
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

www.rsc.org/pccp

PCCP

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


The photo-orientation of azobenzene

in viscous solutions, simulated by a stochastic model.

Valentina Cantatore, Giovanni Granucci, Maurizio Persico,

Dipartimento di Chimica e Chimica Industriale, Università di Pisa,
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Abstract We report a computational study of the photo-orientation kinet-

ics in a viscous solution of azobenzene in ethylene glycol, under irradiation

with linearly polarized light. The development of anisotropy and its interplay

with photoisomerization are simulated by a stochastic model. A distinctive

feature of the model is that it takes into account the photo-orientation angu-

lar distributions, specific for each isomer, obtained by nonadiabatic dynamics

simulations at molecular level. We find that the anisotropy, as measured by

optical absorption dichroism, does not necessarily increase monotonously in

time. As expected, the photo-orientation turns out to be strongly coupled

with photoisomerization, but the latter is not a mandatory ingredient of this

phenomenon: we predict that any chromophore undergoing large amplitude

geometry relaxation during its excited state dynamics can develop anisotropy

in suitable conditions.

Keywords: Azobenzene - Photo-orientation - Photoisomerization - Optical

anisotropy - Stochastic simulations
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1 Introduction

The development of anisotropy under irradiation with polarized light occurs

in materials containing suitable chromophores, and in particular azobenzene

and its derivatives [1–13]. The phenomenon of photo-orientation is of poten-

tial interest for technological applications, especially in materials where the

chromophores do interact with each other, so that a phase with some degree

of orientational order is stabilized, as in liquid crystals. In this paper we in-

vestigate a much simpler situation, in which the azobenzene molecules form a

dilute solution in a viscous solvent. Nevertheless, the detailed simulation of

the photo-orientation process, even in the absence of interactions between the

chromophores, reveals non trivial aspects mainly related to the interplay of

photoisomerization and photo-orientation.

The simulations we present are based on the stochastic model described in a

previous paper [14] and shortly outlined in section 2. The model makes use

of rotational diffusion data computed by molecular dynamics in the ground

state, and of angular distributions that describe the reorientation of trans and

cis-azobenzene (TAB and CAB, respectively), when they undergo a photo-

cycle, i.e. excitation and decay to the ground state with or without isomer-

ization. The latter data were extracted from nonadiabatic dynamics simula-

tions, run with the surface hopping method, concerning the π → π∗ excitation

of azobenzene [15]. Potential energy surfaces (PES) and wavefunctions were

obtained on the fly by the semiempirical FOMO-CI method, specifically pa-

rameterized to this aim [16]. To the best of our knowledge, this is the first

approach to the photo-orientation problem that relies on angular distributions

computed in detail by molecular dynamics, rather than assuming simplified

models with parameters that can be empirically adjusted [17–21]. While our

procedure consists of two steps, first the single chromophore dynamics, then

the photoisomerization and photo-orientation kinetics, a single-step strategy

was proposed by Doltsinis and coworkers to simulate the behavior of mesogenic

azo-compounds [22]. In their approach, for most of the time the system is de-

scribed by atomistic or even coarse grained Molecular Dynamics, but upon

photon absorption a chromophore is temporarily promoted to the status of

quantum mechanical subsystem in a QM/MM treatment. An important ad-

vantage of this procedure is that the interactions between chromophores can

be accounted for. On the other hand, our method is less computer intensive

and allows to obtain a better statistics (large molecular samples and many
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photochemical cycles) and to perform longer simulations.

In section 3 we shall comment upon the rotational diffusion data and how they

are affected by the internal dynamics of azobenzene. The photochemical reori-

entation results and their relationship with photoisomerization are presented

in section 4. Section 5 describes two kinds of simulated experiments, one with

long light pulses that allow to reach the photostationary state, and one with

100 ps pulses, followed by relaxation towards the isotropic state.

2 Model and computational details

Here we shortly outline the stochastic model we apply in this work; for a

detailed description, we refer the reader to a previous paper [14]. We consider

a large set of molecules labelled m, each characterized by its time-dependent

orientation Ωm(t), i.e. by the three Euler angles αm, βm and γm [23]. The

molecular frame x̂, ŷ, ẑ, connected to the laboratory frame X̂, Ŷ , Ẑ by the

rotation Ωm, is defined by a rule that applies to the equilibrium structures of

the two isomers as well as to any intermediate and non symmetric geometry

(see Fig. 1 and Appendix A). Only the azo-group C′N′N′′C′′ atoms are taken

into account in defining the molecular axes. The nitrogen atoms lie on the

x̂ axis and, at C2 or C2h geometries, the ẑ axis always coincides with the

Figure 1: trans and cis-azobenzene (TAB and CAB), the associated molecular
frames and the π → π∗ transition dipole moments.
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Table 1: Transition energies ∆E0,n (eV) and dipole moments ~µ0,n (a.u.) for the
S0 → Sn absorption of trans and cis-azobenzene in vacuo, obtained by FOMO-
CI [16] at the ground state equilibrium geometries.

TAB CAB
n ∆E0,n µ0,n,x µ0,n,y µ0,n,z ∆E0,n µ0,n,x µ0,n,y µ0,n,z

1 2.83 0.00 0.00 0.00 2.89 -0.31 0.42 0.00
2 4.04 2.34 2.36 0.00 4.59 0.00 0.00 0.43
3 4.22 0.00 0.00 0.00 4.88 1.39 -0.49 0.00
4 4.24 1.21 -0.04 0.00 4.98 1.35 0.59 0.00

symmetry axis.

The modules and directions of the transition dipole moments are such that

the polarization of the strongest transitions is practically parallel to the line

joining the two para carbon atoms in both isomers, i.e. to the longer axis of

inertia in TAB and to the N=N bond in CAB, as shown in Table 1 and Fig.

1 (however, in CAB the S0 → S3 and S0 → S4 transitions also have minor

components along the ŷ axis).

