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Abstract

The control of quantum system dynamics is generally performed by seeking a suitable applied

field. The physical objective as a functional of the field forms the quantum control landscape,

whose topology, under certain conditions, has been shown to contain no critical point suboptimal

traps, thereby enabling effective searches for fields that give the global maximum of the objective.

This paper addresses the structure of the landscape as a complement to topological critical point

features. Recent work showed that landscape structure is highly favorable for optimization of

state-to-state transition probabilities, in that gradient-based control trajectories to the global

maximum value are nearly straight paths. The landscape structure is codified in the metric R ≥

1.0, defined as the ratio of the length of the control trajectory to the Euclidean distance between

the initial and optimal controls. A value of R = 1 would indicate an exactly straight trajectory

to the optimal observable value. This paper extends the state-to-state transition probability

results to the quantum ensemble and unitary transformation control landscapes. Again, nearly

straight trajectories predominate, and we demonstrate that R can take values approaching 1.0

with high precision. However, the interplay of optimization trajectories with critical saddle

submanifolds is found to influence landscape structure. A fundamental relationship necessary

for perfectly straight gradient-based control trajectories is derived, wherein the gradient on

the quantum control landscape must be an eigenfunction of the Hessian. This relation is an

indicator of landscape structure and may provide a means to identify physical conditions when

control trajectories can achieve perfect linearity. The collective favorable landscape topology
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and structure provide a foundation to understand why optimal quantum control can be readily

achieved.

1 Introduction

Quantum optimal control theory (OCT) provides a basis to explore applied field tuning of quantum

system dynamics [1, 2, 3, 4, 5]. Recent successes include achieving control of electrons in quan-

tum dots through time-varying gate voltages [6], controlling electronic correlations in molecules [7],

manipulating the dynamics of quantum many-body systems [8], cooling ultracold atomic gases [9],

eliciting quantum revivals [10], and generating adiabatic time evolution [11]. Optimal control ex-

periments (OCE) have found growing success even for complex systems, especially through the

use of closed-loop learning algorithms [12] combined with femtosecond laser pulse shaping tech-

nology [13]. For example, these advances have enabled vibrational control of population inversion

in Bose-Einstein condensates [14], strong-field ionization of silver atoms [15], and coherent energy

transfer in light-harvesting complexes [16]. Underlying these achievements is the question of why

desirable quantum controls can evidently be found with only modest search effort over the vast

space of possible control fields. An important factor in addressing this question is the favorable

control landscape topology, which results upon satisfaction of certain physical assumptions [17].

The present paper considers a second contributing factor based on the landscape structure (i.e.,

non-topological features) reflected in the behavior of the evolving controls during the optimization

process.

The dynamics of a closed quantum system interacting with an applied field is described by the

time-dependent Schrödinger equation

i�
∂U(t, 0)

∂t
= H(t)U(t, 0), U(0, 0) = 1, (1)

where H(t) is the time-dependent Hamiltonian and U(t, 0) is the corresponding evolution operator

(propagator) with 0 ≤ t ≤ T . Here T is the time at which the objective is optimized. Treating the

interaction within the dipole approximation, the time-dependent Hamiltonian is given by

H(t) = H0 − μE(t), (2)

where H0 is the field-free Hamiltonian, μ is the dipole moment operator and E(t) is the time-

dependent control field.
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Through Eq. (1), a control field can be mapped to a value of a cost functional J [E(t)], which

may be either the expectation value JO of an observable O or the cost functional JW for creating a

target unitary transformation W (see Eqs. (3) and (4), respectively). The functional relationship

between J [E(t)] and the control field E(t) can be cast in terms of a quantum control landscape,

where each point J [E(t)] on the landscape corresponds to a particular control field E(t), 0 ≤ t ≤ T .

Finding successive control fields that eventually lead to an optimal value of the cost functional

entails climbing the landscape. We will refer to ‘climbing’ as moving towards the target value of

J , regardless of whether the cost functional is to be maximized or minimized. Using a local search

algorithm to climb (e.g., the gradient algorithm utilized in this work) results in smooth paths up

the landscape J [E(s, t)] that can be parametrized by the continuous variable s ≥ 0. Every such

path up the landscape is associated with a trajectory E(s, t) through control space. Thus, starting

with an initial control field E(0, t) that produces a low value of the cost functional, the goal is to

find the final control field E(smax, t) that yields a high (optimal) value of the cost functional at

s = smax.

Many recent studies have considered the topology of quantum control landscapes [17, 18, 19,

20, 21]. The control landscape topology is specified by the character of the critical points where

δJ
δE(t) = 0, ∀t ∈ [0, T ]. A critical point at a suboptimal value of J where the Hessian δ2J

δE(t)δE(t′) is

negative semi-definite would indicate a (second order) trap capable of halting an effort attempting

to reach the top of the landscape. The landscape topology has been analyzed for closed quantum

systems with N states under the assumptions of: (i) controllability, such that any unitary evolution

matrix U(T, 0) can be generated by at least one control field at some sufficiently large time T , (ii)

surjectivity, whereby the set of functions
δUij(T,0)
δE(t) , ∀i, j are linearly independent over t ∈ [0, T ],

and (iii) full accessibility, allowing for free access to any control field. Upon satisfaction of these

assumptions, the quantum control landscape can be shown to contain only trap-free intermediate

value critical saddle submanifolds (when they exist for a particular application) [17, 18, 21] along

with the absolute minimum and absolute maximum submanifolds. Thus, the landscape topology is

very favorable to performing OCEs or OCT simulations, which is an important factor in explaining

the evident ease of locating optimal control fields.

Beyond issues of topology, the structure of the quantum control landscape away from the critical

points could greatly influence the nature of a control trajectory winding its way to an optimal
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field. If landscape structure is highly gnarled, this circumstance could call for complex control

trajectories, although the trap free topology assures that the path (e.g., guided by a gradient

ascent algorithm) will lead to an optimal solution. The encountered landscape structure upon

climbing may be examined by quantifying the linearity of the control trajectories [22]. A predilection

towards nearly straight trajectories is indicative of very simple control landscape structural features.

Prior experimental work aiming to maximize second harmonic generation found that all of the

sampled control trajectories were strikingly close to being straight [26]. Recent theoretical work

has also supported the presence of simple landscape structure by examining the linearity of control

trajectories in simulations over the state-to-state transition probability landscape [22, 27, 28].

In this work, we extend the state-to-state transition probability quantum control landscape

structure analysis to consider two additional landscapes:

JO = Tr (ρ(T )O) = Tr
(
U(T, 0)ρ(0)U †(T, 0)O

)
, (3)

and

JW = ‖W − U(T, 0)‖2 = 2N − 2Re

{
Tr

(
W †U(T, 0)

)}
(4)

where ‖·‖ denotes the Frobenius norm and N is the number of states in the quantum system. The

quantum ensemble control landscape JO allows for controlling arbitrary observables and consider-

ation of systems which are initially in mixed states ρ(0), and the unitary transformation landscape

JW is relevant to the prospect of creating logic gates for quantum information processing [29].

