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In the description of charge screening in electrostatic self-assembly of nanoparticles (molecules) embedded into a polar solvent,
the static screening effects (a contribution associated with the rapid spatial redistribution of small and highly mobile ions of
a solvent) is traditionally treated phenomenologically, using the Yukawa short-range potential for describing the interaction
between these particles. However, this model has a limited range of applicability being valid only for infinitely diluted systems
and high salt concentrations. During a slow self-assembling process with nanoparticle formation, very dense structural elements
(aggregates) are formed, in which the distances between the nanoparticles could become to be comparable to the Debye radius in
the Yukawa potential. For such the structural elements dynamic screening effects (the contribution of nanoparticles themselves
into the screening potential) becomes important. In this paper, using a novel integrated approach (nonlinear integro-differential
kinetic equations for the correlation functions of particles), we have obtained the self-consistent solution in 3d case and compare
roles of both static (equilibrium) and dynamic (nonequilibrium) charge screening effects in different situations. This paper is a
continuation of our recent study [Phys.Chem.Chem.Phys., 16, 13974 (2014)], where the polar solvent effects now were taken
into account.

1 Introduction

This is a second part of the study of nonequilibrium charge
screening for systems with self-assembly in 3d case. The first
part of the study was published recently in Ref.1.

As is well known, nanoparticles (NPs) of different ma-
terials could be functionalized with charged ligands2 and
used as building blocks in producing ordered structures3,4 in
nanoscale self-assembly (SA). However, an important prob-
lem of the interaction of the charged NPs embedded into the
salt solution (polar solvent) remains unsolved. This is largely
due to the fact that the outcome seems obvious: salt ions are
expected to redistribute around the NPs so that the long-range
Coulomb potential becomes strongly screened and effectively
turnes out to be a short-range5,6. But, as always, the devil is in
the details. The generally-accepted model of the interaction of
charged particles embedded in saline is known as the Yukawa
potential2,6, ϕ(r) ∝ exp(−κr)/r. This potential is character-
ized by a single parameter κ (inverse of the Debye radius2,6,
rD = κ−1). Since this radius is determined entirely by param-
eters of salt solution, it is not difficult to evaluate it as a func-
tion of salt concentration. It is evident that the change in salt
concentration changes also the interaction potentials between
NPs, and, as a result, it is possible to observe the SA-related
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phase transitions induced by a salt. This is indeed confirmed
experimentally: inorganic salts determine the SA of charged
NPs in a form of different composite structures7, for exam-
ple, the charged NPs nucleate and grow into all-NP crystals
at negligible or low salt concentrations, but they start to form
supraspheres at higher salt concentrations. Within the tradi-
tional approach, in general, the process in different salt solu-
tions with a fixed value rD must lead to the same structures.
However, this is not the case. Instead, the experiments show
that different salts with the same Debye screening length rD re-
veal di f f erent structures7. This fact indicates that the simple
theoretical scheme based on the systematic use of the Yukawa
potential is unsatisfactory, at least for describing the SA pro-
cesses.

As is well known, the Yukawa potential is not an exact re-
sult, but quite a rough approximation (the so-called linearized
Poisson-Boltzmann equation2,6). Moreover, it completely ne-
glects the short-range particle interactions. Therefore, a more
advanced approach is needed for analysis of the NPs inter-
action with small electrolyte ions8. The outcome could be a
revised expression for the interaction potentials of NPs cor-
recting the standard Yukawa potential.

This idea has been implemented recently in the approach8

combining both analytical calculations and computer simula-
tions. The screened Coulomb interactions between spherical
charged NPs immersed in a simple electrolyte was calculated
and several effective parameters (screening length, renormal-
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ized charges, etc) were found. This approach, however, is
not universal. The interactions between NPs were determined
from simulations with two macroions (NPs) in an ensemble
of small ions which corresponds to infinitely small densities
of NPs. Note that this limiting case coincides with the range
of applicability of the Yukawa potential9. However, this limit
is completely incompatible with the SA objectives. In fact,
typical elements of SA structures are very dense aggregates or
clusters. At some stage of SA process, the distances between
NPs become of the order of the screening length rD. For such
dense systems the contribution the NPs to the screening effects
can be significant. In other words, both the traditional method
(a single-parameter Yukawa model2), and a more elaborated
approach8 are not designed for the SA tasks.

