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Abstract 

Nanocomposites of gold nanoparticles and semiconductor ZnO with wurtzite structure, made by 

solution combustion synthesis (SCS), as a function of Zn/Fuel ratio with polyethylene glycol, 

PEG, as fuel exhibit the presence of both nanoparticles and clusters. Atomic gold clusters present 

on the surface of ZnO nanorods though can be identified by XPS and SEM are easily monitored 

and characterized by positive ion MALDI experiments as mostly odd numbered clusters, Au3 to 

Au11 in decreasing amounts. Lowest fuel produces AuClO and nanoparticles, NP’s, with no 

clusters. Au/ZnO at all [Au] exhibit single blue shifted plasmon absorption and corresponding 

photoluminescence (PL). Increasing particle size prefers surface plasmon resonance (SPR) 

scattering of metal that could lead to PL enhancement; however,   available ZnO surface in the 

Au/ZnO composite becomes more important than the particle size of the composite with higher 

[Au]. The catalytic activity of this nanocomposite Au/ZnO tested on 4-nitophenol clearly 

revealed the presence of an intermediate with both NP’s and clusters playing different roles. An 

in vitro study of cytotoxicity on MCF-7 cell lines reveals that these gold nanostructures have 

turned out to be powerful nanoagents for destruction of cancer cells even with small amounts of 

gold particles/clusters. The nanorods of ZnO, known to be nontoxic to normal cells, play a lesser 

part in anticancer activity of these Au/ZnO nanocomposites. 

 

Key words: Au/ZnO Nanocomposites, gold nanoparticles, gold clusters, surface plasmon 

resonance, photoluminescence, MALDI, catalytic activity, cytotoxicity, MCF-7 Cell lines  
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1. Introduction 

Nanomaterials smaller than 2 nm have received a considerable interest in recent years  due to 

their size and shape dependent catalytic, optical and electronic properties which are quite 

different from their bulk materials.1-3 Such smaller nanoparticles which are made up of few to 

hundred atoms per particle are termed as atomic clusters. Compared to bulk nanomaterials, 

clusters have a larger number of atoms on the surface of the composites. Also, the continuum 

bands observed in bulk nanomaterials get modified into discrete energy levels due to the 

quantum confinement of electron and hole.4 Among the metal clusters, Au clusters show 

potential applications in various fields such as catalysis, sensor and biological labeling,5-7 and on 

the basis of number of atoms present in cluster, they show unique optical and physical 

properties.8-10 The advantage of Au cluster over other metal clusters is their low toxicity that has 

made them suitable candidates for biomedical application.11 Therefore, development of methods 

for the synthesis of Au cluster is important. Brust et al.12 introduced the preparation of thiol 

protected Au cluster by two phase method. Subsequently several Au clusters have been 

synthesized by various methods.13-16 Rath et al.13 reported Au8 cluster with a planar hexagonal 

shaped using surfactant mediated chemical technique. Shibu et al.14synthesized the NIR emitting 

glutathione protected Au22 clusters. A lysozyme stabilized fluorescent Au cluster was used as a 

sensor for selective detection of Hg2+.17 In this article, we report the formation of Au cluster 

deposited on the ZnO nanocomposites using solution combustion synthesis (SCS). SCS offers 

several advantages over other methods which include high energy and time-efficient process 

leading to a simple and cost effective method. For instance, the high reaction temperature 

generated during the combustion process results in the formation of finely dispersed and porous 

morphology of the products.18 Another advantage of SCS lies in the ability to chemically modify 

the properties of products just by changing the ratio of metal ion and fuel precursor. In SCS, 
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metal nitrate serves as an oxidizer and the organic fuel as a reducing agent. Many organic 

compounds such as glycine, thiourea, urea, polyethylene glycol (PEG) etc. have been used as a 

reducing agent.19-22 These compounds differ in the reducing power and the amount of gases they 

generate. The particle size, morphology and optical properties of the particles depend on type of 

fuel employed and also on the ratio of oxidizing and reducing agents used during the combustion 

synthesis. It has been reported that the optical properties of semiconductor materials improve 

significantly on coupling with the surface plasmon (SP) based noble metals. A 14 fold 

photoluminescence (PL) enhancement of InGaN/GaN quantum well was observed by capping 

with Ag due to SP mediated emission.23 Many other semiconductor metal nanocomposites such 

as Ag-ZnO, Au-ZnO, Al-ZnO and Pt-ZnO were studied to investigate the energy transfer 

between semiconductor and SP energy of metal.24-27 Herein, the roles of fuel on the cluster 

formation and optical properties of Au-ZnO have been investigated. PEG was used as fuel on the 

synthesis of pure ZnO and Au-ZnO nanocomposites. To examine the catalytic activity of metal 

nanoparticles, many works have been reported on the reduction of nitro compound into amino 

derivatives using metal nanoparticles as a catalyst.28-31 In this article, we analyzed the catalytic 

activity of Au-ZnO nanocomposites by studying the reduction of 4-Nitrophenol (4-NP) with 

NaBH4 in the absence and presence of Au-ZnO nanocomposites. The current findings will show 

the importance of fuel and percentage of doping to get desired Au-ZnO nanocomposites. In 

addition our work is able to predict the course of the reduction process with differential roles of 

both nanoparticles and clusters. In addition the gold clusters and nanoparticles on the surface of 

ZnO have anticancer characteristics. 

 

 

 

Page 4 of 40Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



5 
 

2. Experimental Details 

2.1. Chemicals 

Zn(NO3)2.6H2O (Qualigens), NaBH4, Polyethyleneglycol (Merck), HAuCl4.3H2O,                     

4-Nitrophenol (laboratory reagent), Methanol (SRL) and Dithranol, Dihydroxybenzoic acid, 

Sinnapinic acid were procured from Aldrich. All other reagents were of analytical grade. 

Millipore water was used for all analysis.  

2.2. Instrumentations 

Samples were characterized by different techniques. X-ray powder diffraction measurements 

were recorded using X-ray diffractometer (Bruker D8 ADVANCE) using CuKα (λ= 0.1548 nm) 

radiation. DRS UV-visible spectra for all the samples were measured in evolution 600 UV-Vis 

Spectrophotometer using BaSO4 as a reference. X-ray Photoelectron spectra (XPS) were 

measured using Omicrometer Nanotechnology instrument. UV-visible absorption spectra were 

recorded using a Perkin-Elmer Lambda 25 instrument. PL measurements were acquired using 

Jobin Yvon Flurolog-3-11 Spectroflurometer. The morphology and composition of samples were 

recorded by Field Emission Scanning Electron Microscopy (FE-SEM, F E I Quanta FEG 200 - 

High Resolution Scanning Electron Microscope) equipped with energy dispersive X-ray analysis 

(EDX). High Resolution Transmission Electron Microscopy (HRTEM) JEOL 3010 operated at 

300 kV was used for the identification of size and lattice fringes of the samples. Matrix assisted 

laser desorption time of flight (MALDI-TOF) mass spectra were acquired on a Bruker 