At the beginning of the simulation (t = 0) the molecular orientations Ωm are

distributed isotropically. All molecules are in the ground state and undergo

rotational diffusion. The rotational diffusion data were extracted from a long

thermal trajectory for each isomer of azobenzene in ethylene glycol, a moder-

ately viscous solvent, at 300 K [14] (see next section for a discussion on the

mobility of azobenzene in the solvent cage). The data were put in the form of

two Ωrd,I time sequences, describing the thermal reorientation of each isomer

I (I = TAB or CAB) in the ground state. At t = 0, for each molecule m we

pick up at random a time t0 along the thermal trajectory and we propagate

the orientation Ωm(t) according to the time sequence Ωrd,I(t − t0) (here I is

the starting isomer).

We model the action of a continuous wave radiation field, linearly polarized

along the Ẑ axis (laboratory frame). The absorption rate per molecule of

isomer I in an isotropic sample is

〈AI(λ)〉iso =
1000 ln(10) εI(λ) F

NA∆E(λ)
(1)

Here λ is the wavelength and F is the irradiance in W/cm2 of the monochro-

matic light; ∆E = hc/λ is the photon energy and NA is Avogadro’s number.

3
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The experimental extinction coefficients εI(λ) for TAB or CAB are used, to

obtain a more accurate dependence of the simulation results on the excitation

wavelength λexc. The excitation probability of a molecule m with orientation

Ωm during the time step ∆t is assumed to be:

Pexc(Ωm) = 〈AI(λexc)〉iso
3µ2

m,0,n,Z

µ2
m,0,n

∆t (2)

The ratio µ2
m,0,n,Z/µ

2
m,0,n takes into account the effect of light polarization. The

Z component of the transition dipole ~µm,0,n depends on the orientation Ωm of

the molecule. Of course ~µm,0,n also depends on the molecular geometry, but

the π → π∗ transition dipoles are not very sensitive to conformational changes,

unlike the n → π∗ one in TAB [24]. The π → π∗ band of azobenzene is made

of at least three transitions, to S2, S3 and S4, so in our nonadiabatic dynamics

simulations each photochemical trajectory starts with a vertical transition to

one of these states. The initial state is determined by a sampling procedure,

that takes into account the squared transition dipoles [15].

At each time step, we assign the ~µm,0,n vector to molecule m, by pre-emptively

picking up at random a photochemical trajectory in the database of the ap-

propriate isomer I. We then use the initial transition dipole moment associ-

ated with that trajectory to compute the Pexc(Ωm) probability by eq. (2). If

Pexc(Ωm) turns out to be larger than a random number drawn in the range

[0, 1], the molecule m is excited and starts evolving according to the precom-

puted photodynamics. This affects its orientation, as well as the transition

energies and dipole moments. Moreover, during the photochemical trajectory

the molecule can go back to the initial isomer I or switch to the other iso-

mer (unreactive or reactive trajectories, respectively). The quantum yields

we obtained from the π → π∗ photodynamics in ethylene glycol [15], i.e. the

fractions of reactive trajectories, are ΦTAB→TAB = 0.24 and ΦCAB→TAB = 0.55.

The last part of a photochemical trajectory represents the hot ground state

dynamics that contributes significantly to the light induced reorientation. In

the surface hopping single molecule dynamics each trajectory had a minimum

duration, after which it was stopped when two conditions were met: to be in

the electronic ground state, and to be geometrically close to the equilibrium

structure of one of the two isomers. The duration of most trajectories was

between 1 and 3 ps. At the end of a photochemical trajectory the molecule

reverts to the rotational diffusion dynamics, by picking up the thermal trajec-

tory of the isomer I or I ′, as appropriate, at a random time t0 as done at the

4
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beginning of the simulation.

Summarizing, the whole simulation procedure consists of three parts, the first

and second being described in detail in previous papers [15, 25]:

(1) Ground state dynamics, run by a QM/MM representation of azobenzene

in a cluster of solvent The force field for the solvent (ethylene glycol) was a

modified OPLS [25] and the QM-MM interactions were parameterized on

the basis of MP2 calculations [16]. The rotation of the molecular frame

during each time step is recorded to build up the rotational diffusion

database, which is illustrated in section 3.

(2) Excited state dynamics, run by the same QM/MM approach. State-

specific solute-solvent interactions were taken into account by electrostatic

embedding [26]. The nonadiabatic dynamics is deeply affected by S2/S1

and S1/S0 conical intersections [15]. The rotations of the molecular frame

computed for several hundreds trajectories starting with each isomer con-

stitute the photo-induced reorientation database, analyzed in section 4.

(3) Photo-orientation and photoisomerization kinetics, computed by the

stochastic method described above. Each molecule rotates according to ei-

ther the rotational diffusion or the photo-induced reorientation database.

It switches in time from the former to the latter stochastically, according

to the excitation probability that depends on the angle between the tran-

sition dipole and the light polarization. Every time a molecule is excited,

the photochemical trajectory is picked up at random, so it may or may not

involve isomerization. When it ends, the molecule resumes the thermal

rotational diffusion.

In this work the number of molecules in the sample was NM = 3732480. The

time step was ∆t = 0.5 ps. At every time step we counted the number NI

of molecules belonging to each isomer I and the corresponding fractions FI =

NI/NM . We also computed the densities ρI(Ω, t) that represent the anisotropy

of the molecular orientations for each isomer. Each density is normalized to 1,

to facilitate the comparison of ρTAB and ρCAB:

∫

ρI(Ω, t)dΩ =
∫ 2π

0
dα
∫ π

0
sinβdβ

∫ 2π

0
dγ ρI(α, β, γ, t) = 1 (3)

The reduced densities, functions of α, β or γ only, are more easily represented

and interpreted; they are defined as:

ρα,I(α, t) =
∫ π

0
sinβdβ

∫ 2π

0
dγ ρI(Ω, t) (4)

5
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ρβ,I(β, t) =
∫ 2π

0
dα
∫ 2π

0
dγ ρI(Ω, t) (5)

ργ,I(γ, t) =
∫ 2π

0
dα
∫ π

0
sinβ dβ ρI(Ω, t) (6)

The computational details can be found in our previous work [14].