Both landscapes can contain critical saddle submanifolds [18, 21], which are not present in the

simpler state-to-state transition probability landscape. Thus, we aim to assess the influence of

these saddle submanifolds on landscape structure. Specifically, we will show that encountering

saddle submanifolds at intermediate heights on the landscape can drive control trajectories away

from straight paths. This phenomenon is sketched in Figure 1. The trajectory on the right takes a

rather straight path up the landscape, while the trajectory on the left is initially attracted to the

saddle point, thus altering its direct nature. Nevertheless, we will show in numerical simulations

that the trajectories leading to optimal controls are generally still close to being straight, despite

the presence of saddles. Lastly, we will derive a mathematical criterion showing that the gradient of

the cost functional must be an eigenfunction of the Hessian in order to achieve a perfectly straight

gradient-based control trajectory.
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The remainder of the paper is organized as follows. The linearity measure R of a control trajec-

tory is defined in Section 2. Section 3 gives the gradient-based search algorithm used in this work

to identify control fields that optimize arbitrary observables or achieve unitary transformations,

respectively, through JO or JW . The presence of landscape saddle submanifolds is examined, and

a metric is outlined that gives the distance from any point on a trajectory to a particular saddle

submanifold. In Section 4, a derivation is presented specifying the Hessian-gradient eigen-relation

for straight control trajectories. Section 5 provides numerical results on the statistical behavior of

R over a large ensemble of landscape trajectories for JO and JW . We also illustrate satisfaction of

the Hessian-gradient eigen-relation for nearly straight control trajectories. Concluding remarks are

furnished in Section 6.

2 The control trajectory linearity measure R

The goal of the present work is to explore quantum control landscape structure reflected in the

nature of the control trajectories followed during optimizations. Figure 1 indicates that a landscape

trajectory has a projected image in the underlying control space. As we use a myopic gradient

algorithm to climb the landscape, the degree of gnarled character encountered on the climb is

manifested in the trajectory through control space. To this end, we construct a ratio R delineating

the linearity of the control trajectory. Specifically, R is the ratio of the path length of the control

trajectory between the initial and final fields, given by

dPL =

∫ smax

0

[
1

T

∫ T

0

(
∂E(s, t)

∂s

)2

dt

] 1

2

ds, (5)

to the Euclidean distance between the initial and final fields in control space, given by

dEL =

[
1

T

∫ T

0
[E(smax, t)− E(0, t)]2 dt

] 1

2

, (6)

where s parametrizes the control trajectory. R is expressed as

R =
dPL

dEL
=

∫ smax

0

[∫ T

0

(
∂E(s,t)

∂s

)2
dt

] 1

2

ds

[∫ T

0 [E(smax, t)− E(0, t)]2 dt
] 1

2

. (7)

The lower bound for the ratio is R = 1, which holds for a trajectory that takes a straight path

between E(0, t) and E(smax, t). A trajectory with R = 1 corresponds to the simplest possible path
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a gradient optimization can take to climb the quantum control landscape J [E(t)], and trajectories

approaching this limit indicate a lack of encounters with complex structural features. High values of

R mean that a control trajectory meanders through control space along a curve whose total length

is much greater than the distance between its two endpoints, signifying that the optimization path

encountered rugged structural features on the landscape.

In a recent work, we found values of R− 1 as low as ∼ 10−4 for a five level state-to-state tran-

sition probability landscape [22]. By examining the distances between the endpoints of the control

trajectories, we also observed that trajectories with low and high R values are distributed almost

identically throughout control space. Furthermore, we found that it was possible to characterize

the complexity of low R trajectories through a ‘straight shot’ climbing procedure. This procedure

operates by calculating the gradient of the objective (e.g., the state-to-state transition probability)

at the initial control field, and then proceeds to evolve the field along that specified direction until

a local maximum is encountered. For suitably low R trajectories, nearly optimal control fields

may be found in this way by merely continuing to march in the initially identified direction. This

technique is useful for characterizing the straight nature of a trajectory, but it is still short of a

constructive control algorithm without knowledge of a suitable initial field.

3 Negotiating the quantum control landscape

The quantum systems considered here have N -level Hamiltonians H in Eq. (2) consisting of the

field-free Hamiltonian H0 as an N × N diagonal matrix, and μ as the dipole moment given by

an N × N real symmetric matrix. We will utilize the gradient algorithm to prescribe the path

of steepest ascent, thereby forming a natural “rule” to climb the landscape and consequently to

navigate the underlying control space. The D-MORPH procedure will be used to implement the

gradient search trajectory [30, 31]. The process of climbing the landscape may be confounded by

the presence of saddle submanifolds located at certain regions of specific intermediate heights on

the landscape. The cartoon in Fig. 1 reflects this issue, and one goal of this work is to examine the

degree to which saddles distort control trajectories.

We parameterize a trajectory by a continuous variable s ≥ 0, such that the control field becomes

6
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E(s, t). As s is increased, the change in the cost functional can be written using the chain rule as

dJ

ds
=

∫ T

0

δJ

δE(s, t)

∂E(s, t)

∂s
dt. (8)

Maximization of J stipulates that dJ
ds

≥ 0, which is assured by setting

∂E(s, t)

∂s
=

δJ

δE(s, t)
. (9)

Likewise, when minimizing J , we require dJ
ds

≤ 0, so in that case we set ∂E(s,t)
∂s

= − δJ
δE(s,t) . Mini-

mization applies to JW , and JO may be minimized or maximized depending on the nature of the

objective operator O. In the present work, the control variables adjusted by the gradient algorithm

are the values of the control field E(s, ti) at a set of discrete time points ti, i = 1, 2, . . . . In order

to ensure that each simulation for a particular application traverses the same domain up (or down)

the quantum control landscape, every trajectory begins at the same initial height on the landscape

JI and ends at the same final height on the landscape JF . This criterion is met by using the D-

MORPH algorithm [30, 31] to first guide a climb down (up) the landscape to JI , if an initial trial

field yields a value of J that is above (below) JI . The resultant field at JI is taken as E(0, t) for the

purpose of determining R. The final height on the landscape JF is then achieved by E(s = smax, t),

identified from application of D-MORPH starting with the initial field E(0, t).