Ultraflextreme equipped with a pulsed IR laser with 337 nm. All mass spectra were acquired in 

the positive reflection mode. EPR spectra both at room temperature (300 K) and liquid nitrogen 

temperature (77 K) were recorded on BRUKER N500 EPR spectrometer. 
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2.3. Methodology 

2.3.1. Synthesis and Characterization 

Nanocrystalline ZnO was prepared by SCS method reported earlier by our group.32 In brief, Zn 

(NO3)2 was used as the Zn source and PEG as the fuel. It involves direct mixing of a desired 

molar ratio of Zn(NO3)2 and PEG. The ratio of Zn(NO3)2 to PEG was varied from 3 to 30 

depending on the desired products, varying the molar ratio. After mixing Zn(NO3)2 and PEG 

uniformly, the mixture was transferred to a muffle furnace preheated to 450°C for ignition. The 

reaction lasted for less than ten minutes produced dry ZnO nanocrystals. The synthesized 

material was further kept at the same temperature for another 20 min. Different concentration of 

Au-ZnO nanocomposites were also synthesized by the same procedure with HAuCl4 as Au 

source. After completion of the reaction, the samples were washed with millipore water for 

several times and then with methanol in order to remove the impurities. The synthesized 

materials were finally calcined at 500°C for 30 min. The prepared samples have been designated 

as 0.2% Au-ZnO, 0.5% Au-ZnO, 1% Au-ZnO and 5%Au-ZnO respectively for the compositions, 

Au0.002Zn0.998O, Au0.005Zn0.995O, Au0.010Zn0.99O and Au0.050Zn0.95O. 

For MALDI-TOF measurements, 2 µL of the nanoparticle suspension prepared in 10 µL of 0.1% 

TFA was mixed with 2 µL of dithranol matrix, and then the 0.2 µL of the mixture was deposited 

on the MALDI plate and allowed to air dry before the MALDI-TOF MS measurements. 

2.3.2. Catalytic Reduction  

The catalytic reduction reaction was carried out in10 ml volumetric flask. In a typical reaction 8 

ml of 0.1mM solution of 4-NP was mixed with 2 ml of 15 mM ice cold NaBH4 solution. This 

was followed by the addition of 50 mg of Au-ZnO NPs and was stirred for a regular interval of 

time. Then the solution was centrifuged and supernatant solution was recorded for UV-Visible 

absorption measurements in a scanning range of 200 - 600 nm at room temperature and 50◦C. 
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2.3.3. In vitro assay for cytotoxic behaviour (MTT assay)  

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was carried out 

to determine the viability of cells based on the reductive cleavage of MTT (a yellow salt) to 

formazan (a purple compound) by mitochondrial dehydrogenase of living cells. Cytotoxicity of 

samples on MCF-7 (cancer cell line was obtained from National Centre for Cell Sciences 

(NCCS), Pune) was determined by the MTT assay.33 Cells (1×105/well) were plated in 1 ml of 

RPMI medium/well in 24-well plates. After 48 h of incubation, the cell reaches the confluence. 

Cells were then incubated in the presence of various concentrations of the samples of 

nanoparticles/clusters (6, 12, 25, 50, 100 and 200 µg per well) which were prepared under 

different ZnO/PEG fuel ratios for 48 h at 37°C in CO2 incubator. After the removal of sample 

solution the wells containing left-over live cells were carefully washed with PBS (pH 7.4). To 

this was added 200 µl/well (5 mg/ml) of 0.5% MTT /PBS solution and incubated for 4 h which 

was followed by the addition of 0.04 M HCl/isopropanol. Spectrophotometric absorbance of the 

purple blue formazan dye was measured in a microplate reader at 570 nm (Biorad 680). 

Measurements were performed and the concentration required for a 50% inhibition of viability 

(IC50) was determined graphically. The sample without any cells served as a blank. The effect of 

the samples on the proliferation of MCF-7 was expressed as the % cell viability. A control was 

performed with 3T3 fibroblast cells. 

 

3. Results and discussion 

3.1. XRD studies reveal the importance of fuel concentration on the formation of Au 

clusters  

Figure 1a shows the XRD patterns of the pure ZnO and Au-ZnO nanocomposites where the 

Zn/PEG ratio was kept at 30 but varying the Au concentration from 0 to 5%. The entire 
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diffraction pattern is well assigned to ZnO and Au according to JCPDS Card No. 36-1451   and 

65-2870 respectively. ZnO exhibit wurtzite and Au in face centre cubic (fcc) structures 

respectively.  The average crystallite sizes in the ZnO and Au-ZnO samples were estimated using 

the Debye Scherrer equation. The particle size of the pure ZnO and 5% Au-ZnO was calculated 

to be 28 nm and 18 nm according to (100) plane of ZnO. Based on the relative intensities of the 

two large peaks due to Au(111) and ZnO(101) at 2θ=38.2 and 36.2 respectively, the ratio of  Au 

to ZnO peak was calculated to be 0.09, 0.14, 0.25 and 1.11 for 0.2%, 0.5%, 1% and 5% Au-ZnO 

nanocomposites. This observation of continuous increment in the value for Au in relation to ZnO 

indicates that at high concentration of Au, most of the Au particles are deposited on the surface 

of ZnO. We have also carried out experiments to see the effect of calcination. Figure 1b shows 

the XRD pattern of pre-calcined 5% Au-ZnO nanocomposite prepared at Zn/PEG ratio of 30. It 

can be seen that the intensity of ZnO peak was drastically reduced and Au peak appeared 

maximum and the ratio of Au to ZnO peak was calculated to be 2.40, which is much higher for 

the corresponding calcined sample. In addition, there is an emergence of new peak at 2θ =12 and 

a ‘doublet’ looking smaller peaks at 2θ = 33 and 34. An enlarged version of the 2θ ~ 28-37 

region as shown in the insert of Figure 1b clearly pictures these two new peaks. These peaks at 

2θ = 12, 33, 34 were also observed in the calcined 5% Au-ZnO, however with drastically 

reduced intensities in the latter case. These peaks match with the JCPDS No 850377, which 

correspond to AuClO, the presence of which was also seen by MALDI experiment (vide infra). 

In the case of pre-calcined sample, it was possibly difficult to remove the Cl trapped inside the 

particle and hence the formation of AuClO is most possibly an indication of the initial reaction of 

AuCl4
-1 with water prior to the formation of Au clusters through oxidation by Zn(NO3)2. 

Therefore, we carried out all the measurements with the calcined samples.  
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Figure 1.  (a)  X-Ray diffraction patterns of pure ZnO and Au-ZnO nanocomposites 

prepared at Zn/PEG ratio of 30, (b) X-Ray diffraction pattern of pre calcined 5% Au-ZnO. 

Inset picture show the enlarged XRD peaks between 2θ = 30 and 36. 
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Figure 2. X-Ray diffraction patterns of calcined 5% Au-ZnO nanocomposites prepared at 

different Zn/PEG ratio.  

