practical purposes. A much more efficient

way to compute ∆εpi consists instead in applying an external

fictitious field E f , that couples to the ions only, and in calcu-

lating the resulting polarization of the solvent P, so that ∆εpi =
4πP/(L3E f )

15. This is evidently the out-of-equilibrium coun-

terpart of the Green-Kubo formula for ∆εpi, because Ji is the

current that couples to the external field E f , and Jp the one

generating the polarization P.

We applied this non-equilibrium calculation to an aqueous

solution of sodium chloride at 11 different salt concentra-

tions. In our simulations we model water molecules using the

three-sites SPC/E potential16 and sodium and chloride ions

using the thermodynamics consistent Kirkwood–Buff poten-

tial.17 The salt concentration c varies from 0.035 to 4.24 M,

keeping the water content fixed at 1621 molecules per sim-

ulation box and changing the number of salt pairs from 1 to

140. We kept constant temperature (300 K) and pressure (1

atm) using the Nosé–Hoover18,19 and Parrinello–Rahman20
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Fig. 1 Calculated water depolarization as a function of the applied

fictitious field (points) and linear fit (line).

algorithms with relaxation times of 5 ps. Electrostatic inter-

actions were computed using the smooth particle mesh Ewald

method21 with tin-foil boundary conditions, a 4-th order in-

terpolation spline on a grid with spacing not larger than 0.12

nm and a relative interaction strength of 10−5 at 0.9 nm. We

switched the short range part of the electrostatic interaction

and the Lennard-Jones smoothly to zero between 0.9 to 1.2

nm using a fourth-degree polynomial. Simulations were per-

formed with an in-house modified version of gromacs22 for

the on-line calculation of the currents associated to the differ-

ent species, and used an integration time step of 1 fs.

To check that we are performing calculations in the linear

regime, we applied our non-equilibrium approach for the sys-

tem of 100 ion pairs using an applied external fictitious fields

of magnitude varying from 0.1 to 2 V/nm, sampling the re-

sulting depolarization of water −4πPx/L3 during 500 ps long

simulation runs (Fig. 1) as a function of the applied field. The

linear behavior holds even for rather high fields, and this al-

lows to collect meaningful statistics also for very dilute solu-

tions with relatively short simulation runs, making this non-

equilibrium approach the key to calculating the kinetic decre-

ment over an unprecedented broad range of concentrations.

Using an external fictitious field of 0.5 V/nm we proceeded

to calculate the kinetic decrement for different salt concen-

trations in 1 ns long runs, obtaining the values of dielec-

tric decrement presented in Figure 2. The kinetic decrement

shows a marked non monotonic dependence on the concen-

tration, with a clear minimum right before c = 2 M. To test

the Hubbard–Onsager formula, Eq. (1), we calculated also the

molar conductivity Λ of the solution at the different concen-

trations, as reported in Figure 3. A best fit to the Kohlraush

law, Λ(c) = Λ0 − K
√

c, allows us to extrapolate the molar

conductivity to infinite dilution, and estimate the limiting mo-

lar conductivity Λ0 separately for the sodium and chloride

ions. Therefore, we can write the Hubbard–Onsager decre-

ment for the mixture of sodium and chloride in the form
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Fig. 2 Kinetic contribution to the static dielectric permittivity.

Squares: simulation result; light line: Hubbard–Onsager theory,

∆εHO(c); dark line: α∆εDS(c), with α = 2; dashed line: α∆εDD(c),
with α = 1.64

∆εHO = −4πpτ(ΛNa
0 + ΛCl

0 )c(ε0 − ε∞)/ε0. The Hubbard–

Onsager decrement so calculated (Fig.2, light line) is not com-

patible with the simulation data above a concentration of 0.2

M. The presence of a pronounced minimum and the subse-

quent increase of ∆ε can not be explained even qualitatively

with the continuum Hubbard–Onsager theory.

Physical intuition suggests that the local field of the ions,

which determines the torque on water molecules, should be

screened by the presence of oppositely charged ions in its

vicinity. To formalize this, we introduce a mean-field cor-

rection to the Hubbard–Onsager theory, along the lines of

the Debye–Hückel theory. The crucial step in the Hubbard–

Onsager theory is the calculation of the rotational current

JR induced in the polar medium by an ion travelling with a

speed u. The coupling between electrostatics and Navier–

Stokes equations allows to express the rotational current as

a functional of the local field generated by the ion, E0, as

JR =
∫
(χ/2ε0)E0 × (∇×v)dr, where v is the velocity field

of the solvent surrounding the ion and χ its dielectric sus-

ceptibility.1 For large ionic radii R, the velocity field can

be approximated (in the low salt concentration limit) by

Stokes’ solution, v(r) = (3R/4r3)
[

r2u+(r ·u)r
]

. If, instead

of using the Coulomb field, we use the Debye–Hückel one,

E0 = (q/ε0r3)exp(−κr)(1+ κr)r, the rotational current can

be evaluated analytically as JR = (2π/ε0)uχqexp(−κR). Here

κ =
√

βce2/(2πε0) is the inverse Debye screening length.