The angular distributions offer a complete description of the anisotropy, that

may affect structural [3–5,8,11,13], optical [6,7,9,10] or magnetic [4,12] prop-

erties. One of the easiest ways to probe the anisotropy is to measure the optical

dichroism. In this work we predict the time evolution of the dichroic ratio

Rtot(λprobe) =

〈

A‖(λprobe)
〉

−
〈

A⊥(λprobe)
〉

〈

A‖(λprobe)
〉

+ 2
〈

A⊥(λprobe)
〉 (7)

where
〈

A‖(λprobe)
〉

and 〈A⊥(λprobe)〉 are the absorbance rates, averaged over

the sample, for light of wavelength λprobe, linearly polarized in the same direc-

tion as the exciting light, or perpendicular to it, respectively. We compute the

dichroic ratio RI for each isomer I by using an expression similar to eq. (7)

and the absorbance rates

〈

A‖

〉

I
=

3 〈AI(λprobe)〉iso
NI

∑

m∈I

µ2
m,0,n,Z

µ2
m,0,n

(8)

and

〈

A⊥

〉

I
=

3 〈AI(λprobe)〉iso
NI

∑

m∈I

µ2
m,0,n,X + µ2

0,n,Y

2µ2
m,0,n

(9)

Here the sums run over the molecules m of the isomer I. The state n is

chosen according to a mixed resonance and transition strength criterion, i.e.

by maximizing the quantity

µ2
m,0,n



1 + α2

(

1−
∆Em,0,n

∆E(λprobe)

)2




−1

(10)

The parameter α determines the bandwidth and we chose α = 5. Since
〈

A‖

〉

I
+ 2

〈

A⊥

〉

I
= 〈AI〉iso (11)

6

Page 7 of 27 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



and
〈

A‖

〉

=
∑

I

FI

〈

A‖

〉

I
,

〈

A⊥

〉

=
∑

I

FI

〈

A⊥

〉

I
(12)

the total dichroic ratio is a weighted average of those of the two isomers [27]:

Rtot =
FTAB 〈ATAB〉iso RTAB + FCAB 〈ACAB〉iso RCAB

FTAB 〈ATAB〉iso + FCAB 〈ACAB〉iso
(13)

To simulate the simplest experiment of this kind, that could be performed with

a single laser source, in this work we chose λprobe = λexc.

3 Rotational diffusion.

The rotational diffusion of TAB and CAB presents some peculiar features,

that are due at least in part to the internal motions of the two molecules.

Of course, all the large amplitude motions, both the internal ones and the

overall rotations, take place so as to be minimally hindered by the solvent

cage, i.e. without disrupting it. Figure 2 shows the time dependence of the

scalar products of each molecular axis at time t with the same axis at time

0, n̂(t) · n̂(0) ≡ cosθn, where θn(t) is the angle between n̂(t) and n̂(0) (n̂ =

x̂, ŷ or ẑ). In Figures S1 and S2 (Supplementary Information) we plot the

autocorrelation functions

〈P1,n〉 (t) = 〈n̂(t0) · n̂(t0 + t)〉 (14)

and

〈P2,n〉 (t) =
1

2

〈

3[n̂(t0) · n̂(t0 + t)]2 − 1
〉

(15)

Here the average is performed with respect to the starting time t0. In Table 2

we list the parameters of a three-exponential function we use to fit 〈P1,n〉 (t)

and 〈P2,n〉 (t):

f(t) =
3
∑

i=1

wie
−t/τi (16)

In the fitting we fixed the weights wi, in order to decouple the three time

ranges that characterize more or less neatly all the autocorrelation functions

we examined. The shortest time τ1, between 0.1 and 0.25 ps, corresponds to

7

Page 8 of 27Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



Figure 2: Cosine of the angle θn between the molecular axis n̂(t) and the same at
t = 0, n̂(0) (n̂ = x̂, ŷ or ẑ).
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the fast oscillations of the cosines n̂(t) · n̂(0) (Figure 2), that must be related

to large amplitude internal modes of azobenzene. τ1 was graphically adapted

to represent the initial drop of the 〈P1,n〉 and 〈P2,n〉 values, without optimizing

it because of the non-exponential behaviour we found in this time range.

For TAB the observed oscillations in cosθn correspond to frequencies of roughly

100 cm−1. In this range we find the antisymmetric (Bu) NNC bending mode

(95 cm−1) and the antisymmetric (Bg) torsion of the N-C bonds, i.e. the

“pedalling” motion (113 cm−1). The Bu NNC bending motion affects the

orientation of the x̂ and ŷ axes, while the Bg N-C torsion rotates all three

axes. When the pedalling goes as far as half a turn, the ẑ axis is reversed,

while x̂ and ŷ rotate by about 90◦. This is the reason of the sudden large

and simultaneous changes in the three cosθn values. As illustrated in Figure

8
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Table 2: Parameters of the three-exponential function, eq. (16), used to fit the
〈P1,n〉 and 〈P2,n〉 autocorrelation functions of the molecular axes. Times in ps.

function w1 τ1 w2 τ2 w3 τ3
TAB 〈P1,x〉 0.08 0.10 0.50 19 0.42 360
TAB 〈P1,y〉 0.09 0.10 0.50 16 0.41 320
TAB 〈P1,z〉 0.10 0.10 0.60 17 0.40 340
CAB 〈P1,x〉 0.04 0.20 0.35 42 0.61 630
CAB 〈P1,y〉 0.04 0.20 0.40 39 0.56 510
CAB 〈P1,z〉 0.04 0.20 0.40 39 0.56 460
TAB 〈P2,x〉 0.20 0.10 0.35 9.2 0.45 80
TAB 〈P2,y〉 0.22 0.10 0.36 9.1 0.42 95
TAB 〈P2,z〉 0.24 0.10 0.36 10 0.40 63
CAB 〈P2,x〉 0.12 0.25 0.60 39 0.28 230
CAB 〈P2,y〉 0.12 0.25 0.70 38 0.18 430
CAB 〈P2,z〉 0.12 0.25 0.75 41 0.13 620

3, the conversion between the two equivalent conformations of TAB only in-

volves a modest displacement of the N atoms, leaving almost unchanged the

orientation of the long axis of the molecule (n̂long) because of the constraints

imposed by the solvent cage. In this way, the dipole moment relative to the

strongest transition (S0 → S2) is almost unaffected by the pedalling motion.