To determine the effect of fuel concentration, 5% Au-ZnO nanocomposite was prepared at 

different Zn precursor to PEG ratio. Figure 2 shows the XRD pattern of calcined 5% Au-ZnO at 

different Zn/PEG ratio. In this case also, peak at 2θ = 12 was observed but its intensity was 

considerably reduced on increasing PEG concentration (supporting info T1). This suggests that 

the formation of Cl containing Au nanoparticles was reduced on increasing PEG concentration 

i.e., lower Zn/PEG ratio and the intensity ratio of Au to ZnO peak was increased. The ratio of Au 

to ZnO peak was calculated to be 1.14, 1.41, 1.62 and 1.67 for Zn/PEG ratio of 20, 10, 6 and 5. 

At Zn/PEG ratio of 3, the intensity ratio of Au to ZnO was found to be 1.22 which is lower than 

the Zn/PEG ratio of 5 (supporting info S1).This shows that the formation of Au nanoparticles 

depend on the amount of PEG concentration. At high PEG, the presence of unburnt carbon may 

hinder the formation Au-ZnO nanocomposites. Therefore, we kept the PEG concentration 

between Zn/PEG of 30 to 5 only. In addition to Au nanoparticles deposited on ZnO, the presence 

of Au clusters can also be identified from XRD data through the broadening of diffraction peaks. 

Wu and co-workers explained the broadening in the XRD peaks due to the presence of clusters.34 
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It can be seen in our present studies that the XRD of 5%Au-ZnO at 2θ = 38.2 which correspond 

to (111) plane of Au was broadened on decreasing the Zn/PEG ratio (Supporting info S2). This 

indicates the formation of Au clusters in addition to Au nanoparticles deposited on ZnO. 

 

3.2. Presence of atomic Au clusters on the surface of ZnO as revealed by XPS and EPR 

XPS technique was used to further characterize the pure ZnO and Au-ZnO 

nanocomposite. Binding energy was calibrated by taking C 1s peak (284.9 eV) as a reference. 

Deconvolution of XPS spectra of Au 4f- Zn 3P are shown in Figure 3. It was resolved into four 

peaks at 83.4, 87.3, 88.7 and 91.6 eV respectively, which correspond to Au 4f7/2, Au 4f 5/2, Zn 

3p3/2 and Zn p1/2.
35 For the samples prepared at Zn/PEG ratio of 30, a small amount of Au peak 

was observed at 0.5% Au-ZnO (Figure 3a) and, however, Au peaks were prominently observed 

at 5% Au-ZnO (Figure 3b). Peaks at 85.9 and 89.6 can also be seen in addition to Au 4f and Zn 

3p peaks in the case of 5% Au-ZnO. These peaks match with 4f7/2 and 4f5/2 of Au3+.36 Also a peak 

at 200 eV due to Cl 2p3/2 was observed (supporting info S3).Therefore, the formation of AuClO 

is again supported from XPS spectra of 5% Au-ZnO. For same composition prepared at lower 

Zn/PEG ratio, i.e., 5% Au-ZnO at Zn/PEG ratio of 5 (Figure 3c), the intensity of Au peak was 

found to be more than that for Zn/PEG ratio of 30 whereas the peaks for Au3+ could not be 

resolved due to low amount of AuClO present in the sample. This again supports the XRD result 

of the formation of larger amount of Au nanoparticles with decreasing Zn/PEG ratio, suggesting 

the need for adequate supply of energy for the formation of Au nanoparticles. 
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Figure  3.  Photoelectron spectra of Au-ZnO (a) 0.5% Au-ZnO prepared at Zn/PEG ratio 

of 30 (b) 5% Au-ZnO prepared at Zn/PEG ratio of 30 (c) 5% Au-ZnO prepared at Zn/PEG 

ratio of 5. 

 

Figure 4. Room Temperature Electron Paramagnetic Resonance of 5% Au-ZnO 

nanocomposites prepared at Zn/PEG ratio of 6.  
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The room temperature electron paramagnetic resonance (EPR) of 5% Au-ZnO 

nanocomposites prepared at Zn/PEG ratio of 6 is shown in Figure 4. It can be seen that there was 

a presence of two isotropic peaks at g-values of 2.003 and 1.958 with no hyperfine lines. The      

g value at 1.958 is attributed  to electrons in conduction band of ZnO and not from the O 

vacancies.32 The atomic Au with an unpaired electron in 5s orbital shows EPR signal at               

g = 2.004.37 Therefore the g value at 2.003 observed in our present studies must be from Au 

nanoparticles and/or clusters present on the surface. The 5s orbital must be present as a 5s band 

since there is proof for the formation of nanocrystals and nanoclusters (vide infra). 

 

3.3. Rod like Morphology of pure ZnO changes to disc shape during Au deposition 

Figure 5 shows the scanning electron microscopic (SEM) images and energy dispersive 

X-ray analysis (EDX) of pure ZnO and Au-ZnO nanocomposites. Pure ZnO shows rod like 

nanostructure (Figure 5a) with a diameter of 80 nm, the EDX showing the presence of only Zn 

and O. It can be seen from the SEM images of 5% Au-ZnO (Figure 5b and c) that there is a 

deposition of Au on the surface of ZnO with a disc shaped nanostructures. The EDX (Figure 5e) 

of pre-calcined 5% Au-ZnO prepared at Zn/PEG ratio of 30 shows a substantial presence of Cl in 

addition to Au, Zn and O peaks, the Cl being only from AuClO (Figure 5e). This is in agreement 

with XRD (Figure 1b) and also XPS. However, Cl peak was substantially absent in all cases of 

calcined samples inclusive of 5% Au-ZnO prepared at Zn/PEG ratio of 5 shown in Figure 5f  

again in accord with the XRD results. It can also be seen from EDX spectra that the amount of 

Au at Zn/PEG of 30 was more in the pre-calcined samples than not only the calcined samples 

prepared with Zn/PEG ratio of 30 but also those prepared at Zn/PEG of 5. 
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Figure 5. SEM images of (a) ZnO (calcined) (b) 5% Au-ZnO both with Zn/PEG ratio of 30 

(precalcined) and (c) calcined 5% Au-ZnO of Zn/PEG ratio of 5, and their corresponding 

EDX (d), (e) and (f). 

 

High resolution transmission electrons microscopic (HRTEM) images of pure ZnO and Au-ZnO 

nanocomposites are shown in Figure 6. The presence of lattice fringes clearly proves the material 

to be crystalline. The high resolution image of pure ZnO (Figure 6a) with d spacing of 2.75Å 

corresponds to (100) plane as found in XRD. The HRTEM of Au-ZnO nanocomposite (Figure 6 

b) shows the d spacing of 2.75Å and 2.3Å, the former corresponding to the ZnO (100) plane and 

the latter to Au (111) plane. From the TEM image of the 5% Au-ZnO prepared at Zn/PEG ratio 

of 5 (Figure 7), the average particle size was calculated to be 25 nm which is larger than the one 
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calculated from the XRD. This may be due to the agglomeration during drying process. The 

presence of Au clusters can also be seen from the enlarged TEM image (Figure 7) in addition to 

the larger Au nanoparticles, as supported by the results of XRD and MALDI (vide infra) the 

latter clearly revealing  the formation of Au clusters. 

 

Figure 6. HRTEM image of (a) pure ZnO with Zn/PEG of 30 and (b) 5% Au-ZnO of 

Zn/PEG 5. 