The reason for this is obvious: the consideration of static
and dynamic effects in the charge screening effects is per-
formed in the very different ways. The screening effects occur
as a result of the regrouping of all charges, both the solvent
ions and NPs, nearby a probe particle. The existing theory
considers, however, only static effect caused by a rapid re-
grouping of small solvent ions (quasi-equilibration). Despite
the fact that as a result of such the rearrangement a local struc-
ture is formed, wherein each charge effectively surrounded by
a cloud of particles of opposite charge, small solvent ions are
distributed macroscopically essentially uniformly. Therefore,
a concentration of the salt in solution is an important parame-
ter determining the screening effects. On the other hand, com-
pletely different behavior is observed for slow NPs (dynamic
screening effects).

As a result of SA process, even in the systems with a low
concentration of NPs, they can form very dense aggregates.
The density of NPs determines primarily a number of aggre-
gates, but not their characteristics. The structural elements of
the NP system have a local density comparable to the density
of a solid. As a result, the dynamic screening effects could
be large under all conditions, which may cause SA. More-
over, they may be more significant than the traditionally con-
sidered static screening effects. This effect is not associated
with electrostatics and is quite general10: a strong interaction
between particles with irreversible aggregation is a diffusion-
limited process (a purely kinetic phenomenon that results in
the structures even at arbitrarily low particle volume fraction.
Of course, systems with weaker attractions require larger vol-
ume fractions for SA.

Note some additional restrictions. In computer simulations
(kinetic Monte Carlo - kMC, or Molecular dynamics, MD)9,11

the assumption of moderate or high salt concentration (large
values of parameter κ) is commonly used. This restriction
arises for the two reasons. One reason is trivial and purely
technical. A system with a small κ (or even with zero κ = 0 in
absence of salt) is almost impossible to simulate by means of
traditional methods (kMC), because the interaction radius rD

is so large that each NP interacts with a large number of other
NPs caught in the sphere of its influence. Another reason is
more fundamental: use of the Yukawa potential assumes ne-
glect of solvent-induced fluctuations11. This limitation is im-
portant for the case of the static screening effect. In the case
of electrostatic SA, taking into account the dynamic screen-
ing effects, the aggregates are always dense and full charge
density fluctuations are suppressed. Moreover, SA is charac-
terized by a fundamentally different spectrum of fluctuations,
with strongly developed long-range correlations, responsible
for the aggregation1.

The general problem of NPs screening has been formulated
by us recently1,12–14, but it was not solved properly: we took
into account the dynamics screening effects but neglected the
static effects. This is valid only for absence of salt solution
(formally, κ ≡ 0). Note that this case is almost impossi-
ble to simulate by conventional methods (for example, kMC)
because of the infinite range of the interaction of particles.
Therefore, in Refs.1,12–14 the new approach was formulated,
the basic ideas of which are listed below, Section2.1. The
kinetics in two-dimensional (2d)12–14 and three-dimensional
(3d)1 systems of NPs were considered in detail.

In this paper, we first consider the screening of the charges
in a competitive static and dynamic effects. We consider re-
alistic 3d case, so for better understand of the results, it is
desirable prior acquaintance with the recent study1.

We use essentially the same model for electrostatic dynamic
SA as in previous Refs.1,12–16 taking into account the compe-
tition of long-range, Section 2.2, and short-range, Section 2.3
particle interactions. Despite the simplicity of the model, it
successfully describes a system with different kinetic phase
transitions, and therefore is ideal for demonstration of the dy-
namic screening effects in electrostatics.

2 Model and methods

2.1 Smoluchowski-type equations

It is well know, that the formal solution of stochastic equa-
tion of Brownian dynamics for a single particle in the external
field U(r) leads to the Fokker-Planck equation17 for the con-
ditional probability of time evolution (famous Smoluchowski
equation):

∂c(r, t)
∂ t

= D∇[∇c(r, t)+
c(r, t)
kBT

∇U(r)], (1)

where c(r, t) is the probability density to find a particle at po-
sition r at time t. As shown in Ref.12 (see also Refs.18,19 for
more detail), for a system of interacting particles the method
should be based on generalized Fokker-Planck equation. So,
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the complete set of kinetic equations is of the Smoluchowski-
type (indexes α,β are two types of particles):