Calculation of the gradient δJ
δE(s,t) requires utilization of the relevant cost functional, either

JO or JW . Sections 3.1 and 3.2 summarize these details, further include the characterization of

the critical submanifolds of the landscapes, and introduce a method to determine the distance of

a point on the landscape to any particular critical submanifold. In all of the simulations, the as-

sumptions underlying the favorable landscape topology are taken as satisfied [17, 18, 21]; consistent

with these assumptions, no landscape trajectories prematurely terminated before reaching JF in

our simulations.
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3.1 Quantum ensemble control landscape

The quantum ensemble control landscape JO[E(s, t)] for optimizing an arbitrary observable with a

mixed initial state is given by Eq. (3). The gradient of the objective may be written as [21]

δJO
δE(t)

= Tr

{
O
δU(T, 0)

δE(t)
ρ(0)U †(T, 0) +OU(T, 0)ρ(0)

δU †(T, 0)

δE(t)

}

= Tr

{
O
δU(T, 0)

δE(t)
ρ(0)U †(T, 0) −OU(T, 0)ρ(0)U †(T, 0)

δU(T, 0)

δE(t)
U †(T, 0)

}

= Tr

{
U †(T, 0)[ρ(T ), O]

δU(T, 0)

δE(t)

}
,

(10)

where we have made use of the relation δ
δE(t)

(
U †(T, 0)U(T, 0)

)
= δU†(T,0)

δE(t) U(T, 0)+U †(T, 0) δU(T,0)
δE(t) =

0 in the second equality. Climbing the landscape is affected by utilization of Eq. (10) in Eq. (9).

This process could possibly be hindered if the trajectory comes near a saddle submanifold where

δJO
δE(s,t) is small at an intermediate, suboptimal value of JO. A representative sketch is given in

Figure 1, where the optimization path on the left draws near a saddle submanifold, located at the

center of the blue landscape surface. In order to assess the impact of encountering saddle manifolds

upon the value of R for a control trajectory, we first briefly summarize the nature of the critical

submanifolds of the JO landscape.

At a critical point, the first order variation satisfies δJO
δE(t) = 0. Thus, examining the last line of

Eq. (10), we see that if δU(T,0)
δE(t) is of full rank (i.e., the surjectivity assumption (ii) from Section 1

is satisfied), we must have [ρ(T ), O] = 0 at a critical point [24]. From this relation, it is possible

to obtain the form of the critical matrices Uo, and from that information, the distances D to

a particular critical submanifold from any point on the landscape; Appendix A contains further

details. The distance metric can be used to judge if a control trajectory has strayed close to the

saddle submanifolds, and therefore D allows us to assess whether proximity to these manifolds

affects the R value of a trajectory.

3.2 Unitary transformation control landscape

In quantum information science, implementing basic logic gate operations necessitates the control

of unitary transformations [29]. We therefore consider the optimization of the entire propagator

U(T, 0), seeking to attain W , which leads to the unitary transformation cost functional given

by Eq. (4). JW has a minimum value of 0, corresponding to U = W , and a maximum of 4N ,
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corresponding to U = −W , where N is the number of states in the quantum system. Thus, we

would like to minimize JW .

The gradient for the unitary transformation landscape is [2]

δJW
δE(t)

= −Tr

{
W † δU(T, 0)

δE(t)
+

δU †(T, 0)

δE(t)
W

}

= −Tr

{
W † δU(T, 0)

δE(t)
− U †(T, 0)

δU(T, 0)

δE(t)
U †(T, 0)W

}

= −Tr

{(
W †U(T, 0)− U †(T, 0)W

)
U †(T, 0)

δU(T, 0)

δE(t)

}
.

(11)

Optimizations may be carried out on the unitary transformation landscape by combining Eqs. (9)

and (11). Trajectories climbing the JW landscape may pass by saddle submanifolds. In order to

assess the effect of these manifolds on R, we briefly review the nature of the critical points of the

unitary transformation landscape.

From the last line of Eq. (11), we see that at a critical point, where δJW
δE(t) = 0, if δU(T,0)

δE(t) is of

full rank, we must have W †U(T, 0) = U †(T, 0)W . This implies that W †Uo is Hermitian. W †Uo is

also a unitary matrix, so at a critical point, the eigenvalues of W †Uo must be either 1 or -1. As a

result, the critical values of JW in Eq. (4) are 0, 4, . . . , 4N , implying that there exist N+1 critical

submanifolds, each of which correspond to a different number of 1’s and -1’s as the eigenvalues of

W †Uo [18, 19]. A discussion of the distance metric D between any point on the landscape and a

particular critical submanifold is contained in Appendix B. As explained in Section 3.1, evaluating

D along a landscape climb to reach W can reveal the influence of encountering saddles on the path

to an optimal control solution.

4 ‘Straight shot’ eigen-relation

Section 3 laid out how to climb the quantum ensemble and unitary transformation control land-

scapes using a gradient algorithm, and summarized the topology of the critical points of these

landscapes. Here, we present a relation which must be satisfied for ‘straight shot’ control trajecto-

ries, utilizing the gradient algorithm for any quantum control landscape.

Consider a control trajectory that is perfectly straight, i.e., R = 1. Any such ‘straight shot’

9
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trajectory can be written [22]

E(s, t) = E(0, t) + ρ(s)ΔE(t), (12)

where 0 ≤ ρ(s) ≤ 1 is a monotonically increasing function of s as a result of the gradient algorithm

assuring that dJ/ds ≥ 0 (i.e., without loss of generality we seek to maximize J), and ΔE(t) =

E(smax, t) − E(0, t) depends only on time. Utilizing Eq. (9), the gradient function along this

trajectory is
δJ

δE(s, t)
= ρ′(s) ΔE(t), (13)

where ρ′(s) = dρ(s)
ds

.

According to Eq. (9), the instantaneous tangent of a control trajectory, ∂E(s,t)
∂s

, “points” in

the same direction in control space as the gradient of the quantum control landscape, δJ
δE(s,t) , at

location s. Furthermore, along a straight control trajectory, the gradient function must point in

the same direction at every location on the trajectory; thus, the gradient functions δJ
δE(s,t) and

δJ
δE(s′,t) at two different locations s and s′ on a straight control trajectory are related by a scale

factor. Additionally, for straight trajectories, the difference between any two fields on the trajectory,

E(s, t) and E(s′, t) is always proportional to the same function ΔE(t). When using a gradient-

based climbing algorithm, the function ΔE(t) is proportional to the gradient itself, as shown by

Eq. (13). These facts allow us to conclude that an eigen-relation exists between the Hessian and

the gradient on a straight control trajectory [32, 33].

To make these considerations more specific, we expand the gradient of the cost functional

J [E(s + ds, t)] to first order in ds along an arbitrary control trajectory at location s

δJ

δE(s + ds, t)
=

δJ

δE(s, t)
+ ds

∫ T

0

δ2J

δE(s, t′)δE(s, t)

∂E(s, t′)

∂s
dt′. (14)

Here, δ2J
δE(s,t′)δE(s,t) = H(s; t, t′) is the Hessian. Now assume that R = 1 for the control trajectory

E(s, t). If we bring δJ
δE(s,t) onto the left hand side, divide by ds, and take the limit, we have

lim
ds→0

1

ds

(
δJ

δE(s + ds, t)
−

δJ

δE(s, t)

)
=

d

ds

δJ

δE(s, t)
= ρ′′(s)ΔE(t). (15)

where Eq. (13) was used for the second equality. Using Eq. (13), we can rewrite the result as

ρ′′(s)ΔE(t) = ρ′′(s)
ρ′(s)

δJ
δE(s,t) . On the right hand side of Eq. (14), if we use Eq. (9), we obtain

ρ′′(s)