 
 

 

Figure 7. TEM image of 5% Au-ZnO prepared at Zn/PEG ratio of 5. Inset picture with 

rounded dark spots give the enlarged image showing the presence of Au clusters. 

 

3.4 MALDI-TOF monitors and characterizes the Au atomic clusters 

A study of matrix assisted laser desorption time of flight (MALDI TOF) mass spectra 

was carried out on pure ZnO and Au-ZnO nanocomposites in order to identify the formation of 
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Au clusters on ZnO surface. Dithranol was used as a matrix. We also tried sinnapinic acid and 

dihdroxybenzoic acid as a matrix, however we couldn’t observe ion peaks in these latter 

matrices. When dithranol was used as matrix, very fine ion peaks were observed. Similar 

observation was reported where the use of dithranol as a matrix yielded TiO2 ion peaks and none 

of other organic matrices gave TiO2 ion peaks.38  This was explained due to the absence of strong 

acidic group in dithranol. Figure 8 shows the MALDI TOF mass spectra of pure ZnO. There was 

a series of peaks observed in the range of m/z 500 to 2000.  Major peak was observed at m/z 576 

corresponding to Zn6O12
+ and m/z 868 to Zn10O13

+. A cluster of Zn14O15
+ and Zn19O17

+ were also 

observed as minor peaks. Inset shows enlarged mass spectra at m/z 576. It can be seen that the 

peak consists of small peaks separated by one unit. This is attributed to the isotropic distribution 

in Zn6O12
+ cluster since atomic Zn exists in five different stable isotopes as 64Zn, 66Zn, 67Zn, 

68Zn, and 70Zn. Similar observation has been reported on MALDI-TOF of isotropic distribution 

of TiO2 cluster.39 Isotopic distributions are also noted in the other ZnxOy
+ clusters mentioned 

above. 

 

Figure 8. MALDI-TOF Mass Spectra (positive ions) of Pure ZnO. Inset: Isotopic 

distribution of Zn6O12
+
. 

Figure 9 shows the MALDI-TOF mass spectra of the 1% and 5% Au-ZnO prepared at Zn/PEG 

ratio of 30. At 1% Au-ZnO (Figure 9a), in addition to ZnO cluster peaks, there is also formation 
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of Aun,m clusters with n, m representing odd and even numbers. Au3 appeared maximum along 

with the minute amounts of other Aun,m clusters. However, at the same ratio of Zn/PEG i.e. 30, 

the mass spectra of 5% Au-ZnO did not show any peaks due to Au clusters. Only ZnO cluster 

peaks along with a new peak at m/z 515 can be seen in the spectra. The peak at m/z 515 

correspond to (AuClO)2 cluster and this peak is made up of small peaks separated by one unit. 

Since Cl exist in two stable isotopes, 35Cl and 37Cl, this indicates the isotropic distribution of 

AuClO which is shown in inset Figure 9b.To determine the effect of fuel on the formation of Au 

clusters, the MALDI-TOF mass spectra measurements were carried out at lower Zn/PEG  ratio. 

 

 

 

Figure 9. MALDI-TOF Mass Spectra (positive ions) of Au-ZnO prepared at Zn/PEG ratio 

of 30 at different Au concentration (a) 1% Au and (b) 5% Au. Inset in 9b: Isotopic 

distribution of (AuClO)2 due to 
35,37

Cl. 

(a) 

(b) 
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Figure 10 shows the MALDI-TOF mass spectra of Au-ZnO prepared at different Zn/PEG ratio. 

It can be seen from the mass spectra of 5% Au-ZnO prepared at Zn/PEG ratio of 10 (Figure 10a) 

that there was a formation of series of Aun clusters with odd number of gold atoms with n=3,5,7 

and 9 with the maximum intensity for Au3, along with some even number clusters Aum with m = 

4 and 6 with descending order of intensity. The total intensity of the even numbered clusters was 

much smaller than that of more abundant odd numbered ones, showing preference for the latter 

in this method of synthesis. There was no peak observed at m/z 515, which clearly indicates the 

absence of AuClO clusters. At Zn/PEG ratio of 6 and 5 also (Figure 10 b and c), the intensity of 

Au3 cluster appeared  maximum in addition to the presence of odd number larger Au cluster with 

n = 5,7,9,11,13 and even number larger Au cluster peaks with n= 4,6,8,10,12, with reduced in 

intensity as n and m increase. In this cases also, there was no peak observed at m/z 515 and ZnO 

peaks were drastically reduced. To see the effect of Au concentration, MALDI-TOF was 

recorded for 1% Au-ZnO prepared at Zn/PEG ratio of 5 (Figure 10d). It can be seen that similar 

numbers of Au clusters were being formed with maximum intensity at Au3, however intensity of 

other peaks were drastically reduced. We have also recorded MALDI-TOF of 0.5% Au-ZnO and 

in this case, only ZnO clusters peak were predominant along with a very small amount of Au 

cluster peaks (supporting info S4). Therefore, the formations of Au clusters depend on the 

amount of PEG and percentage of Au used during preparation. The geometry of Au clusters have 

already been predicted by theoretical calculation.39 They show that Au3 cluster exists in 

triangular flat structure and Au5 cluster have a preference to the isosceles trapeze structure. 

Similar structure might be occurring in our present studies where the Au3 cluster exists in 

triangular flat structure. 

Though it is true that the nature of Au clusters Aun, Aum, AuClO and ZnxOy clusters have 

been clearly identified, few interesting general observations have been made. Pure ZnO produces 
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only ZnxOy clusters with similar features in 1% and 5% Au-ZnO under Zn/Fuel ratio of 30 except 

for the formation of Au3 with 1% Au-ZnO and (AuClO)2 in 5% Au-ZnO. The latter probably 

indicates that most of Au is present as (AuClO)2 with unobservable quantity of Aun/m clusters 

negating the XRD data, which is quite perplexing. The rest of the Au, hence, must have been 

present as Au crystalline nanoparticles. However, when the Zn/Fuel ratio is decreased to 10, 6 

and 5, it is observed (i) clearly Au clusters only of the form Aun and Aum are formed where n and 

m are respectively even and odd; (ii) even numbered cluster formation is much less favored than 

the odd numbered ones; (iv) n and m taken together suggests all clusters are formed by the 

addition of one atom each, building up from Au3 as the base which presents itself as the major 

species; (v) the preponderance of the odd numbered species can be explained according to work 

reported by Va´zquez group.1 They also observed the formation of odd numbered Au clusters 

species with a maximum intensity at Au3.This was explained due to the stable charged clusters 

with an even number of electron are more favored and so the majority of Au clusters are in the 

form of odd number of atoms per Au clusters; (vi) In all Au-ZnO nanocomposites, Au3 remain 

the major cluster along with the presence of other larger number of Au clusters. The relative 

abundance of large Au clusters depends on the percentage of Au and Zn/PEG ratio used during 

preparation. The relative ratio of larger Au clusters with respect to Au3 is shown in Supporting 

Information T2. It was observed that the relative abundance of Au5, Au7 and Au9 was found to be 

minimum at 1% Au-ZnO prepared at Zn/PEG ratio of 30 and their relative abundance was found 

to be higher in 1%  Au-ZnO prepared at Zn/PEG ratio of 5. The 5% Au-ZnO prepared at Zn/PEG 

ratio of 5, 6 and 10 also show the presence of Au5, Au7, Au9 and Au11 with the lesser abundance 

than in 1% Au-ZnO of Zn/PEG 5. As we decrease the ZnO/PEG ratio with higher input of Au we 

observe substantially reduced amount of  ZnnOm
+ ions revealing the deposition of gold on the 
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surface of ZnO which prevents the formation of  the latter ions, in accordance with the results of 

XRD and XPS. 