The frequent occurrence of such reorientation events determines the τ2 time

constants, that fall in the 10-20 ps range. The longer τ3 times are probably

associated with the slower drift of the orientation of the molecular frame, that

is apparent between two pedalling events.

The rotational diffusion of CAB is overall slower than that of TAB. The fast

oscillations in the cosθn(t) functions and the initial drop of the autocorrelation

functions are less important (compare the insets in Figures S1 and S2). The

reason is that the lowest frequency motions (N=N bond torsion, symmetric

C-N torsion and NNC symmetric bending) have little effect on the orientation

of the molecular axes. The symmetric torsion of the C-N bonds converts the

two enantiomeric forms of CAB into each other with small displacements of

the azo-group atoms C′N′N′′C′′, as shown in Figure 3. Apparently the motion

most compatible with the solvent cage is an overall rotation around an axis

n̂ph−ph roughly parallel to x̂ but closer to the center-of-mass of the molecule

and going through both phenyl rings (see again Figure 3). This rotation affects

9
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the direction of the ŷ and ẑ axes, but is less frequent than the TAB pedalling

events (compare the two panels of Figure 2, being aware of the different time

scales). These observations explain why all the time constants of CAB, shown

in Table 2, are longer than the corresponding ones of TAB.

Figure 3: Internal motions and overall rotations of TAB and CAB.

TAB pedalling

CAB enantiomerization

CAB rotation

4 Photo-orientation angular distributions.

The photo-orientation data employed in the present simulations were drawn

from our previous study on the π → π∗ photodynamics in ethylene glycol [15].

In that work we examined the mechanism of excited state decay and photoi-

somerization in vacuo and in solution. As observed in section 3 with regard to

the rotational diffusion, also the photoinduced large amplitude motions take

place are somehow hindered and limited by the solvent cage. For instance,

the trans → cis photoisomerization mechanism is essentially a torsion of the

N=N double bond, assisted by concerted torsions of the N-C bonds in order

10
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Table 3: Autocorrelation functions 〈P1,n〉 (t) and 〈P2,n〉 (t) of the molecular axes,
according to eqs. (14) and (15), as in the thermal case. With t=final we indicate
the same functions computed for the final molecular frame of each trajectory. For
comparison we also list the values of the autocorrelation functions for the thermal
trajectories at t = 1 and t = 2 ps.

kind of trajectories t (ps) 〈P1,x〉 〈P1,y〉 〈P1,z〉 〈P2,x〉 〈P2,y〉 〈P2,z〉
TAB excitation, reactive 1 0.66 -0.16 -0.31 0.21 0.09 0.49
TAB excitation, unreactive 1 0.63 0.74 0.39 0.33 0.45 0.41
TAB excitation, all trajs. 1 0.63 0.53 0.22 0.31 0.3 0.43
TAB excitation, reactive final 0.61 -0.31 -0.44 0.09 -0.11 0.35
TAB excitation, unreactive final 0.61 0.75 0.38 0.32 0.45 0.40
TAB excitation, all trajs. final 0.61 0.49 0.18 0.27 0.32 0.39
TAB, thermal 1 0.87 0.86 0.84 0.74 0.72 0.70
TAB, thermal 2 0.83 0.81 0.79 0.69 0.68 0.65
CAB excitation, reactive 1 0.65 -0.03 -0.08 0.16 -0.14 0.26
CAB excitation, unreactive 1 0.95 0.79 0.81 0.86 0.66 0.73
CAB excitation, all trajs. 1 0.78 0.34 0.32 0.47 0.22 0.47
CAB excitation, reactive final 0.62 -0.04 -0.11 0.10 -0.19 0.24
CAB excitation, unreactive final 0.97 0.86 0.87 0.92 0.71 0.73
CAB excitation, all trajs. final 0.78 0.36 0.33 0.47 0.21 0.46
CAB, thermal 1 0.95 0.95 0.95 0.87 0.86 0.86
CAB, thermal 2 0.94 0.94 0.94 0.84 0.83 0.83

to displace as little as possible the phenyl groups. Such solvent imposed con-

straints determine the reorientation of the molecular frame during a cycle of

photoexcitation and decay to the ground state, with or without isomerization.

Figure 4 shows the distribution of reorientations obtained by comparing the

initial and the final molecular frame for all the photochemical trajectories (619

starting from excited TAB and 557 from CAB). At the beginning of each tra-

jectory the molecular axes conventionally coincide with the lab ones. For each

molecular axis we show the components it has eventually acquired along the

two other laboratory axes (Y and Z for x̂ and so on), using a red dot if the

trajectory is reactive, or a blue one if it is unreactive.

In Table 3 we list the values of the autocorrelation functions 〈P1,n〉 (t) and

〈P2,n〉 (t) of the molecular axes along the photochemical trajectories, defined

by eqs. (14) and (15), with t = 1 ps. The only difference with respect to
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Figure 4: Rotation of the molecular frame due to a photochemical event (photon
absorption and decay to the ground state, with or without isomerization). Each
dot represents two components of a molecular axis at the end of a photochemical
trajectory (the initial molecular frame coincides with the lab frame). The label in
the top right corner of each panel indicates the molecular axis. Red and blue dots
indicate reactive and unreactive trajectories, respectively.
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ground state rotational diffusion is that we also compute the averages of data

concerning the final times of all trajectories. Since the average length of a tra-

jectory is 1.28 ps for TAB and 1.35 for CAB, we list for comparison the values

of the autocorrelation functions of the thermal trajectories at t = 1 and t = 2

ps. The higher autocorrelation values obtained for the thermal dynamics, even

at t = 2 ps, confirm that the photocycle is much more effective in reorienting

the molecular frame than an equivalent time spent in the ground state at 300

K. From Table 3 and from Figure 4 we also see that the reactive trajectories

are more effective than the unreactive ones, with the notable exception of the
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x̂ axis of TAB.