ρ′(s)

δJ

δE(s, t)
=

∫ T

0

δ2J

δE(s, t′)δE(s, t)

δJ

δE(s, t)
dt′, (16)
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or more compactly, with the time dependence implicitly understood,

H(s) · g(s) =
ρ′′(s)

ρ′(s)
g(s), (17)

where g(s) is the gradient of the cost functional, δJ
δE(s,t) , and the scalar product H(s) · g(s) denotes

the integral operation in Eq. (16). As the action of the Hessian on the gradient merely rescales

the gradient, this equation states that the gradient is an eigenfunction of the Hessian along a

straight control trajectory, with an associated eigenvalue ρ′′(s)
ρ′(s) . We will illustrate this relationship

in Section 5.3. In addition, one may show that repeating the above procedure by expanding the

Hessian about the point s and making use of Eq. (12) yields a higher order eigen-relation, stating

that the gradient is an eigenfunction of the third-order Hessian. Iterating this process yields a

hierarchy of eigen-relations between the gradient and all higher-order derivatives of J ; however, all

of these relationships contain no more information than Eq. (17), since the entire hierarchy holds

upon satisfaction of Eqs. (9) and (12).

Near a critical point, the eigen-relation is always true, even for trajectories with R > 1. To see

this relation, expand the gradient of J [E(s0 + ds, t)] to first order about the location s0, which is

infinitesimally close to a critical point at E(sc, t)

δJ

δE(sc, t)
≡

δJ

δE(s0 + ds, t)
=

δJ

δE(s0, t)
+ ds

∫ T

0

δ2J

δE(s0, t′)δE(s0, t)

∂E(s0, t
′)

∂s0
dt′ (18)

where ds = sc − s0. Utilizing the gradient rule in Eq. (9) inside the integral and noting that

δJ
δE(sc,t)

= 0 at a critical point, we have

δJ

δE(s0, t)
= −ds

∫ T

0

δ2J

δE(s0, t′)δE(s0, t)

δJ

δE(s0, t′)
dt′. (19)

Equation (19) shows that the gradient function is always an eigenfunction of the Hessian in the

immediate neighborhood of a critical point, whether or not the global trajectory is a straight shot.

When R = 1, however, this behavior extends to the entire control trajectory. From the definition

of ds, one can see that if sc < s0, so that the gradient trajectory is leaving the critical manifold,

the eigenvalue in Eq. (19) is positive, and likewise if sc > s0, so that the trajectory is arriving at

the critical manifold, the eigenvalue is negative. This circumstance will be shown in Section 5.3

for the case of a trajectory moving away from the critical point at the bottom of the landscape

where ds < 0 and then transitioning to the neighborhood of the top of the landscape where ds > 0.

Thus, along a straight shot from the bottom to the top of the landscape, the Hessian eigenvalue
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associated with the gradient will change sign (i.e., at least once, and more often if saddle critical

points are closely approached) at some point along the trajectory. In addition, the eigen-relation

is nominally an independent consideration at each value of s. However, the diffeomorphic nature

of the gradient climb over s in Eq. (9) implies that a smooth eigen-relation should exist, regardless

of which eigenvector (corresponding to the gradient function) initiates the climb. This behavior is

affirmed in the simulations in Section 5.3.

We note that the relations examined in this section were derived without making use of quantum

mechanics, as the analysis leading to the gradient being an eigenfunction of the Hessian only utilizes

the gradient climbing rule, Eq. (9), and the straight shot condition Eq. (12). The interest in this

paper is directed towards applications where J [E(s, t)] arises in a quantum control context.

5 Illustrations

This section provides numerical illustrations of the landscape structure analysis tools outlined in

Sections 2-4. Section 5.1 shows that for randomly chosen control trajectories, the distribution of

R takes on very modest values, which did not exceed 2.0 in the present examples. The results also

demonstrate that control trajectories with either very low or very high values of R are spread in a

like fashion throughout control space. Section 5.2 addresses the effect of saddle submanifolds upon

optimization paths. Encountering saddle critical submanifolds on the way from the bottom to the

top along an optimization path tends to modestly increase the associated R value. Finally, Section

5.3 provides numerical evidence for the validity of the Hessian-gradient eigenrelation in Section 4.

Dimensionless units are used throughout the simulations.

5.1 Random sampling of control trajectories

In order to assess the structural complexity of the quantum ensemble and unitary transformation

control landscapes, we recorded the R values of landscape trajectories constructed using randomly

chosen initial control fields.

5.1.1 Quantum ensemble control landscape

Here we consider several eight-level quantum systems to illustrate the landscape structural find-

ings. As the nature of a landscape’s saddle manifolds is determined by the number and degree
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of degeneracies of the initial density matrix and observable matrix [21, 23, 25], we will consider

combinations of matrices with varying degrees of degeneracy so as to examine a broad class of land-

scapes. Increasing numbers of nondegenerate eigenvalues generally correspond to larger numbers

of saddle submanifolds. In particular, we are interested in the effects of such submanifolds upon

landscape structure. Accordingly, five different quantum ensemble control landscapes are sampled

using the ρ and O matrices presented in Table 1, and 1000 optimizations of JO are performed over

each landscape. The Hamiltonian in Table 1 is utilized together with the dipole matrix

μ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ±1 ±0.5 ±0.52 ±0.53 ±0.54 ±0.55 ±0.56

±1 0 ±1 ±0.5 ±0.52 ±0.53 ±0.54 ±0.55

±0.5 ±1 0 ±1 ±0.5 ±0.52 ±0.53 ±0.54

±0.52 ±0.5 ±1 0 ±1 ±0.5 ±0.52 ±0.53

±0.53 ±0.52 ±0.5 ±1 0 ±1 ±0.5 ±0.52

±0.54 ±0.53 ±0.52 ±0.5 ±1 0 ±1 ±0.5

±0.55 ±0.54 ±0.53 ±0.52 ±0.5 ±1 0 ±1

±0.56 ±0.55 ±0.54 ±0.53 ±0.52 ±0.5 ±1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(20)

where the signs on the dipole matrix elements were chosen randomly under the constraint of μ

remaining symmetric. Once these signs were chosen, they remained fixed for the 1000 optimizations

over each individual landscape.

The density matrix ρ1, which corresponds to the case of a pure initial state, represents an almost

completely degenerate density matrix. In contrast, ρ2 contains two eigenvalues which are both

four-fold degenerate. The observables used in conjunction with these density matrices O1 and O2.

As these observable matrices also exhibit varying levels of degeneracy, the pairs ρ1 and O1, ρ1 and

O2, ρ2 and O1, ρ2 and O2 are used to generate four distinct landscapes. Lastly, we also utilized ρ3

and O3 as an example of matrices with fully nondegenerate spectra to generate a fifth landscape.