∂Fαβ (r, t)
∂ t

= Dαβ ∇[∇Fαβ r, t)+
Fαβ (r, t)

kBT
∇Wαβ (r, t)], (2)

where Dαβ = Dα +Dβ is the coefficient of mutual diffusion.
The eq. (2) for the joint correlation functions, Fαβ (r, t), de-
scribes the effective particle diffusion in potentials of mean
forces, Wαβ (r, t), that are, in its turn, functionals of the corre-
lation functions Fαβ (r, t) (see Appendix, section 5.1 for more
details). This is typical for condensed matter self-consistent
theory. The statistical meaning of the joint correlation func-
tions is fully analogous to the radial distribution function in
statistical physics of dense gases and liquids. The quantities

C(α)
β (r, t) = nβ Fαβ (r, t) (3)

are average densities of NPs β -type at the relative distance r
provided that a probe particle α is placed into the coordinate
origin18,19 and nβ are macroscopic densities of β -type NPs.
The joint correlation functions are normalized to unity (no
spatial correlations, random distribution of particles at long
distances)

Fαβ (∞, t)≡ 1. (4)

Without discussing derivation of the equation set (it was
done in detail in Ref.12), we note only that they coincide with
the first nontrivial exact equations based on many-body theory,
very similar to the Bogolyubov - Born - Green - Kirkwood -
Yvon (BBGKY) hierarchy (see also Refs.18,19), whereas the
effective potentials of mean forces, Wαβ (r, t), are obtained
approximately12. Note that so-called Kirkwood approxima-
tion20 was used for calculating the contribution of short-range
interactions in the potentials of mean forces12 (Appendix, sec-
tion 5.1). The evaluation of accuracy of the Kirkwood ap-
proximation for Smoluchowski-type equations is discussed in
Ref.18,19. The electrostatic contribution to the potentials of
mean forces, will be discussed in detail below. The set of cou-
pled kinetic non-linear and integro-differential equations (2)
is solved numerically by using special numerical methods12

(see Appendix, sections 5.2 and 5.3 for more details).

2.2 Electrostatic interactions

In our earlier work for 2d12–14 or 3d1 ionic systems, we con-
sidered important limiting case of the absence of salt. There
the dynamic screening of the NPs occurs only as the re-
sult of particle spatial rearrangement. The starting point for
the electrostatic contribution to the potentials of mean forces

was the same as in the Debye-Hückel theory2: a continuum
method for the calculation effective electrostatic potential ϕ
for charged NPs in an ionic solution was used. In the absence
of a salt one can use the Poisson’s equation in the differential
form

∇2ϕ(r, t) =−4π
ε

ρNP(r, t), (5)

where ε is a dielectric constant and ρNP(r, t) the charge den-
sity of NPs (it can be the function of time in kinetic systems).
This equation needs a self-consistent solution: we are look-
ing for the electrostatic potential ϕ(r, t) produced by a spatial
distribution of charged particles, eq.(5). The charge density
ρNP can be easily related to the densities of NPs and the joint
correlation functions by using the definition, eq.(3). The right
hand side (rhs) of the eq.(5) is a simple linear functional of the
correlation functions, ρNP = ρNP[F(r, t)]. But, in turn, a spa-
tial distribution of charged particles depends on the potential,
eq.(2).

Thus, the rhs of the eq.(5) is effectively a very complex
functional of the electrostatic potential ϕ(r, t). However, for
the solution of this equation the contributions of short-range
interactions (avoiding the traditional catastrophe of Poisson-
Boltzmann method for 3d2), and the effects associated with
the non-equilibrium (kinetics) are important.

In the case of the salt absense, a simple two-component
(α ,β = A,B) system was considered in Refs.1,12–14. It is char-
acterized by the three time-dependent joint correlation func-
tions: two for similar particles, FAA(r, t) and FBB(r, t), and one
for dissimilar, FAB(r, t). From a formal point of view, one can
suggest to include the solvent effects considering additionally
two types of oppositely charged small ions in the salt.

However, with four types of particles the total number of
the correlation functions reaches already 10, and this compli-
cation is not the only one. First of all, the very idea of using
the Brownian dynamics for small ions is questionable. This
could be justified, strictly speaking, only for NPs moving in a
viscous liquid. If we assume its applicability for small ions,
different types of particles will have different mobilities: slow
diffusion of NPs and a rapid diffusion of small ions. Of our
interest, however, is a slow dynamics of the NPs, so that fast
variables should be excluded. Moreover, from a formal point
of view, to solve the set of kinetic eqs.(2), the potentials of
all interactions (NP-NP, NP-ions, ions-ions) must be speci-
fied. With the increasing number of interactions considered in
the theory, the number of free parameters also increases, that
hinders understanding of the physical results.