Inspection of the upper panels of Figure 4 shows that the simplest reorienta-

tion of the molecular frame caused by TAB excitation concerns the unreactive

trajectories, and is a rotation around the long axis of the molecule, n̂long. Since

the x̂ and ŷ axes make angles of about 45◦ with n̂long, they describe cones in

space, that correspond to annular distributions of blue dots. The ẑ axis is in-

stead perpendicular to n̂long, so it rotates approximately in a plane and yields

a “diagonal” distribution, with dots close to the bisectors of the I and III quad-

rants. Similarly, the unreactive events promote the rotation of CAB around

the n̂ph−ph axis roughly parallel to x̂, so the latter is relatively unaffected,

while ŷ acquires a Z component and ẑ a Y one. All these distributions show

the maximum density of dots around the center of the diagram (no rotation).

On the contrary, the reactive trajectories produce some well-defined reorienta-

tions. In the trans → cis conversion, the double bond torsion pulls the two N

atoms in opposite directions along the Ŷ axis, so the N-N axis, i.e. x̂, acquires

a negative Y component; at the same time, a rotation of the whole molecule

can take place, similarly to the unreactive case, around the n̂long axis of the

starting isomer TAB or the n̂ph−ph axis of the final isomer CAB (note that

the two axes are practically parallel): this produces the annular distribution

of red dots in the ŷ diagram, and the diagonal one in the ẑ diagram. Finally,

the cis → trans photoisomerization too initially displaces the x̂ and ŷ axes

so that x̂ acquires a positive Y component and ŷ a negative X component; in

addition, an overall rotation occurs about the long axis of the TAB reaction

product, i.e. essentially about the lab axis X̂, so both x̂ and ŷ describe cones

in space, that appear as a ring in the x̂ diagram and a crescent in the ŷ one;

ẑ instead rotates in the Y Z plane, so the red dots make a vertical band in the

corresponding diagram.

The data of Table 3 and of Figure 4 describe in detail the photo-orientation of

azobenzene in three dimensions, i.e. a structural information which is related

with the change in the direction of the transition dipoles. However, to inter-

pret the development of the optical anisotropy, it is preferable to consider a

set of data directly concerning the transition moments themselves. Thus, we

computed the vector autocorrelation values

〈P2,µ〉 =
1

2





3

〈

(

~µ(i) · ~µ(f)
)2

(µ(i))
2
(µ(f))

2

〉

− 1





 (17)
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Here the average is taken over the reactive or the unreactive trajectories, sep-

arately. ~µ(i) is the transition moment concerning the initial excitation for a

given trajectory, which is set once for all by the sampling procedure for the

initial conditions [15]. ~µ(f) is one of the S0 → Sn transition moments at the

end of the trajectory. If the trajectory is unreactive, Sn is the same state as at

the beginning, otherwise we choose the transition with the largest
(

µ(f)
)2
. In

this way we average over the initial-to-final scalar products of the transition

moment versors, with weights proportional to the squared modules of the final

vectors
(

µ
(f)
0,n

)2
.

The computed data are: for TAB excitation, reactive events, 〈P2,µ〉 = 0.17,

and unreactive events, 0.76; for CAB excitation, reactive, 0.22, and unreactive,

0.57. The positive sign of these values indicates a prevalence of conservation

of the initial orientation of the polarization, even when photoisomerization

occurs. If we compare the dipole autocorrelation data 〈P2,µ〉 for unreactive

trajectories with the final 〈P2,n〉 values of Table 3, we see that in the TAB

case the autocorrelation of the transition dipole vectors is larger than that of

the molecular axes: this is due to the fact that the largest transition dipole is

parallel to the long axis of the molecule. For CAB, the dipole autocorrelation

is instead smaller than the structural one, probably because we average over

three transitions of similar importance but different polarizations. For the

reactive trajectories the dipole autocorrelation values are slightly higher than

the average of 〈P2,n〉 over the three axes, for both TAB and CAB.

5 Simulations of the photo-orientation

kinetics.

We performed two kinds of simulated experiments, one with a short pulse (100

ps) and one with a much longer one, such as to reach the photostationary

state. The standard irradiance was F = 10 Gw/cm2, but we also ran some

tests with different values of F . Within the π → π∗ bands (250-330 nm) the

molar extinction coefficients εTAB and εCAB show large variations, and even

more their ratio. We ran simulations with two wavelengths, λexc = 313 nm and

λexc = 254 nm, that correspond to very different photoconversion rates: higher

for the trans → cis isomerization at 313 nm, and for the cis → trans one at

254 nm. Table 4 shows the basic optical and kinetic data. The excitation,
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photoconversion and energy absorption rates are all computed for isotropic

conditions. In particular, the maximum absorbed power W is given for the

isomer with the higher absorption coefficient. In the worst case W = 4.5 kcal

mol−1 ps−1, or twice this value with F = 20 GW/cm2, which is the largest

irradiance we tried. This means that the concentration of azobenzene should be

at most 10−4 M, to ensure that heating is negligible after 1000 ps of irradiation.

Figure S3 shows the time dependence of the cis isomeric fraction FCAB, with

a long light pulse. In all cases, FCAB is a monotonous function of time tending

to a constant asymptote. Of course, the net trans → cis isomerization rate is

higher with λexc = 313 nm than with 254 nm. As in normal reversible pho-

tochemistry without competition by thermal reactions, higher irradiances just

accelerate the process, without affecting the photostationary state to a good

approximation. However, one can notice a small decrease in the asymptotic

values of FCAB as the irradiance increases (see Table 5 for numeric data). This

is due to the anisotropy, that is more pronounced at higher irradiances, result-

ing in a weaker absorption rate with respect to the isotropic case. Since TAB

Table 4: Optical and kinetic data for the irradiance F = 10 GW/cm2 and two
excitation wavelengths.