The initial fields of these optimizations were parametrized as

E(t) =
1

F
exp[−0.3(t −

T

2
)2]

M∑
n=1

an sin(ωnt+ φn), (21)

with the target time T being 10. The amplitudes an and phases φn were chosen randomly from

the uniform distributions [0, 1] and [0, 2π], respectively. The frequencies are ωn = n and M = 60

to ensure that the initial control field was nearly resonant with every possible transition in the
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Table 1: Quantum ensemble landscape matrices

Matrix Diagonal entries

ρ1 (1, 0, 0, 0, 0, 0, 0, 0)

ρ2 (14 ,
1
4 ,

1
4 ,

1
4 , 0, 0, 0, 0)

ρ3 ( 7
28 ,

6
28 ,

5
28 ,

4
28 ,

3
28 ,

2
28 ,

1
28 , 0)

O1 (0, 0, 0, 0, 0, 0, 4
9 ,

5
9)

O2 (0, 0, 0, 0, 4
17 ,

4
17 ,

4
17 ,

5
17 )

O3 (0, 1
28 ,

2
28 ,

3
28 ,

4
28 ,

5
28 ,

6
28 ,

7
28)

H0 (−10,−8,−4, 2, 10, 20, 32, 46)

Hamiltonian in Table 1. F is a normalization factor, picked so that the initial fluence of each field

is 1. This normalization was chosen to avoid operating with strong initial fields. After the initial

choice of the control field, the time interval [0, T ] was discretized into 1001 evenly spaced time

points, and the value of the field at each of these time points served as the control variables. We

define the limits of the optimizations on the landscape as follows. We denote Jmax
O as the maximum

value that JO = Tr (ρ(T )O) can attain for a particular pair of ρ(0) and O, and Jmin
O denotes the

minimum value. When a random field drawn from Eq. (21) is used to calculate JO = Tr (ρ(T )O),

if JO < JI
O = Jmin

O + 0.01[Jmax
O − Jmin

O ], then D-MORPH is used to climb until JO = JI
O. Likewise,

if JO > JI
O, D-MORPH is used to descend the landscape until JO = JI

O. Then, the resultant

control field is optimized using D-MORPH until JO = JF
O = Jmax

O − 0.01[Jmax
O − Jmin

O ]. This latter

trajectory, which takes the field from a height of JI
O to a height of JF

O on the landscape, is used to

calculate R. The large window from JI
O → JF

O is chosen so that each of the optimizations proceeds

over a wide swathe of the landscape and thereby encounters as many structural features as possible.

In this regard, we have numerically shown that for the state-to-state transition probability land-

scape, pushing the fidelity of J closer to either 0 or 1 at the beginning and end of the optimizations,

respectively, has a diminutive effect on R [22].

Histograms of the resulting R values from 1000 optimizations over the five different landscapes

are presented in Figure 2 for the cases (a) ρ1 and O1, (b) ρ1 and O2, (c) ρ2 and O1, (d) ρ2 and O2,

and (e) ρ3 and O3. The distributions are skewed towards the right, indicating that the R values
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tend to accumulate near 1.0. The smallest values are found in the histogram of Figure 2(a) which

has a mean of R = 1.22, followed by Figures 2(b) and 2(c), which have mean values of R = 1.31

and R = 1.33, respectively. The highest values of R are found in the histograms of Figs. 2(d) and

2(e), which have mean values of R = 1.65 and R = 1.53, respectively. The distinctions between the

encountered structural features are modest over all of the cases examined. In an absolute sense,

all of the trajectories produced R < 2.0 indicating only very mild landscape structural features

(considering that there is no a priori reason for R to be close to 1). Prior experience with state-

to-state transition probability landscapes suggests that ‘straight shot’ trajectories are reserved for

cases with R < 1.05, and a search is generally needed to find a proper E(0, t) to initiate such a

trajectory [22].

A natural question is whether control trajectories that possess low or high R values are con-

centrated in some particular region(s) of control space. As the initial controls in the statistical

sampling considered above were randomly chosen, this assessment directly bears on the investi-

gation of the range of R values encountered. To address this question, Euclidean distances were

calculated between (1) all pairs of initial fields, (2) all pairs of final fields, and (3) all initial and

final fields from the collection of control trajectories for the landscape associated with ρ1 and O1.

These distances were calculated using

dijEL =

[
1

T

∫ T

0
[Ei(t)− Ej(t)]

2dt

] 1

2

(22)

for control fields Ei and Ej, and the results are displayed in Figure 3. Importantly, in computing

these distances, we first used only the 250 trajectories with the lowest values of R out of the

1000 trajectories that were sampled in generating Figure 2(a). Then, separately, we used the 250

trajectories with the highest values of R. In particular, trajectories with R < 1.173 were used

to generate the histograms in Figure 3(a), and likewise with R > 1.256 for the histograms in

Figure 3(b); in both cases the histograms show all possible pairs of distances, with 250 × 249/2 ∼

3.1 × 104 pairs. The distribution of distances between initial fields, in blue, is centered to the

left and narrower than the distribution corresponding to the distances between optimal fields, in

red. This behavior implies that the optimal fields are scattered more widely throughout control

space than the randomly picked initial fields. The histogram in green of the distances between

all initial-final field pairs is centered between the other two distributions. The most significant

feature in Figure 3 is that the distributions are very similar, whether generated from trajectories
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with low values of R (Figure 3(a)) or from trajectories with high values of R (Figure 3(b)). This

result suggests that trajectories with low and high values of R are distributed in the same way

across control space. Thus, straighter, more direct trajectories and those less so are likely to be

equidistant from a trajectory originating from a random initial control field. Similar results have

been observed in other cases with different ρ and O matrices.

5.1.2 Unitary transformation control landscape

Here we consider a four-level quantum system for the target unitary transformation

W =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(23)

with the Hamiltonian and dipole matrices being

H0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−10 0 0 0

0 −7 0 0

0 0 −1 0

0 0 0 8

⎞
⎟⎟⎟⎟⎟⎟⎠

μ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 ±1 ±0.5 ±0.52

±1 0 ±1 ±0.5

±0.5 ±1 0 ±1

±0.52 ±0.5 ±1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(24)

where the random signs on the dipole matrix were again chosen so that it remained symmetric.

A total of 1000 initial fields were randomly chosen according to Eq. (21), with T = 10 and M

set to 20. The initial fields were adjusted as explained in Section 5.1.1 to arrive at a value of

JI
W = 0.99×16 = 15.84, and the final achieved value after optimization was JF

W = 0.01×16 = 0.16.

Thus, in this case we climb down the landscape as a minimization process. Figure 4 is a histogram of

the R values collected in this fashion. The plot is skewed right with a mean of R = 1.41, indicating

that the unitary transformation control landscape contains minimally complex structural features.

The quantum ensemble landscapes considered earlier were for eight level systems, while this unitary

transformation landscape is for a four level system. Together with previous work which observed

that typical R values for generating unitary transformations scales linearly with the number of states

N [27], these findings suggest that the unitary transformation landscape appears to be structurally

similar to the ensemble control landscape with fully nondegenerate ρ and O matrices.