Thus, our first simplification is to neglect the degrees of
freedom of ions in the electrolyte, and to treat it as a viscous
liquid with a small number of parameter for the description
of electrostatic interaction between NPs. This is very similar
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to the transition from Newton dynamics to Langevin (Brow-
nian) dynamics21. In our case, we are interested in the time
evolution of a subset of the degrees of freedom. These (NPs)
degrees typically are collective variables changing only slowly
in a comparison to other (ions in the electrolyte) variables of
the system. The fast (microscopic) variables are responsible
only for the static screening of charge.

As a result of eliminating redundant degrees of freedom,
we return to eqs.(2) for NPs only, but with modified potentials
of mean forces. We will proceed from the simple assumption
that small particles do not change the short-range interactions
of NPs, but they are significant for the screening their long-
range interactions. Instead of the eq.(5), we have to use a more
general equation

∇2ϕ(r, t) =−4π
ε
[ρNP(r, t)+ρsalt(r, t)]. (6)

Since statistical characteristics of small particles (correlation
functions) are not considered, the term ρsalt(r, t) on the rhs of
the eq.(6) (responsible for static screening effects) can only be
the functional on the potential ϕ(r, t), ρsalt(r, t)≡ ρsalt [ϕ(r, t)].
The choice of this functional depends on the electrolyte model.
The main ideas of our study will be demonstrated below for
the simplest (and generally accepted) model with a linear
functional of ϕ(r, t),

4π
ε

ρsalt [ϕ(r, t)]≡−κ2ϕ(r, t), (7)

where salt is described by a single parameter κ . In other
words, we start from the equation

∇2ϕ(r, t)−κ2ϕ(r, t) =−4π
ε

ρNP(r, t). (8)

This equation is nothing else but the so-called linearized
Poisson-Boltzmann equation2, where, however, the statistical
characteristics are used for the description of dynamic screen-
ing effects, ρNP = ρNP[F(r, t)], similar to Ref.1. Note that in
the limiting case of a very low density of NPs, for example,
e.g. just one NP, ρNP(r, t) = eα δ (r), the solution of the eq.(8)
reads

ϕ(r, t) = eα exp(−κr)/εr. (9)

In other words, in the limit of small NPs concentrations, the
non-screened Coulomb potential, ϕ ∝ 1/r, is replaced by the
screened (Yukawa) one, ϕ ∝ QDH(r)/r, where the screening
factor QDH(r) = exp(−κr) according the Debye-Hückel the-
ory, is the function of a single parameter κ . Note that for a
more complex model of salt8 it is necessary to consider more

complex functionals for ρsalt [ϕ(r, t)] with a large number of
free parameters.

The solution of the eq.(8) can always be presented in the
form ϕ(r, t) ∝ Q(r, t)/r with a simple boundary condition
Q(0, t) = 1, where the screening factor Q(r, t) is now the func-
tion of time. As shown in Ref.1,13, the dynamic screening
factor Q(r, t) may have nothing to do with the equilibrium fac-
tor, QDH(r). Furthermore, in the systems with asymmetrical
diffusion or charge, each type of charged particles is screened
differently, so that the two screening factors exist here, QA(r, t)
and QB(r, t).

The Coulombic interaction of particles is characterized by
another parameter, so-called Bjerrum length2 (the length at
which the electrostatic interaction between two charges is
comparable in magnitude to the thermal energy scale, kBT ):

lB =
e2

εkBT
. (10)

This parameter characterizes the contribution of NPs to the
electrostatic potential. Therefore, the interaction of NPs in
different salts with the same Debye radii rD will be different
because of the difference in the Bjerrum lengths.