Since the ratio between the ion speed u and the driving elec-

tric field Ex is u/Ex = σ/q, it is possible express the dielec-

tric decrement (which we denote here as ∆εDS, and where the

suffix hints at the use of the Debye–Hückel field and of the
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Fig. 3 Molar conductivity of sodium and chloride ions, as a

function of the concentration. Squares: sodium; Circles: chloride;

Solid lines: best fit to Kohlrausch law.

Stokes’ flow solution) in terms of the rotational current

∆εDS = lim
ω→0

4π
σ

′′

ω
= lim

ω→0

4π

ω
J
′′
R/Ex. (2)

Here, the imaginary part of a quantity is denoted by double-

primes. The susceptibility of the dipolar medium is assumed

to be characterized by a single Debye relaxation, so that

4πχ(ω) = (ε0 − ε∞)(1+ iωτD), from which one derives

∆εDS =−4πστ
ε0 − ε∞

ε0
e−κR p. (3)

The solution resembles the classical Hubbard–Onsager one,

but features an additional factor exp(−κR) which depends on

the (effective) ion size. This difference is an important one,

because it shows that even at the mean field level there is an

additional length scale, the screening length κ−1, that governs

the non-monotonic behaviour of the kinetic decrement. The

screening, however, affects not only the electric field gener-

ated by the ion, but also the velocity of the fluid around it,

so that at finite concentrations the Debye–Hückel-corrected

velocity field reads23 v(r) = (3R/4r3)exp(−κr){(4/3)r2u+
2κ−2[1+κr+κ2r2/3−exp(κr)][u−3(r ·u)r/r2]}. This flow

can be integrated in a similar way to the Stokes’ one, yielding

the decrement

∆εDD =−2πστ
ε0 − ε∞

ε0
e−κR(κR+2)p, (4)

where the subscript underlines that the Debye–Hückel approx-

imation has been used both for the electric field and for the

flow solution.
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In Figure 2 we compare the simulation results with the mean

field results Eq. (3) and Eq. (4), summed over the contributions

of the two ionic species, and multiplied by a phenomenologi-

cal scaling factor α, that takes into account the effect of ionic

correlations arising at high salt concentration. The relaxation

time τ has been computed from a fit of the Debye process χ(ω)
to the spectrum of the pure solvent, and the solution conduc-

tivity has been calculated from the limiting molar ones as for

the Hubbard–Onsager case. The relaxation of water is not de-

scribed by a single Debye process, and often a Cole-Cole re-

laxation or two Debye processes24 are used to fit experimental

data. However, the dominant water contribution at lower fre-

quencies comes from the main Debye relaxation, which is the

one we are using here to calculate the decrement.

A very good qualitative agreement is already achieved by

using the Stokes’ flow based solution, Eq. (3), and α = 2 (dark

curve in Figure 2), taking as a value for the effective ionic ra-

dius R the size of the first hydration shell of the ion, defined as

the sum of the position of the first minimum in the ion-water

radial distribution function and of the Lennard-Jones diameter

of a water molecule. Taking into account also the screening of

the flow due to the counterion clouds introduces a qualitative

difference in the formula for the decrement, Eq. (4), which

is characterized by the presence of an additional term propor-

tional to κ. In fact the smaller scaling factor α = 1.64 is suf-

ficient to obtain an equivalently good fit, if at the same time

the value of both effective ionic radii is increased by 1.5 Å.

Both models are thus able to give a qualitatively correct pic-

ture of the concentration dependence of the kinetic dielectric

decrement at finite concentrations, underlining the importance

of the screening induced by the counterion clouds in deter-

mining the effective water-ion interaction in the hydrodynamic

regime.

As a final remark, we note that due to the presence of the

scaling factor α, both curves do not converge, for κR ≪ 1, to

the solution of Hubbard and Onsager, the latter being a better

approximation at low concentrations. Nevertheless, the simu-

lation data shows that the applicability range of the Hubbard–

Onsager theory is limited to concentrations smaller than ap-

proximately 0.2 M, a condition which has been often not ful-

filled when searching for experimental evidences of the kinetic

decrement.12 Our simulation results thus resolve the doubts

which were cast on the attribution of the measured dielectric

decrement5 in favor of the hypothesis of a static effect aris-

ing from dielectric saturation,7 which is definitely the largest

contribution to the dielectric decrement.
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