The above points suggest that there is a possibility to synthesize pure Aun or one or two 

species with n being different, the latter of which could then be separated by some procedure by 

adjusting the fuel ratio and the concentration of HAuCl4
-. This work is under progress.     

  

Figure 10. MALDI-TOF Mass Spectra (positive ions) of 5% Au-ZnO prepared at Zn/PEG 

ratio of (a) 10, (b) 6 (c) 5 and (d)MALDI-TOF Mass Spectra (positive ions) of 1% Au-ZnO 

prepared at Zn/PEG ratio of 5. 

 

3.5. Surface Plasmon Band reveals metallic gold on Au-ZnO nanocomposites 

Figure 11 displays the DRS absorption spectra of pure ZnO and Au-ZnO nanocomposites 

prepared at Zn/PEG ratio of 30. All the spectra of Au-ZnO shows broad peak in the visible 

region due to the formation of SP band. Though the conduction band is exhibited as a sharp one 

(a) (b) 

(c) (d) 
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at 396 nm due to ZnO semiconductor, the presence of SP band is the main characteristic property 

of Au nanoparticles. There is a blue shift as well as an increase in the plasmon intensity on 

increasing the Au concentration. A weak plasmon band formation is visible for the initial low 

concentration of Au. A distinctly broad and blue shifted band was observed in 5% Au-ZnO with 

a shift from 540 nm to 480 nm. The blue shift in the absorption spectra is generally observed on 

the formation of smaller size of nanoparticles.40  But in these materials the particle size increases 

with [Au]. This can be explained due to the transfer of electron from Au to ZnO to form a 

uniform fermi energy level during the formation of the Au-ZnO junction, as Au has a higher 

fermi energy level than ZnO, which subsequently increases the energy separation between the 

valence band and conduction band and hence the blue shift. The broadening of the SP absorption 

is possibly due to the formation of gold nanoparticles and different clusters from Au3 to Au19 

each one having slightly altered wavelength. Figure S5 displays the DRS absorption spectra of 

5% Au-ZnO prepared at different fuel ratio. It was observed that the intensity of SP band 

increases with the increase of fuel and attain maximum at Zn/PEG ratio of 6. Further increase in 

the fuel concentration does not lead to the increase in the SP band intensity. The SP band was 

drastically reduced at Zn/PEG ratio of 3. This indicates the saturation point of the fuel 

concentration. We also observed the presence of SP band using glycine as a fuel, however the 

intensity was much less compared to the one made from PEG. Thus PEG acts as a better fuel 

than the glycine in our present studies.  

Though we have done all our experiments with calcined samples it is interesting to note that 

calcination improves the quality and intensity  of the conduction band with minimum change in 

the plasmon band as exemplified by Figure S6 in SI. Probably this may be due to the fact that 

ZnO crystals after calcination are free from any defects.  
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Figure 11. DRS UV-Vis spectra of pure and Au-ZnO nanocomposites at Zn/PEG ratio of 30. 

The insert showing a compressed spectrum is intended to bring out the clarity of SP band. 

 

3.6. Photoluminescence shows only exciton recombination 

The PL spectra of   pure ZnO and Au-ZnO nanocomposites prepared at Zn/PEG ratio of 

30 are shown in Figure 12 (a). ZnO generally shows two emission peaks, one in the UV region 

and another in the visible region41 the former attributed to exciton recombination and the latter to 

their defects emission mostly due to Zn interstitials and O vacancies. The main peak was 

observed at 370 nm. In our present studies, absence of defect emission indicates that ZnO is in 

pure form without any defect.  Absence of defects is also supported by the EPR results. Upon 

increasing the amount of Au, the intensity of UV emission in both cases of Zn/PEG ratios at 30 

(Figure 12 (a) and (b)) was observed to increase up to reaching a maximum at 1% and thereafter 

with 5% Au it decreases substantially by about 50% and 88% respectively with respect to 1% 

emission, with the emission continuously getting blue shifted. The blue shift observed here is 

similar to the same observation in absorption mode. 
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PL spectra corresponding to Zn/PEG ratio of 5 shown in Figure.12(b) reveal the 

considerable quenching of PL intensity of ZnO on the addition of 5% Au, even lower than that of 

pure ZnO.  Furthermore, the emission intensity of pure ZnO in the latter experiment i.e. at 

Zn/PEG=5 is almost 4 times as much as that in the ratio of 30.  Wang and coworkers have 

reported the enhancement in the UV emission of ZnO on the addition of Au.42 This was 

explained due to the transfer of electron from Au to ZnO to form a uniform fermi energy level 

during the formation of the Au-ZnO junction, as Au has a higher fermi energy level than ZnO, 

which subsequently increases the electron density in the conduction band leading to an increase 

in the hole-electron recombination rate, thus enhancing the UV emission of ZnO-Au NC. Yet 

another interpretation comes from the work of Liu et al.43 who reported that the ZnO with a 

strong band edge emission around 380 nm with no defect emission, and their band edge emission 

was increased by 12 fold on capping with Pt. The enhancement was explained due to the cross-

coupling between spontaneous recombination in ZnO and SP arising from Pt interface. It has 

been observed in the XRD data that at low Au concentration, both Au and ZnO are present on 

the surface of Au-ZnO nanocomposites, whereas at high Au concentration, surface was mostly 

occupied by Au nanoparticles/clusters and a lesser amount of ZnO are visible on the surface of 

Au-ZnO nanocomposites (See Figure 7 as an example). The transfer of electron between metal 

and ZnO occurs through the unction on the surface.44 Therefore, up to the level of 1% Au, the 

enhancement in PL intensity was observed due to the transfer of electron through SP band 

coupling between Au and ZnO. However, the PL intensity was quenched in 5% Au which is due 

to the reduced electron transfer process between Au and ZnO since the presence of ZnO on the 

surface of the nanocomposite was lower at 5% Au.  

This can also be explained according to the Lakowicz model45 as well as the suggestion 

by Michael et al.32 According to Lakowicz’s radiating plasmon model,45 the bigger particle size 
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prefer surface plasmon resonance (SPR) scattering of metal that could lead to PL enhancement, 

while the smaller particle size prefer SPR absorption which quenches the PL emission. In our 

case, ZnO surface is covered by NP’s and clusters. The first portion of this model is applicable to 

our case up to 1% since the particle size increases from 8.5 nm to 13.2 nm. However, on 

increasing the [Au] to 5% there is a considerable quenching to the extent 88% and 50% with the 

particle size increasing to 15.5 nm at the Zn/PEG ratios of 5 and 30 respectively This can be 

explained by the model of Michael et al.32 who observed the same kind of blue shift as well as 

quenching in PL intensity of ZnO on the addition of 5% Ag. They suggested that the silver 

clusters formed on the surface reduced the intensity of ZnO emission due to scattering of the 

incoming radiation by the increased amount of silver clusters as well as the unavailability of ZnO 

surface for effecting the PL emission. This argument is supported from our MALDI data, where 

formation of Au cluster with a maximum intensity was observed in 5% Au-ZnO prepared at 

Zn/PEG ratio of 5 and no Au cluster formation in samples prepared at Zn/PEG ratio of 30 with 

5% Au. The latter has gold NP’s and AuClO as seen from XRD data.  