2.3 Short-range interactions

To simulate the short-range van der Waals interactions be-
tween oppositely charged A and B NPs, the classical 6-12
Lennard-Jones potential (with two free parameters, U0 and r0)
is used. We assume attractions and repulsion of both similar
pairs,

UAA(r) =UBB(r) = 4U0[(
r0

r
)12 − (

r0

r
)6]. (11)

The Lennard-Jones potential corresponds to the particle re-
pulsion at short distances, r < rc = 21/6r0 (due to finite par-
ticle sizes). We assume a similar repulsion of dissimilar
pairs of NPs at r < rc but cut the dissimilar pair attraction at
r > rc (truncated and shifted, Weeks-Chandler-Andersen po-
tential12,15,21,22):

UAB(r) = 4U0[(
r0

r
)12 − (

r0

r
)6 +

1
4
] (12)

for r ≤ rc = 21/6r0, and UAB(r) ≡ 0 for r > rc. Without
Coulomb interactions dissimilar NPs, A and B, repel each
other whereas similar NPs (A-A, B-B) attract each other and
thus could aggregate.

2.4 Parameters

The length unit r0 and the diffusion time unit t0 = r2
0/(DA +

DB) are used hereafter. The screening parameter κ and the
wave number q (a definition of the structure factors Fαβ (q, t)
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will be introduced below) are considered in the units of
r−1

0 . The Coulomb potential is described by the dimension-
less Bjerrum length ζ = lB/r0 (the ratio of the unscreened
Coulomb interaction energy on the characteristic length of the
particle diameter r0, e2/εr0, to the thermal energy, kBT ). As is
shown below, the nature of the screening of charged particles
is primarily determined by the competition between the two
parameters, κ and ζ . It is convenient also to use dimension-
less temperature θ = kBT/U0.

The NPs are assumed to have opposite charges Z: eA =
ZAe, eB = −ZBe (the value of ZB = 1 is fixed). The NPs
densities are nA and nB, so that the total particle density,
n = nA + nB, determines the dimensionless average (macro-
scopic) NPs concentration η = nr3

0. Lastly, asymmetry in the
particles’ diffusion coefficients is described by the parameter
µ = DA/(DA+DB). These five parameters are of fundamental
importance because they determine all macroscopic thermo-
dynamic quantities.

2.5 Limitations of the method

The main goal of our paper was to demonstrate new type
of dynamical screening effects in self-assembly systems of
nanoparticles which were neglected so far. This needs calcula-
tion of the kinetics on time scales much longer than traditional
MD simulations. Indeed, we consider here the results for the
long simulation times, t = 2m (in units of t0 = r2

0/(DA +DB)),
where the maximum value m = 24 corresponding to the di-
mensionless time 107 or real time 1− 10 sec. On the other
hand, MD technique allows currently to reach only millisec-
ond time scales ( or t = 103 dimensionless units). In other
words, our approach and MD observe quite different stages of
the kinetic process.

Note that any self-consistent theory (in our case eqs.(2)) is
always semi- quantitative, and its accuracy should be, in prin-
ciple, estimated by a comparison with the results of indepen-
dent computer simulations. In fact, we did so in our previous
studies (e.g., Refs.18,19). However, as mentioned above, the
problem is that the method developed here predict results on
the time scales far exceeding the limits of standard MD and
kMC methods.

The price of this achievement is use of very simplified
models, focused on fundamental phenomena without details
and free parameters which would complicate understanding
of the results. This is a generally accepted approach in kinetic
theory1,2,9,11,12,15,16. Thus, we used the model of structure-
less nanoparticles which interact only via Coulomb and short-
range van der Waals-like potentials. Such simple model sys-
tems with spherically symmetric, structureless nanoparticles
reveal successfully several kinetic phase transitions. These
transitions are defined by parameters of particle interactions.
Note that treatment of more realistic atomistic models (with

ligands and their internal structure, different dielectric con-
stants for core and the surrounding solvent) currently is hardly
possible, because by the increase in the number of particle
species and types of interactions results can only be obtained
in the time interval that is not interesting from the point of
view of the effect.

2.6 Structure characteristics

When considering the results, we use the same set of structural
characteristics as used in previous studies1,13,14:

• Primarily, as the result of solving the set of kinetic eqs.(2)
for arbitrary time t, we analyze the joint correlation func-
tions Fαβ (r, t). We focus on the ordering formation from
chaos: random initial distribution of NPs is assumed,
Fαβ (r,0) = 1. This distribution corresponds to a well-
stirred system.

• The additional information can be obtained from the par-
tial structure factors Sαβ (q, t).