λexc = 313 nm λexc = 254 nm
εTAB, M

−1 cm−1 22020 2450
εCAB, M

−1 cm−1 2940 6900
TAB excitation rate, ps−1 0.044 0.005
CAB excitation rate, ps−1 0.006 0.017
trans→cis
cis→trans

conversion rate ratio 3.23 0.12
maximum absorbed power, kcal mol−1 ps−1 4.50 1.92

Table 5: Photostationary state in different conditions. Final times tf in ps, wave-
lengths λexc in nm, irradiances F in GW/cm2.

type of run λexc F tf FTAB FCAB RTAB RCAB Rtot

regular 313 5 2000 0.259 0.741 -0.049 -0.005 -0.038
regular 313 10 1000 0.266 0.734 -0.067 -0.013 -0.052
regular 313 20 1000 0.275 0.725 -0.091 -0.032 -0.075
no isom. 313 10 1000 1.000 0.000 -0.068 — -0.068
regular 254 10 1000 0.891 0.109 -0.032 -0.015 -0.027
no isom. 254 10 1000 1.000 0.000 -0.027 — -0.027
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Figure 5: Dichroic ratios as functions of time, with λexc = 313 nm and 254
nm, long irradiation.
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is more anisotropic than CAB, for reasons we shall see later, the trans → cis

photoisomerization rate is more affected than the cis → trans one. With a

100 ps pulse, the FCAB value just remains constant after t = 100 ps, because

the thermal cis → trans conversion rate is negligible in this context and we

have not taken into account this process.
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Figure 6: Reduced densities as functions of the β and γ angles, from the simulations
with F = 10 GW/cm2, at t = 100 ps.
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In Figure 5 we plot the dichroic ratios as functions of time, with F = 10

GW/cm2. Similar results for F = 5 and 20 GW/cm2 are shown in Figure S4.

The two most prominent features are that the contributions of the two isomers

to the dichroic ratio are of opposite sign for long intervals of time, and that the

dichroic ratios are not necessarily monotonous functions of time. More detailed

information about the anisotropy is contained in the full and reduced density

functions: in Figure 6 we display ρβ,I and ργ,I at t = 100 ps, a time where

Rtot is close to its maximum in the simulation with λexc = 313 nm and F = 10

GW/cm2. Note that α is the rotation angle of a molecule around the lab axis Ẑ.

Since the light is Ẑ-polarized, the problem is cylindrically symmetric around

the Ẑ axis, so no anisotropy is developed as a function of α, and this is why we

only plot ρβ,I and ργ,I . To understand the results of Figures 5, 6 and S4, we can

start with a generally accepted mechanism [1–3, 9–11, 18–21]: molecules with

large projections µ0,n,Z of the transition dipole on the light polarization axis

(here Ẑ) enjoy higher excitation rates than those with small µ0,n,Z . Therefore

a net transfer of population occurs from the orientations Ω corresponding to

large µ0,n,Z to those with small µ0,n,Z , counteracted and eventually balanced

by rotational diffusion. The dichroic ratio measured at λprobe = λexc must

then be negative. This mechanism seems to describe adequately the effect of

unreactive events. Many authors underline that, with a similar mechanism,
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photoisomerization must boost the development of anisotropy, because it is

likely to cause larger reorientations [1–3, 9–11]. A formal analysis of several

hypothetical models including photoisomerization was offered by Dumont [19].

As we shall see, actually photoisomerization can play different roles: we start

by noting that, while the starting isomer (TAB) exhibits a negative dichroic

ratio at all times, RCAB stays at positive values for few to several hundreds of

ps.

A deeper insight can be gained by discussing the β and γ distributions. β is

the angle between the ẑ and the Ẑ axes. At the equilibrium geometries of both

isomers, all the π → π∗ transition dipoles are orthogonal to the ẑ axis, with

the exception of the weak S0 → S2 transition of CAB. Therefore, at β close to

0◦ or 180◦ (“high latitudes”) we find low excitation rates, while near β = 90◦

(“low latitudes”) the rates are in the average higher. Within each isomer,

i.e. considering the unreactive events only, this gradient of excitation rates

results in a migration of molecules from low to high latitudes. For the same

reason, the molecules with β far from 0◦ or 180◦ tend to rotate around the ẑ

axis (γ angle) so as to orient the transition dipole perpendicular to the light

polarization: for TAB, this means γ ≃ 135◦ or 315◦, while CAB should prefer

γ = 0◦ or 180◦. In Figure 6 we see that both the β and the γ distributions of

TAB conform to this description, while those of CAB plainly contradict it.

To fully understand the simulation results, we must consider three processes

that affect the orientational distribution of each isomer: unreactive photoex-

citations (UP), i.e. photocycles going back to the initial isomer; reactive pho-

toexcitations (RP), i.e. successful photoisomerizations; and ground state rota-

tional diffusion (RD). As already discussed, the UP process tends to transfer

population from orientations where the transition dipole components µ0,n,Z are

large to those where they are smaller, within each isomer; RD, of course, coun-

teracts the building up of any kind of anisotropy. RP affects the anisotropy

of both isomers, the reagent and the product of the photoisomerization. As

we have seen at the end of section 4, even in the case of reactive events, small

changes of the (unsigned) direction of the most important transition dipoles are

more likely than large changes (here the boundary between “small” and “large”

can be assumed to be the magic angle θm ≃ 54.7◦, such that P2(θm) = 0).

Therefore, the TAB molecules that photoisomerize, having in most cases large

µ0,n,Z components, produce a CAB population with RCAB > 0 and a distri-

bution of orientations with maxima at β = 90◦ and γ = 0◦ or 180◦. This

effect of the RP process prevails at short times, because all the CAB molecules
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have been freshly produced by photoisomerization. RP also contributes to

the increase of |RTAB|, by selectively removing from the TAB population

the molecules with large µ0,n,Z . If we compare ρβ,I and ργ,I obtained with

λexc = 313 or 254 nm, we see that the CAB densities are quite similar, while

in the case of TAB the maxima and minima appear at the same angles but

are much more pronounced with λexc = 313 nm. The different behaviour of

the two isomers is due to the fact that the CAB population is generated by

the RP process and is anisotropic since the very beginning, while the TAB

one is initially isotropic and the development of its anisotropy depends on the

absorption rate.