Figure 5 displays the histograms resulting from calculating the pairwise distances between the
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control fields using Eq. (22), as explained in Section 5.1.1. The two sets of control trajectories, each

of size 250, were used to produce the histograms in Figure 5(a) and 5(b) which satisfy R < 1.34

and R > 1.48, respectively. Significantly, the histograms computed with the lowest values of R and

with the highest values of R are almost identical, indicating that trajectories with varying values

of R for generating unitary transformations are distributed in the same way across control space,

as found in Figure 3 for the ensemble control landscape. This result was also found for a five level

state-to-state transition probability landscape [22], suggesting that similar distributions of fields

for high and low R trajectories is a general property of quantum control landscapes.

5.2 Interactions of optimization trajectories with saddle submanifolds

Although the saddle submanifolds of the quantum ensemble and unitary transformation landscapes

are not able to prevent reaching the global optimum, they may still significantly influence the

optimization trajectories. In order to examine the extent to which saddle submanifolds affect the

climb up the landscape, the metrics set out in Section 3.1.3 and 3.2.3 (and Appendices A and B,

respectively) were used to calculate the distance from each point along a landscape climb trajectory

to all critical submanifolds. As examples, the quantum ensemble control landscape was generated

by the initial density matrix ρ2 and observable operator O1 from Table 1, while the unitary control

landscape was generated with W in Eq. (23).

5.2.1 Quantum ensemble control landscape

The values of the critical submanifolds of the system on the quantum ensemble control landscape [21]

of ρ2 and O1 are given by Jmin
O = 0, J1

O = 1
9 , J

2
O = 5

36 , and Jmax
O = 1

4 . Here, J
1
O and J2

O correspond

to saddles, although a trajectory passing through these values may not actually come close to

the associated submanifold of saddle controls. The normalized distances D to these four critical

submanifolds, using Eq. (28), are computed during the optimizations with the lowest and highest R

values out of the 1000 runs performed, which were R = 1.17 and R = 1.59, respectively. The results

are shown in Figures 6(a) and 6(b). The magnitude of the gradient for each trajectory, scaled down

by a factor of 60, is also plotted to show the rate of climbing, as an optimization typically slows down

near a critical submanifold. In Figure 6(a), the run with a small R value does not closely approach

any of the saddle submanifolds. This observation is corroborated by examining the magnitude of
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the gradient, which falls only slightly in the middle of the climb. The gradient is naturally small

near the beginning and end of the climb, where the trajectory leaves (approaches) the critical

submanifolds corresponding to the bottom (top) of the landscape. In contrast, Figure 6(b) shows

that the run with a high R value hovers in the vicinity of the two saddle submanifolds for extended

periods during the climb, indicated by the distance to the first and second saddle manifolds, D1 and

D2, respectively, becoming very small during portions of the run. Concurrently, the magnitude of

the gradient falls sharply in those two areas, recovering only when D2 starts to rise, thus confirming

that the run passed closely by these two saddle submanifolds. Comparison of Figures 6(a) and 6(b)

suggests that control trajectories that are ‘diverted’ to pass closely by saddle submanifolds can

have higher R values.

5.2.2 Unitary transformation control landscape

Figures 6(c) and 6(d) show the distances to the critical submanifolds while traversing the unitary

transformation control landscape using Eq. (29); the magnitude of the gradient (scaled down by

a factor of 20) is also shown. D1, D2, and D3 denote the normalized distances to the saddles

at landscape heights of J1
W = 12, J2

W = 8, and J3
W = 4, respectively, while Dmin and Dmax

denote the normalized distances to the bottom and top critical submanifolds at Jmin
W = 16 and

Jmax
W = 0, respectively. Figure 6(c) corresponds to a run with a low R value of 1.15, and Figure 6(d)

corresponds to a run with a high R value of 1.73. The distances to the saddle submanifolds D1 and

D3 assume lower values during the high R run (as compared to the low R run), and correspondingly

the magnitude of the gradient also dips when the distances to D1 and D3 are at a minimum.

Neither of the trajectories approach the second saddle submanifold, as indicated by the behavior

of D2 on the trajectory. These plots also support the notion that saddle submanifolds are capable

of attracting nearby paths of steepest descent away from proceeding in a direct manner to a global

minimum.

5.3 Hessian-gradient eigen-relation

The results of Section 4 identify that the gradient of the cost functional should be an eigenfunction

of the Hessian along a straight trajectory. Here, we provide evidence to verify the Hessian-gradient

eigen-relation for nearly straight shots found in simulations. In order to illustrate this phenomenon
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as clearly as possible, we consider a simple three level quantum system with Hamiltonian and dipole

matrix

H0 =

⎛
⎜⎜⎜⎝
−10 0 0

0 −5 0

0 0 5

⎞
⎟⎟⎟⎠ μ =

⎛
⎜⎜⎜⎝

0 −1 −0.5

−1 0 1

−0.5 1 0

⎞
⎟⎟⎟⎠ , (25)

and we use the cost functional of Eq. (3), with

ρ =

⎛
⎜⎜⎜⎝
1 0 0

0 0 0

0 0 0

⎞
⎟⎟⎟⎠ O =

⎛
⎜⎜⎜⎝
0 0 0

0 0 0

0 0 1

⎞
⎟⎟⎟⎠ , (26)

corresponding to maximizing the pure state transition probability P1→3(T ) with T = 10. This

landscape contains no saddle submanifolds, and therefore the control trajectories tend to have

smaller values of R. We used the stochastic Particle Swarm Optimization (PSO) algorithm [34, 35]

to locate an initial control E(0, t) taking the form in Eq. (21) with M = 20 that produced a nearly

straight trajectory with R = 1.002. In order to assess whether a lower bound for R (other than 1.0)

might exist, a Derandomized Evolution Strategy (ES) [36, 37] was used in a more extensive search

for a straight path. Using this algorithm together with an n-point Gauss-Legendre quadrature rule

(with n = 1000) to accurately evaluate the integrals in Eqs. (5) and (6) allowed reaching an even

lower value of R = 1.00003. As this result was at the limit of our numerical accuracy, we cannot

rule out the prospect of finding a still lower value of R. Below, the eigen-relation is tested with the

former conservative near straight trajectory of R = 1.002.