Its Faber-Ziman23 definition is used here

Sαβ (q, t)+1+n
∫ ∞

0
[Fαβ (r, t)−1]

sin(qr)
qr

4πr2dr. (13)

The behavior of the structure factors at small wave numbers q
corresponds to the large-scale fluctuations of the particle den-
sities.

3 Results

3.1 Absence of salt, κ = 0

In recent Ref.1 we presented the results of a preliminary study
of the important limiting case of the absence of salt between
NPs. In this case one has to consider explicitly the contribu-
tion of the long-range interactions of a given NP with all other
NPs. The screening of the NPs occurs only as the result of NPs
spatial rearrangement rather from electrolyte small particles.
Formally, this case corresponds to the choice of the parameter
κ = 0. As we show below, the results could be successfully ex-
trapolated to the general case of small salt concentrations. For
κ = 0 the only parameter that characterizes the strength of the
Coulomb interaction is ζ . Depending on its value, different
types of structures could arise. Let us conditionally classify
the range of values ζ < ζ0 ∼ 1 as a weak Coulomb interac-
tion1. Within this range of the control parameter ζ the system
always remains far from equilibrium: a continuous growth of
aggregates occurs, from small to large ones (known as the Ost-
wald ripening). The value ζ0 is critical in the sense that for
ζ > ζ0 (but not too large values, medium Coulomb interac-
tion, ζ < ζ1 ∼ 102) the system rapidly reaches equilibrium
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corresponding to the steady state with very small aggregates.
In other words, the kinetic phase transition occurs. With fur-
ther increase of the parameter ζ , there is another kinetic phase
transition for ζ = ζ1(ionic crystallization)1, which we do not
consider in this paper.

The range of values ζ < ζ0 ∼ 1 is interesting from the point
of view of a comparison of both dynamic and static screening
effects. Here we have a typical dynamic SA. The structure of
aggregates is complex, with characteristic charge oscillations.
The kinetics of the process can be analyzed in terms of non-
equilibrium physics of critical phenomena, because the long-
wavelength (q → 0) fluctuations of particle densities are well
developed here1, similarly to the critical point in equilibrium
systems.

For weak Coulomb interactions the mutual attraction of
similar particles at short distances is stronger than their
Coulomb repulsion. Thus, similar particles have a trend to
form dense domains. But a linear domain size λ is limited
due to the Coulomb repulsion of similar particles within the
domain. This length λ is a function of the parameters θ and
ζ . Each domain acts as a super-particle with a big charge, Ne,
at distances r ≫ λ , N is a mean number of similar particles
in the domain, which is large for the weak Coulomb interac-
tion1. So, the effective value of the electrostatic parameter
ζe f f ∼ N2ζ is not small, but big. The only important effect
is the Coulomb interaction between domains, and it is strong.
As a result, ionic solid-type crystallization occurs between do-
mains of opposite charges.

3.2 Weak static screening

The results for the parameter value κ = 0.5 can be condition-
ally assigned to the case of a weak static screening. A com-
parison of Fig.1 for the case of presence of salt, κ ̸= 0, with
the analogous data for κ = 0 (Fig.4 in Ref.1) shows their sim-
ilarity. There is only a small quantitative difference. The pres-
ence of salt weakens the strength of the Coulomb interaction,
so the results1 can be reproduced with appropriate increase of
the parameter ζ .

Fig.1a shows the principal result: the correlation functions
are not stationary, the process of structure formation contin-
ues. The results for other values of the parameter η are very
similar to those shown in the Fig.1, all figures describe the
same type of the structures. This behavior is typical for dy-
namic screening effects.

This is confirmed by a comparison of the partial structure
factors, Fig.1b, where quantitative difference is not large and
has kinetic nature. The aggregate formation of the same size
but in a less dense medium requires more time. Note that
the correlation functions Fαβ (r, t) and partial structure factors
Sαβ (q, t) contain the same statistical information (structure
factors are the result of the Fourier transform of the correlation

functions, eq.(13)). However, for nonequilibrium structures
studied in this work (which are not universal, but correspond
to specified particle interactions) the use of structural factors
is preferable, since their behavior is much simpler. Being the
function of the argument q, these factors have only one or two
extremes, each of which has a simple physical interpretation.

First, at long times they have maxima with close magni-
tudes. Moreover, it is possible to use the non-linear fit of the
Lorentz type, S(qc)/[1+ξ 2(q−qc)

2], for all factors Sαβ (q, t)
near the point q = 0. Both, the peak maxima at q = qc (the
value qc is small) and their half-widths increase with time.
The existence of this peak for the pairs of similar particles,
Sαα(q, t), indicates that as the result of interactions they form
aggregates (domains with similar particles).