As the CAB population builds up, its own UP process gains importance, so

its dichroic ratio decreases and becomes eventually negative. Of course, also

the cis → trans photoisomerization rate increases in time, and its effect on

the anisotropy is similar to that of the trans → cis conversion, but opposite

in sign: i.e. it gives a positive contribution to RTAB and a negative one to

RCAB. Summarizing, when the two isomers coexist, the dichroic ratio of each

of them is pushed towards (more) negative values by its own UP and RP

processes and in the opposite direction by the RP process originated by the

other isomer. Of course RD always tends to decrease in module the dichroic

ratios. The effectiveness of the opposite UP and RP contributions depends,

among other factors, on the relative abundance of the two isomers. So, as

FCAB/FTAB steadily increases, RTAB is more and more influenced by CAB’s

RP, and after going through a negative minimum can decrease in absolute

value. This behaviour is actually observed with λexc = 313 nm, but not with

λexc = 254 nm, because in the latter case the fraction of CAB increases more

slowly and remains lower.

At the photostationary state, the rates of trans → cis and cis → trans

photoconversion are equal, i.e.

ATAB ΦTAB→TAB = ACAB ΦCAB→TAB (18)

where AI is the absorption rate of isomer I. Then, the RP processes starting

from TAB and from CAB create anisotropy of the other isomer approximately

at the same rate, and the less abundant isomer tends to be more affected by

the photoisomerization of the other one: of course, the isomeric ratios depend

on λexc. On the contrary, the UP mechanism is always more effective for TAB

than for CAB, because of the different quantum yields. The rates of unreactive
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Figure 7: Dichroic ratios as functions of time, with λexc = 313 nm and F = 10
GW/cm2, 100 ps irradiation.

Rtot

RCAB

RTAB

time (ps)

d
ic
h
ro
ic

ra
ti
o
R

300250200150100500

0.25

0.2

0.15

0.1

0.05

0

-0.05

-0.1

-0.15

events, UTAB and UCAB, are in a fixed ratio at the photostationary state:

UTAB

UCAB

=
ATAB (1− ΦTAB→TAB)

ACAB (1− ΦCAB→TAB)
=

ΦCAB→TAB (1− ΦTAB→TAB)

ΦTAB→TAB (1− ΦCAB→TAB)
≃ 3.9 (19)

This large ratio explains why, in the asymptotic region of all simulations, TAB

is more anisotropic than CAB.

In order to highlight the relative importance of the UP and RP processes

in the development of anisotropy, we also ran two simulations in which the

photoisomerization was suppressed. The time-dependent dichroic ratios are

shown in Figure 5 and the asymptotic values are listed in Table 5. We see that

the increase of |RTAB| is slower in the absence of photoisomerization than in

the regular simulation, because the trans → cis RP contribution is missing.

However, the difference decreases in the long run, when the cis → trans RP

mechanism tends to balance the trans → cis one in the regular runs. At λexc =

313, the asymptotic |Rtot| is even larger without than with photoisomerization.

Finally, we present a simulated experiment performed with a 100 ps light

pulse, λexc = 313 nm and F = 10 GW/cm2 (see Figure 7). Up to 100 ps the

results are identical to those obtained with the long irradiation time, same

20

Page 21 of 27 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



λexc and irradiance. After 100 ps, the RTAB and RCAB dichroic ratios decay

in time due to the rotational diffusion. Both functions are very well fitted

by exponentials, with time constants of 150 ps for TAB and 310 ps for CAB.

We see that these times are of the same order of magnitude as the longest

ones (τ3) obtained for the three-exponential fit of the autocorrelation functions

relative to the rotational diffusion (see Table 2). The shorter time constants

concerning the 〈P2,n〉 functions, most relevant to the present discussion, are

τ1 ≪ 1 ps, and τ2 roughly in the range 10-40 ps. There are two reasons

why the τ1 and τ2 times have little relevance as to the decay of the dichroic

ratios. The first reason mainly applies to τ1, and is that a very fast but

partial decay of the autocorrelation is already discounted when the irradiation

stops at 100 ps, because most molecules have been excited for the last time

several ps earlier. Note that a very small but fast decrease of |RTAB| can

however be noticed in Figure 7; anyway, such a feature would be irrelevant

in a more realistic simulation, with a smoothly switched off light pulse. The

main reason why we do not observe a component of the RTAB or RCAB decay

with a time constant in the range of few tens of ps, as the τ2 times of Table 2,

lies in the kind of molecular motions that are involved. In fact, as discussed in

section 3, both the pedalling motion of TAB and the overall rotation of CAB

around the n̂ph−ph axis leave almost unchanged the orientation of the most

important transition dipoles, which is why they do not contribute to the decay

of the optical anisotropy. However, other simulation results show that RD is

not a simple first-order process, as already apparent from the autocorrelation

functions of the molecular axes discussed in section 3. In fact, the asymptotic

RI values increase less than proportionally to the irradiance F (see Table 2),

indicating that the RD efficiency is higher in the short time range.

6 Conclusions.

This paper presents simulations of the development of anisotropy in a dilute

solution of azobenzene in ethylene glycol, subjected to linearly polarized light.

Most experimental tests of potential technological interest were performed on

systems in which the chromophores interact with each other, to take advan-

tage of the mesogenic properties of the azo-compounds [1–13]. However, we

feel that some new findings described in this work are of general interest, even

beyond the specific case of azobenzene. Ethylene glycol is a solvent of mod-

erate viscosity at room temperature, so we find rotational diffusion times of
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azobenzene in the order of 100 ps. As a consequence, high irradiances are

needed to obtain a sizeable anisotropy (we ran most tests with 10 GW/cm2).

Matrices that slow down more drastically the thermal rotation would require

lower irradiances for longer times, getting closer to practical exploitability.

Our simulations are based on a stochastic model [14] and make use of statistical

distributions of the reorientation of the molecular frame, due to ground state

rotational diffusion or to the photochemical cycle (excitation, decay and possi-

bly isomerization). Such distributions were obtained by computing the thermal

and photochemical molecular dynamics of a single azobenzene molecule in a

cluster of solvent [15], which is a novelty with respect to previous work based

on parameterized models of reorientation [17–21]. We find that the internal

motions, in particular the “pedalling” of trans-azobenzene (simultaneous tor-

sion of both N-C bonds), reduce the rotational diffusion times and determine a

multi-exponential decay of the autocorrelation functions of the molecular axes.