We seek to affirm Eq. (17), which states that the gradient function aligns with some eigenfunc-

tion of the Hessian. As in Eq. (17), we simplify notation with the Hessian and gradient given by

H(s) and g(s), respectively, and a ‘dot’ · denotes integration over time t ∈ [0, T ]. Thus, we calcu-

lated ĝ(s) · G(s), where G(s) = H(s) · ĝ(s) is the function resulting from the action of the Hessian

on the unit gradient function, ĝ(s) = δP1→3

δE(s,t)/
(

δP1→3

δE(s,t) ·
δP1→3

δE(s,t)

) 1

2

. In Figure 7, ĝ · G(s) = ĝ · H · ĝ

is plotted versus s as the thick black circles, along with every eigenvalue of the Hessian shown as

the smaller green circles. Intriguingly, at every point on the climb, the black circle overlaps almost

exactly with one of the green circles, suggesting that the gradient function can be identified with

some eigenfunction of the Hessian. The sign of ĝ(s) · G(s) reveals that G and g are parallel at the

beginning of the climb and antiparallel at the end, which is consistent with the assessment discussed
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below Eq. (19)

We will now illustrate the validity of Eq. (17), rewritten in the notation here as ĝ · H · ĝ ≡

ĝ ·G = ρ′′(s)/ρ′(s). This assessment is performed by replotting ĝ(s) ·G(s) versus s in Figure 8 along

with ρ′′(s)/ρ′(s), calculated for this control trajectory. According to Eq. (13), for a R = 1 straight

control trajectory, δP1→3

δE(s,t) = ρ′(s) ΔE(t). Since the trajectory considered here is not exactly straight

with R = 1.002, we determined the average value of ρ′(s) by setting ρ′(s) = 1
T

∫ T

0
δP1→3

δE(s,t)
1

ΔE(t)dt,

where ΔE(t) = E(smax, t) − E(0, t) and ρ′′(s) was then obtained by numerically differentiating

ρ′(s). Examining Figure 8 reveals that ĝ · G 
 ρ′′(s)/ρ′(s) to good accuracy, providing evidence for

the validity of the eigen-relation derived in Section 4.

6 Conclusions

The exploration of landscape structure first performed for the state-to-state transition probabil-

ity [22] is extended in this paper to more general quantum ensemble and unitary transformation

control landscapes. These collective results point towards the existence of simple quantum control

landscape structure, which was first encountered experimentally [26] as well as hinted at by pre-

liminary numerical studies [27, 28].

A special feature of the landscapes considered in this work is the presence of critical subman-

ifolds that possess saddle topology. These submanifolds do not prevent optimization trajectories

from reaching the top of the landscape, but they can have an impact on the search effort, reflected

in the identified R value. We find that the presence of saddle submanifolds on the landscape has

a small but discernible effect on the ease of optimization reflected in the distortion of the control

trajectories. Importantly, the appearance of saddle submanifolds did not cause R to take on values

in excess of 2.0 for the systems examined here, indicating that these quantum control landscapes, in

addition to state-to-state transition probability landscapes [22], possess markedly simple structure.

A condition for the existence of control trajectories with R = 1.0, which would indicate ex-

ceedingly simple landscape structure, was also derived. It was found that in order for the gradient

algorithm to yield a straight trajectory, the gradient function must not only be separable in s and t,

but must also be an eigenfunction of the Hessian. This situation also implies that all higher-order

derivatives of the cost functional possess a common eigenfunction. The eigen-relation may form a

basis to identify the conditions under which exactly straight control trajectories derived from the
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gradient algorithm exist. Additional simulations exploring landscape structure on a wider variety of

landscapes would also allow for a better understanding of the conditions that lead to low values of

R. One direction for further investigation is whether achieving control of unitary transformations,

which requires control over every matrix element in the propagator, leads to higher values of R

than even for the fully nondegenerate ensemble control landscapes. A simple assessment of this

matter was performed for a two level system using an ES algorithm [36, 37] to search for straight

trajectories. For two-level systems, in the cases of maximizing P1→2 we find R − 1 ≤ 10−6, while

for unitary transformation control R = 1.0016 was achieved.

Quantum control landscapes are expected to nominally be very complex, as they are defined

on extremely high dimensional spaces and represent the generally nonlinear relationship, encoded

through Schrödinger’s equation, between the unitary propagator and a dynamical set of controls.

Thus, a natural expectation is that trajectories traveling over these landscapes would require con-

siderable effort to reach an optimal outcome. However, the topology of quantum control landscapes

is very simple when certain reasonable physical assumptions are met, providing one factor to ex-

plain the relative ease of performing optimizations [4, 17, 38, 39]. These topological results are

complemented by the finding in this work of simple landscape structure. This study, along with

Ref. [22], supports the notion that simple structure is a universal and robust property of quan-

tum control landscapes. Collectively, the twofold simplicity of landscape features, encapsulated by

topology and structure, provides a foundation for more clearly explaining the widespread efficiency

of finding optimal controls over quantum phenomena.
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Appendix A Critical submanifolds of the quantum ensemble con-

trol landscape

This Appendix gives a brief overview of the critical submanifolds of the quantum ensemble con-

trol landscape, along with a metric which can be used to determine the distance to all critical

submanifolds from any given point in control space. A complete characterization of the critical

submanifolds is given in Ref. [23].

The analysis of Section 3.1 reveals that at a critical point, [O, ρ(T )] = 0. This condition implies

that the number of critical submanifolds is in one-to-one correspondence with the number of ways

the eigenvalues of ρ = ρ(0) can be permuted such that their overlaps with the eigenvalues of O are

distinct. These permutations are induced by critical propagators U(T, 0), each of which belongs to

a distinct critical submanifold, and can be enumerated using contingency tables [23]. These tables

possess n rows and m columns and can be constructed as follows. First, ρ and O are expressed

in diagonal form with their eigenvalues in descending order. Then, a particular permutation is

applied to the eigenvalues of ρ; such a permutation matrix Uo is associated with the said critical

submanifold. The number of times the eigenvalue λi of ρ overlaps with the eigenvalue εj of O, after

the permutation is applied, is the value cij of the (i, j) entry in the contingency table. The rows of

the contingency table must add up to the sum of the degeneracies of the eigenvalues of O, and the

columns of the table must add up to the sum of the degeneracies of the eigenvalues of ρ. This fact

can be used to easily construct all possible contingency tables and therefore reveal every critical

submanifold along with its associated height on the landscape.

The contingency tables can also be used to calculate a distance to a particular critical sub-

manifold from any point on the landscape. The distance is expressed in terms of the unitary

transformation U [E(t)] corresponding to a particular control field E(t). A short exposition of this

metric is given here; a full discussion is given in Ref. [40]. Consider a point on the landscape gen-

erated by Uo belonging to some critical submanifold; i.e, Uo is a permutation matrix. The matrix

Uo may be divided into blocks {U ij
o }, starting in the upper left corner, of sizes {oi × pj}, where

oi is the degeneracy of the ith eigenvalue of O, and pj is the degeneracy of the jth eigenvalue of

ρ(0), with the eigenvalues arranged in descending order. It can be shown that the singular value

decomposition of each block contains only 0s and 1s, and that for the ijth block of size oi × pj the

number of 1s is equal to cij , which is the entry in the ith row and jth column in the contingency
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table. This fact can be used to specify the distance to each critical submanifold. For each block

and its associated entry cij , define an N ×N diagonal matrix Sij , which has cij values of 1 starting

in the upper left corner in the diagonal:

Sij =

⎛
⎝�cij

0

⎞
⎠ . (27)

To find the distance of an arbitrary unitary matrix U from the critical submanifold Uo, we divide

U into blocks {U ij} in the manner described above. Each block U ij of U is written in its singular

form Σij, with the singular values on the diagonal sorted in descending order. For each block in U ,

we define Vij = Sij − Σij. The distance from U to the critical submanifold of Uo is then

D =

p∑
i=1

o∑
j=1

Tr
(
V †
ijVij

)
, (28)

where p and o are the number of distinct eigenvalues of ρ(0) and O, respectively. It is convenient

to normalize this metric [41]. To do so, the unitary matrix U can be assigned a vector consisting

of the singular values of all of its blocks {U ij}. Since the squares of these singular values sum

to N , each vector can be thought of as lying in the spherical polygon spanned by the vectors

corresponding to the Uo matrices of the critical submanifolds. This formulation implies that the

point which is the greatest distance from a critical submanifold is another vertex, which itself

corresponds to another critical submanifold. By calculating the pairwise distances between all the

critical submanifolds, we can find the maximum distance any point can be from a particular critical

submanifold, and then normalize the metric by dividing all distances to that critical submanifold

by the maximum distance, thereby giving 0 ≤ D ≤ 1. This normalization is used in the results

reported in Figures 6(a) and 6(b).