 

Figure 12. Photoluminescence spectra of pure and Au-ZnO nanocomposites prepared at 

Zn/PEG ratio of (a) 30 and (b) 5. 

 

(a) (b) 
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3.7. Catalytic Activity of Au-ZnO nanocomposites 

To determine the catalytic activity of Au-ZnO, the reduction of nitro compound into amino 

derivative, i.e., 4-Aminophenol with NaBH4 was studied. Similar studies with Au/Ag clusters 

have been reported by other earlier workers.29,46,47 Our experiments were carried out in the 

absence and presence of ZnO as well as Au-ZnO. It can be seen from Figure 13 that 4-NP shows 

an absorption peak at 317 nm and on the addition of NaBH4, a red shift from 317 to 400 nm was 

observed, in a manner similar to earlier reports, revealing the formation of 4- Nitrophenolate ion 

in the alkaline medium. In the absence of Au-ZnO, there was no change in the spectrum, that is, 

the addition of pure ZnO did not affect the absorption spectrum, beyond the detection of already 

formed Nitrophenolate anion which remains unchanged. This suggests that pure ZnO doesn’t 

show any catalytic activity though it possesses free electrons from the conduction band. 

However, the reduction of 4-NP was clearly observed on the addition of 5% Au-ZnO prepared 

with Zn/PEG ratio of 5. At 10 min, 4-NP was reduced up to 50% along with the formation of a 

new peak at 300 nm (low intensity) and emergence of a new large intensity doubly split band at 

250-257 nm. A 65% reduction was observed at 20 min and there was no further reduction of 4-

NP after 20 min. The characteristic peaks of 4-Aminophenol have been observed at 300 nm 

(lower intensity) and a larger intensity 230 nm.48 The prominently split peaks at 250-257 nm in 

our observation are not part of 4-Aminophenol and hence must be from an intermediate or 

definitely a product different from 4-Aminophenol. Inset of Figure 13 show the enlarged UV-

Visible spectra between 200-300 nm. Furthermore a closer observation of the spectral data of  

Leelavathi et al.29 indicates the formation of this peak (~250nm) in very small intensity along 

with the large intensity 230 and 300 nm peaks characteristic of 4-Aminophenol. Similarly in yet 

another interesting observation, the same above referred 20 minutes reaction in presence of Au-

ZnO with Zn/PEG ratio of 5 there is a small formation of the peak at 230 nm and 300 nm due to 
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4-Aminophenol. A complete reduction of 4-NP at 18 min with Ag clusters as a catalyst with 

faster (increased) reduction at higher temperature has been reported by Leelavathi et al.29 

However in our present studies the reduction reaction remains unchanged after 20 min and 

reaction at higher temperature does not increase the reduction process any further. Another 

notable observation is that an addition of 5% Au-ZnO prepared with Zn/PEG ratio of 30 also 

shows reduction of 4-NP up to 49% at 10 min showing only the split peaks at 250-257 nm with 

no sign of the presence of peaks at 230 nm characteristic of 4-Aminophenol. MALDI results of 

this Au-5% Au-ZnO prepared with Zn/PEG of 30 reveals the total absence of Au cluster though 

the presence of Au-particles is displayed by XRD. If reduction of 4-NP depends only on Au 

cluster, then we should not observe any reduction of 4-NP in the presence of 5% Au-ZnO with 

Zn/PEG of 30. This suggests that the catalytic activity of Au-ZnO to convert 4-NP into the 

species having a doubly split peak 250-257 nm is due to the bulk Au nanoparticles deposited on 

ZnO. It can be seen from TEM image that Au exists in the form of both Au nanoparticles and 

clusters and the existence of Au in the form of bulk nanoparticles dominant over Au clusters. 

Furthermore, the observation from our 20 minutes experiment showing the presence of a chunk 

of the unknown species having the 250-257 nm peaks and at the same time a small formation of 

4-Aminophenol reveals clearly that the first reduction process involving the formation of 250-

257 nm peaks is catalyzed by the Au-nanoparticles while further reduction to 4-Aminophenol is 

catalyzed by Au clusters as seen by a comparison of results from 5% Au-ZnO from ZnO/PEG 

ratios of 30 and 5 respectively. MALDI results come to our support by proving that the former 

does not have any clusters while the latter has clusters along with Au-nanoparticles.  The 

mechanism of the catalytic reduction to form the first or “intermediate species”, represented by 

250-257 nm peaks, is from the conversion of 4-Nitrophenolate ion to the “intermediate species” 

on the surface of Au nanoparticles, which allow the transfer of electron from BH4
– to 
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Nitrophenolate ion via Au nanoparticles. The final reduction to 4-Aminophenol is catalyzed by 

Au cluster which is present as a minor constituent in presence of a larger amount of Au-

nanoparticles in our studies. As for the species exhibiting the 250-257 nm peaks we suggest that 

it should be due to 4-Aminophenolate anion just by comparing the spectral shift of 4-NP to 

Nitrophenolate anion on the one hand with that of 4-Aminophenol to 4-Amnophenolate anion. 

We, therefore, propose the following catalytic mechanism (Scheme 1) for the reduction of         

4-Nitophenol to 4-Aminophenol. 

 

Scheme 1. Mechanism for reduction of 4-NP to 4-Aminophenol using Au/ZnO as catalyst. 
 

It must be said that we could not get a UV-Vis spectrum of 4-Aminophenolate anion in the 

literature though there is a reference by Ghosh et al.49 to the formation of complexes of  Fe(II), 

Ni(II), Zn(II) and Cu(II) with this 4-Aminophenolate anion. 