We confirm that the photochemical cycle is more effective in promoting the

reorientation of both isomers, i.e. it causes larger rotations of the molecular

frame, than the thermal dynamics in a comparable interval of time. However,

if we concentrate on the most important transition dipole moments, we find

that the memory of the initial orientation is partially conserved not only in

the unreactive photocycles (excitation and decay without isomerization), but

even after the photoisomerization.

We computed dichroic ratios for each isomer I (RI) and for the whole sample

(Rtot), relative to the absorption of probe pulses polarized either parallel or

perpendicular to the exciting light. The probe light was assumed to be of the

same wavelength as the exciting one, but the physical effects we have high-

lighted would be relevant also with more complex experimental setups. The

simulations show that the anisotropy of a given isomer I is affected by three

processes: unreactive photochemical events, that tend to orient the most im-

portant transition dipoles ~µ0,n perpendicular to the polarization of the light

(Ẑ axis), thus yielding a negative contribution to the dichroic ratio RI ; pho-

toisomerizations, of which those starting from isomer I also drive RI toward

(more) negative values, while those starting from the other isomer have the

opposite effect; and rotational diffusion, that tends to decrease RI in module,

whatever its sign. As a result of these contrasting effects, the dichroic ratios

of the two isomers may have opposite signs, especially at the beginning of the

irradiation; and Rtot, as well each of the RI ’s, can be non-monotonic functions

of time. This means that a longer irradiation will not always yield a more pro-
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nounced anisotropy. We also show that isomerization is strongly coupled with

the development of anisotropy, but is not a necessary ingredient, as commonly

assumed: simulations in which photoisomerization was artificially suppressed

yielded anisotropies in the same range as the regular ones. Therefore, ma-

trices in which the photoisomerization is completely or almost suppressed, or

chromophores that do not isomerize, should not be discarded as candidates for

photoinduced anisotropy studies and applications.

7 Appendix A.

In this Appendix we specify the body fixed frame for the azobenzene molecule.

We only consider four atoms, namely the C′-N′=N′′-C′′ group. The definition of

the body fixed frame applies to any geometrical arrangement, except when all

four atoms are collinear. However, we are particularly interested in geometries

close to the cis and trans minima (CAB and TAB). The definitions of the axes

are as follows (see also fig. 8):

(1) The x̂ axis coincides with the N′-N′′ one, i.e. it is obtained by normalizing

the ~RN′N′′ = ~RN′′ − ~RN′ vector.

(2) We determine the ~A vector by orthogonalizing ~RN′C′ with respect to x̂ and

by subsequent normalization.

(3) Similarly, we determine ~B by orthogonalizing ~RN′′C′′ with respect to x̂ and

by normalizing it.

(4) We calculate ~C = ~A+ ~B.

(5) We calculate ~C ′ = x̂ ∧ ( ~B − ~A).

(6) The direction of the ẑ axis is taken along ~C or ~C ′, choosing the one with the

larger norm. We have C > C ′ at cisoid geometries (−π/2 < 6 CNNC< π/2),

and C < C ′ at the transoid ones.

(7) Obviously ŷ = ẑ ∧ x̂.

The reason for defining both ~C and ~C ′ and choosing the longer one is that ~C

vanishes at the trans geometry ( ~A = − ~B for θ = 6 CNNC = 180◦), while ~C ′

vanishes at the cis geometry with θ=0 ( ~A = ~B for 6 CNNC = 0). Starting

from TAB, θ may decrease from 180◦ to 0◦, so that the molecule goes through

the intermediate transoid and cisoid geometries of fig. 8. In this case, one

switches smoothly from the definition based on the ~C ′ vector to that based on

the ~C one, when θ drops below 90◦. If, on the opposite, θ increases towards

360◦, we obtain a capsized CAB, with the ẑ and ŷ axes pointing in opposite
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Figure 8: Definition of the body-fixed frame. θ is the CNNC dihedral angle.

θ

ŷ

ẑ

~B − ~A

~A+ ~B ~A~B

transoid geometry
view along the N-N axis (x̂)

θ

ŷ

ẑ

~B − ~A

~A+ ~B

~A~B

cisoid geometry
view along the N-N axis (x̂)

~B

~A

~RN′′C′′

C′′~RN′C′

C′

~RN′N′′

N′′N′

x̂

directions with respect to the former case. Note that, along this pathway, the

definition of the frame changes suddenly at θ = 270◦.

Of course the two pathways have the same probability to occur. This is why

the plots of the final ŷ and ẑ axes show an approximate inversion symmetry:

the same density of points is found for a given pair of cartesian components

and for the same with opposite signs. Of course the symmetry would be

exact only in the large number limit (infinite trajectories), but one can easily

symmetrize the distribution: for each reactive trajectory yielding CAB with

a given orientation, we added one with reversed ẑ and ŷ axes. The same was

done for the CAB→TAB trajectories.

24

Page 25 of 27 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



Acknowledgments

We are grateful to Piet Van Leuven for helpful discussions. This work has

been funded by the University of Pisa.

References

[1] C. Cojocariu and P. Rochon, Pure Appl. Chem., 2004, 76, 1479.

[2] K. G. Yager and C. J. Barrett, J. Photochem. Photobiol. A, 2006, 182,

250.

[3] P. Camorani and M. P. Fontana, Phys. Rev. E, 2006, 73, 011703.

[4] I. Vecchi, A. Arcioni, C. Bacchiocchi, G. Tiberio, P. Zanirato and C.

Zannoni, J. Phys. Chem. B, 2007, 111, 3355.

[5] T. Yoshino, M. Kondo, J. Mamiya, M. Kinoshita, Y. Yu and T. Ikeda,

Adv. Mater., 2010, 22, 1361.

[6] M. Ji, Y. Li, T. White, A. Urbas and Q. Li, Chem. Commun., 2010, 46,

3463.

[7] J. Ma, Y. Li, T. White, A. Urbas and Q. Li, Chem. Commun., 2010, 46,

3463.
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