Appendix B Critical submanifolds of the unitary transformation

control landscape

Here we outline a distance metric for the unitary transformation control landscape; full details are

given in Ref. [40]. Recall, from Section 3.2 that for a unitary transformation Uo corresponding to

a critical point, the eigenvalues of W †Uo are ±1. The distance from an arbitrary unitary matrix U

to a submanifold containing the critical point Uo can be specified by noting that the eigenvalues of
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W †U take values on the unit circle in the complex plane. The ith eigenvalue of W †U is λi, and the

eigenvalues are sorted in ascending order by their real parts. To find the distance to the critical

submanifold which corresponds to α eigenvalues of -1 and N − α eigenvalues of 1 for W †Uo, we

compare the real part of the smaller α eigenvalues of W †U with -1, and the real part of the larger

N −α eigenvalues with 1 [40]. The distance between U and the critical submanifold containing Uo

then is

D =

[
α∑

i=0

(1 + Re{λi}) +

N−1∑
α

(1− Re{λi})

]
/2N. (29)

The maximum distance to a critical submanifold in this case is 2N , and the denominator of Eq. (29)

assures that 0 ≤ D ≤ 1.
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Figures

Figure 1: Illustrative sketch of a quantum control landscape (blue surface) and its underlying control space

(colored contour map), also displayed as the projection onto the plane spanned by two control variables (in

practice many more are used). The vertical axis represents a cost functional J subject to maximization.

The two optimization paths shown, in green, differ in the nature of their R values. The path on the right,

proceeding from E1(0, t) to E1(smax, t), climbs in a direct manner to the top of the control landscape.

Consequently, its projection into control space, in black, has a path length very close to the Euclidean

distance along the straight line between the projection’s endpoints, shown as a magenta dashed line. Thus,

this path’s R value is low. On the other hand, the optimization path on the left, from E2(0, t) to E2(smax, t),

is attracted away from proceeding directly to a maximum by the saddle point at the center of the landscape.

As a result, its projection into control space is much longer than the straight line between its endpoints,

and so this path possesses a higher R value. The paths do not strictly terminate at the top and bottom of

the landscape, as optimizations generally begin and end at values of the cost functional which approximate

Jmin and Jmax, respectively, to acceptable precision.
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Figure 2: The distribution of R values for five different quantum ensemble control landscapes. The cases are

generated using: (a) ρ1 and O1; (b) ρ1 and O2; (c) ρ2 and O1; (d) ρ2 and O2; and (e) ρ3 and O3. For each

of these runs, the Hamiltonian H0 of Table 1 and dipole μ of Eq. (20) were used. All of the distributions

lean towards the left, showing that R tends to accumulate near 1.0. 1000 optimizations were carried out for

each landscape.
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Figure 3: The distributions of pairwise distances between the initial fields, final fields, and initial-final fields

for the landscape generated by ρ1 and O1 from Table 1, respectively. The distances are calculated with

Eq. (22). Plot (a) was produced using the 250 optimizations with the lowest values of R, while plot (b) was

produced using the 250 optimizations that had the highest values of R. The similarity between the two plots

suggests that low R and high R trajectories are distributed in essentially the same way throughout control

space.
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Figure 4: The distribution of R values for a unitary transformation control landscape. 1000 optimizations

were carried out, using the target unitary transformation W of Eq. (23) and Hamiltonian H0 and dipole μ

matrices of Eq. (24). Modest values of R, all less than 2.0, characterize this landscape’s structure as simple.
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Figure 5: The distributions of pairwise distances between initial fields, final fields, and initial-final fields for

the unitary transformation control landscape, calculated using Eq. (22). Plot (a) was produced using the

250 optimizations with the lowest values of R, while plot (b) was produced using the 250 optimizations that

had the highest values of R. The similarity between the sets of distributions in (a) and (b) suggests that low

R and high R trajectories, as well as all of the associated fields, are distributed in the same way throughout

control space.
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Figure 6: In (a) and (b), the distances D to the critical submanifolds (in arbitrary units) are plotted using

Eq. (28) along a low and high R value optimization trajectory, respectively, on a quantum ensemble control

landscape. It can be seen in (b) that the distance to saddle submanifolds 1 and 2 become very small along

the high R trajectory, indicating that the saddles distorted the trajectory by acting as attractors. The

norm of the gradient function along the climb, scaled down by a factor of 60 and shown as the thick green

curve, also noticeably dips in (b), further confirming that saddle submanifolds were encountered. For a

unitary transformation control landscape in (c) and (d), the distances D to the critical submanifolds, using

Eq. (29), are plotted along a low and high R value optimization trajectory. In (c), no saddle submanifolds

are encountered, but in (d) the black and green curves (i.e., for saddles 1 and 3, respectively) dip sharply

along with the norm of the gradient (scaled down by a factor of 20), signaling attraction towards these saddle

submanifolds and resulting in the corresponding high value of R.
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Figure 7: The thick black circles are values of ĝ(s) · G(s) = ĝ(s) · H(s) · ĝ(s) along a nearly straight shot to

the top of a state-to-state transition probability landscape. Here H(s) is the Hessian and ĝ is the normalized

gradient function. The eigenvalues of the Hessian are shown as the smaller green circles, for each point s along

the climb of the landscape. The black circles match with a green circle at each point on the climb, supporting

the identification of the gradient with an eigenfunction of the Hessian. As the associated eigenvalue of the

Hessian changes from positive to negative, the function G(s) = H(s) · ĝ changes from being parallel to

antiparallel to the gradient function.
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Figure 8: A plot of ĝ · G = ĝ ·H · ĝ, which is the factor by which the Hessian H scales the normalized gradient

ĝ. From Eq. (17), along a straight control trajectory we should have ĝ · G = ρ′′(s)
ρ′(s) . Thus, the plot also shows

ρ′′(s)/ρ′(s) evaluated along the gradient landscape climb. The good agreement between the two functions

signifies the validity of Eq. (17) along a straight control trajectory.
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