 

Figure 13. UV-visible spectra of the reduction of 4-NP with NaBH4 in the presence of Au-

ZnO nanocomposites at different time interval. Inset: Enlarged UV-Visible spectra 

showing time dependent formation of intermediate ( ) 4-aminophenolate anion 4-

Aminophenol (  ). 
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3.8. In vitro cytotoxicity by gold nanoparticles/ clusters reveals cancer cell destruction 

 

One of the most significant observations from the study of gold nanoparticles/clusters 

with or without attachment to other molecules is its relevance and importance to biology. Two 

outstanding reviews on the subject of gold nanoparticles in general and in biology come from 

Sperling and coworkers50 and Webb and Bardan.51 While the first one points to their use in 

labelling, delivering, heating and sensing the latter one pertains to the use of gold NP’s as an 

agent for targeting, imaging, therapy and theranostics (therapy + diagnostics). Because of the 

nontoxic property of gold particles they have become powerful nanoagents for cancer detection 

and treatment. In fact our own work relates their possible use for cancer treatment (though it 

could also be used as tool for diagnostics, currently under investigation). We are here 

highlighting only their anticancer activity in terms of cell viability towards the MCF-7cell lines 

being reported as the first part of our larger strategy. First we agree to the fact that cellular 

impact of nanomaterials    in vitro may be difficult to implicate them to the real situation of in 

vivo though in vitro study is the first step to take them to the real situation.  It should be noted 

that the nanoagents that we use here are also colloidal nature with nano gold particles on the 

surface of ZnO nanocrystals i.e. in the form of Au/ZnO nanocomposites dispersed in the same 

medium as for the cell lines. It is important to note that ZnO itself has limited anticancer 

properties52-55 and in addition they are nontoxic, in other words they do not affect the normal 

cells as elegantly pointed out in the work of Akhtar et al.52  

We have already established the nature of the nanoparticles/clusters, i.e. n% Au/ZnO 

where n varies from 0.0 to 5% of input gold. They have been synthesized by solution combustion 

methodology using different Zn/PEG ratios as another parameter, wherein PEG was used as fuel. 

This ratio along with the percentage of gold initially added to ZnO tend to vary the composition 

of these nanoagents which contain different clusters and nanoparticles. The composition of these 
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Au/ZnO nanoparticles and Au atomic clusters have been clearly brought out earlier by various 

characterization methods. Hence the parameters that will play a role in the destruction of cancer  

cells i.e. cytoxicity are (i) percentage of Au, (ii) ZnO/fuel ratio (iii) the quantity of these 

anticancer agents and (iv) their particle size; the nanoagents were made and characterized and   

in vitro cytotoxicity studies were done strictly adhering to the procedure mentioned in section 

2.3. Table 1 summarizes the current results obtained by the in vitro assay for cytotoxic activity 

(MTT assay). The measurements were duplicated to ensure repeatability. In addition it must be 

noted that the average particle size measured from XRD are 8.5, 10.0, 12.3, 13.2 and 15.5 nm 

respectively for ZnO, 0.2% Au/ZnO, 0.5% Au/ZnO 1.0% Au/ZnO and 5% Au/ZnO samples 

though the actual % Au is less than the input(see section on SEM). A comparison of percentage 

cell viability, i.e the percentage of live cells on being treated with a certain concentration of these 

nanoagents shows that 1% Au/ZnO has the best efficiency in destroying 88% of the cancer cells, 

even with a small amount of 200 µg/ml of nanoagent acting on a colony of 105 cells. It is, 

however, interesting that a substantial increase in gold concentration, by using the same amount 

of 200 µg/ml of 5% Au/ZnO shows a slightly decreased efficacy (82% cell viability) though it is 

far better than the same concentration of pure ZnO. This reveals that gold either in the form of 

clusters or nanoparticles (NP’s) must have a critical role in reducing this observed cancer cell 

viability.  With this limited data it is suspected or logically inferred that either an increase in the 

concentration of 1% Au/ZnO to about 250 µg/ml or increasing the gold percentage to either 1.5 

or 2% Au but maintaining the concentration at 200 µg/ml of 1.5-2% Au/ZnO or increasing the 

incubation time to 72Hrs could have led to complete destruction of cancer cell. Detailed work on 

this is under process. Figure.S7 (supporting information) represents the data in the form of a 

histogram for quick comparison. It may be noted that a control experiment was done with 3T3 
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fibroblast cell lines with a maximum concentration of 250 µg/ml, which is found to be 

biocompatible.  

 Yet another difference is in the comparative rate of reduction in cell viability as shown in 

Figure.14. In smaller amounts until about 12 µg/ml of pure ZnO performs better than the other 

two concentrations in cell destruction. This may be because of the easier entry of pure ZnO into 

the cell membranes since its particle size is the least compared to those of 1% and 5%Au on the 

surface of ZnO. Smaller particles may find it easier to attach themselves to the cell wall 

membranes to form vesicles which then can be attacked by lysosomes leading finally to necrosis 

or mitocondrial damage.  However, it has been found earlier that interactions between different 

types of nanoparticles and cells are functions of size, shape and surface chemistry of 

nanomaterials.56    Though it is true that pure ZnO has a size-wise advantage other factors are 

even more important. Charged nanoparticles displayed higher toxicity compared to neutral 

particles.57 Surface charge of gold nanoparticles has been observed to mediate the mechanism of 

toxicity. Goodman and coworkers58 have noted that toxicity of gold nanoparticles functionalized 

with cationic and anionic side chains are superior to that of neutral Au NP’s. In addition, it was 

noted that in certain cases cationic AuNP’s display a moderate toxicity while their anionic 

counterparts has no toxicity. In general all earlier observations59,60 indicate Au NP toxicity 

towards cancer cells has the order, positively charged NP’s > negatively charged NP’s > neutral 

NP’s. In case of such neutral NP’s one does it better by adding a capping agent or ‘carrier agent’; 

for example for certain Au NP’s, cetyl tetramethylammonium bromide (CTAB) has been used as 

a capping agent.61 

 In our experiments, gold NP’s and clusters in 1%Au/ZnO and 5%Au/ZnO (actual values 

gold being much less than the introduced amount; see SEM section) present on the surface of 

ZnO seem to facilitate attachment to membrane walls through gold rather than ZnO.  In other 
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words, the presence of gold in the other two cases speeds up the efficacy of cell destruction. This 

contention finds support from the fact that pure ZnO seems to saturate at 200 µg/ml (46% cell 

viability). Hence, the lower cell viability i.e. greater cell destruction by 1% Au/ZnO and 5% 

Au/ZnO needs an explanation other than just the particle size noting that all three samples were 

made under the same conditions of ZnO/PEG ratio of 5. Pure Znδ+Oδ- is an ionic crystal which is 

hexagonal in shape. Within the crystal structure Zn is present as a ZnO4 tetrahedral moiety with 

more of oxygens on the surface. Strictly speaking the surface of ZnO is negative in character 

while the depositing gold being a metal sits on the surface of ZnO through the forces of 

electrostatic interaction creating a charge distribution of the kind (ZnO)δ-(Aun)
δ+ where n=1 refer 

to NP’s and n= 3, 5, 7, 9, 11 to clusters(vide supra). These ionic NP’s move towards the cell 

membrane walls with gold pointing towards the wall for getting off-loaded either as Au losing its 

ZnO counterpart because of the poor binding energy due to simple and small electrostatic 

interaction between them. Then, of course, gold NP’s and clusters become part of the vesicle 

which will be attacked by lysosome with subsequent mechanism62 leading to necrosis or 

mitochondrial damage viz. cell death. OR the entire (ZnO)δ-(Aun)
δ+ may go inside the cell 

through the vesicle formation by interacting with lysosomes either separately as ZnO and Aun or 

Table 1. Results on anticancer activity on Au/ZnO nanoagents on MCF 7 cell lines** 

 

 

 

 

 

 

 

 

Concentration in µg/ml 
% Of Cell Viability 

(a) Pure ZnO* (b) 1%Au/ZnO* (c) 5%Au* 

6 84.28 ± 2.77 
93.33 ± 4.27 

94.08 ±0.45 

12 74.92 ± 0.62 
78.3 ± 3.3  

82 ± 0.57 

25 68.56 ± 1.70 
47.89 ± 57  

59.72 ± 0.62 

50 60.76 ± 3.56 41.88 ± 1.08 42.84 ± 1.41 

100 51.96 ± 0.17 
36.34 ± 1.94 

29.92 ± 1.47 

200 46.44 ± 1.30 
12.29 ± 2.91  

18.24 ± 1.92 

*  Same Zn/PEG ratio of 5.   ** each well contains 105 cells 
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together as (ZnO)δ-(Aun)
δ+.  Pure ZnO having a negatively charged surface will have a lesser 

interaction with cells than the ZnO bearing 1% and 5% Au with a positive head. A look at 

Figure.14 indicates the preference for the entry of -(Aun)
δ+ into the membrane leaving behind 

(ZnO)δ-. Now it is clear that between the particle size and charge on the nanoagent the latter 

plays a significant role. Moreover, if as suggested by us the separation of gold NP’s and clusters 

- Au3, Au5, Au7, Au9 and  Au11- occur inside the cell membrane wall their sizes are considerably 

smaller than that of pure ZnO nanorods. Since among the clusters, [Au3] is much higher in 

number it is suggested that both the NP’s and Au3 and possibly Au5 may have played a larger 

role in in vitro cell toxicity.      

 

 

 

 

 

 

 

 

Figure 14. A graphical representation of %cell viability for three samples prepared under 

the same Zn/PEG ratio of 5. 

In order to identify the contributing factor for cell destruction, i.e. ZnO or Au NP’s or Au 

clusters a cell viability was again tested with 5% Au/ZnO prepared with differing ZnO/fuel ratios 

30 and 5 and compared with pure ZnO and 1% Au/ZnO prepared with ZnO/Fuel ratio of 5, 

restricted to the use of up to 100 µg/ml concentration as shown in Table 2.  5% Au/ZnO prepared 

with the highest ZnO/PEG ratio of 30 have no gold clusters at all, but has (AuClO)2 type of 
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clusters (see Figure. 9 (b)) along with definite presence of Au NP’s as proved by XRD data. So 

the destruction of cells must have been caused by either ZnO or by a combination of ZnO and 

(AuClO)2 or by the gold NP’s. However, the cell viability value for the concentration of 100 

µg/ml decreases in the order pure ZnO > 5% (30) > 5% (5). This means that higher contribution 

to cell destruction comes from gold, in the form of either clusters or particles. A comparison 

between the latter two i.e., 5% (30) > 5% (5) reveals that the former has no clusters at all but 

only NP’s and the latter has clusters in addition to NP’s having greater cell destroying capability. 

However, very small difference in the cell viability data between them leads us to suggest that 

both NP’s and Au clusters, particularly smaller clusters like Au3 and Au5, play dominant roles. A 

comparison of 5% (5) and 1% (5) in Table 2 substantiates our conclusion that nanoparticles and 

clusters play the common role in the destruction of cancer cells. This is based on the fact that 

Au3 clusters are found as 6 times as much in 5% (5) as in 1% (5) based on MALDI data though 

the induction of gold is 5 times as much in the latter. However, more work with additional closer 

parameters is needed to provide a clear mechanism vis-à-vis the differential contributions from 

ZnO, and gold clusters and NP’s. But the most important conclusion that Au/ZnO nanoagents 

have definite anticancer activity at its very low concentration cannot be denied. In addition this is 

the first report of its kind where a carrier or a coupling system for the Au nanoparticle is a simple 

molecule like ZnO which itself is toxic to cancer cell though to a much lesser extent and is 

simultaneously nontoxic to normal cells.  

A comment on the anticancer property of pure ZnO is in order. Though the cell viability 

is around 40% with saturation at this point in our work the same seems to be so in earlier 

studies55-58 as can be seen from (supporting info T3) though the cells tested are different. 
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Table 2. Results on anticancer activity on 5%Au/ZnO nanoagents prepared under different 

ZnO/PEG ratios. 

 

Concentration in 

µg/ml 

% Of Cell Viability 

Pure ZnO(5)*$ 5% (30)* 5% (5)* 1% (5)* 

6 84.28 ± 2.77 96.88 ± 3.54 95.31 ± 3.09 92.19 ± 2.21 

12 74.92 ± 0.62 92.50 ± 3.54 87.81 ± 1.33 80.00 ± 2.65 

25 68.56 ± 1.70 67.50 ± 2.65 62.19 ± 3.09 46.25 ± 1.77 

50 60.76 ± 3.56 45.31 ± 3.09 48.75 ± 2.65 38.13 ± 1.77 

100 51.96 ± 0.17 39.06 ± 4.86 36.56 ± 3.98 30.94 ± 1.33 

200 46.44 ± 1.3 --- 18.24 ± 1.92 12.29 ± 2.91 

   $ as in Table 1; * Numbers in parenthesis corresponds to Zn/PEG ratio with % indicating Au content. 

3.9. Mechanism for the formation of Au clusters 

The formation of Au cluster entirely depends on the amount of PEG as well as HAuCl4
-

used during preparation. At low PEG, upto 1% Au, bulk Au nanoparticles as well as small 

amount of Au clusters were being formed on the surface of ZnO. At 5% Au, in addition to bulk 

Au nanoparticles, AuClO clusters were also formed and no formation of Au clusters. As soon as 

the PEG concentration was increased, Au cluster in addition to the bulk Au nanoparticles were 

formed on the surface of ZnO. Odd number Au clusters are dominant with the presence of lesser 

quantities of even numbered ones. We can infer from this observation that initially AuClO was 

formed at low supply of energy. At the expense of high energy during combustion process, most 

of the Cl was removed from AuClO to form Au clusters.  Schematic representation of the 

formation of Au cluster is shown in scheme 2. 
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Scheme 2  Schematic representation of the formation of Au clusters.  

4. Conclusion 

In conclusion, fuel dependent Au clusters were prepared by tailoring the Zn/PEG ratio 

using a solution combustion synthesis. Only at high PEG, Au clusters was formed with the major 

peak at Au3 clusters. Low supply of energy causes the formation of (AuClO)2 clusters instead of 

Aun clusters with n being even and odd with the dominant presence of odd numbered ones. There 

is a simultaneous existence of nanoparticles and clusters. The PL mechanism of Au-ZnO 

depends on the surface and size of the particles. The electron transfer from Au to ZnO occurring 

at the surface enhances the PL of ZnO and the presence of Au clusters seems to quench the ZnO 

emission. The catalytic effect on reduction of 4-NP with an intermediate as 4-Aminophenolate 

anion was promoted by bulk Au nanoparticles and conversion into 4-Aminophenol by Au 

clusters. This study demonstrates the simple synthetic method to produce desired Au clusters just 

by tailoring fuel ratio and percentage of doping. The most important contribution of this work is 

that Au/ZnO nanoparticles and clusters act as anticancer agents. In addition this is probably the 

first report of its kind where a carrier or a coupling system for the Au nanoparticle is simple 

molecule like ZnO.  
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