As shown in Ref.1, this behavior is similar to that in
the equilibrium statistical systems near the critical points
(Ornstein-Zernike theory24,25) in the limit t → ∞ (infinitely
large time). The long-wavelength part of the fluctuation spec-
trum, q → 0, is unstable, as the result of particle aggregation.
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Fig. 1 (Color online) Ionic binary systems with Lennard-Jones and
Coulomb interactions for fixed parameters κ = 0.5 (weak static
screening) and [η ,θ ,µ = 0.4,0.5,0.5]. (a) The joint correlation
functions Fαβ (r, t) (solid line - similar, dotted line - dissimilar pairs,
numbering with prime) for the value ζ = 1.0 and times t: (1) 218,
(2) 224. (b) The structure factors Sαβ (q, t) (solid line - for similar
and dotted line - for dissimilar pairs) for the same ζ and the times t:
(1) 218, (2) 222, (3) 224. (c) The screening factors
Q(r, t) = QA(r, t) = QB(r, t) for the same times as in window (b).
Note: dashed line - results according the Debye-Hückel theory,
QDH(r) = exp(−κr) (without dynamic screening effects). (d) The
screening factors Q(r, t) at time t = 224 and for different values of
parameter ζ : (1) 0.25, (2) 0.50 (3) 0.75, (4) 2.00.

If a similar peak simultaneously occurs also for the dissimi-
lar particles, function SAB(q, t), it means that in this system the
charged domains serve as the building elements of heteroge-
neous structure where all kinds of particles (similar or dissimi-
lar) are spatially correlated. In other words, the aggregation of

6 | 1–12

Page 6 of 12Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



homogeneous domains occurs with alternating charges form-
ing a heterogeneous structure. Fig.1b corresponds exactly to
this case. If the factor SAB(q, t) has no maximum but a min-
imum (this case is also possible, as shown in Section 3.4), it
means NPs segregation.

Second, the competition of weak electrostatic and short-
range interactions leads to formation of the structures with
oscillating charges12–16, because these aggregates are made
of domains with different-sign charges. One can see in Fig.1b
the emergence of additional extremes at q= q0 ≈ 1. This value
may be associated with the previously mentioned characteris-
tic length λ = 2π/q0

1. Note that this extremum arises only
at very long times, curves (3), and then does not change with
time.

Very interesting is the behavior of the screening factors.
Difference between the results again has the kinetic nature
(different rate processes in a more or less dense environments),
and not very large. The results are also not very sensitive to
the choice of the parameter η . For short times, when aggre-
gates do not have enough time to form, this factor practically
coincides with the equilibrium estimate QDH(r) = exp(−κr)
(dashed line in Fig.1c This result is expected. However, the
appearance of dense aggregates leads to oscillations of the
charge and results in the nontrivial dynamic screening effects
(all factors show oscillations with the same period λ ).

One can see that the overall behavior of the screening fac-
tors differ from the prediction of the standard Debye-Hückel
theory2. A comparison of the results for screening factors with
their counterparts for κ = 0 (absence of salt)1 shows an addi-
tional difference. In the absence of salt a complete charge
screening, Q(∞, t) = 0, takes a long time necessary for the
slow NPs redistribution in space on a large scale. Therefore,
the asymptotic value of the screening factors Q(∞, t) may dif-
fer from zero. In the presence of salt, rapid movement of its
small ions provides a rapid establishment of the asymptotic
behavior, Q(∞, t) = 0.

Fig.1d shows the behavior of the screening factors at the
same time, but for different values of the parameter ζ (the
parameter κ is fixed).

The results discussed above are very important for under-
standing of the relevant experiments7. It means that differ-
ent salts with the same value of the Debye screening length
rD = κ−1 but not the same value of another electrostatic pa-
rameter ζ could have different type of the screening and could
produce different ordered structures. The systematic increase
of parameter ζ results in decrease of both the amplitude of the
oscillations and the oscillation period λ . For the value ζ = 2.0
the aggregation stops, the system of charged NPs quickly re-
laxes to the equilibrium gas-like structure. Thus, the defini-
tion of the weak Coulomb interaction, ζ < ζ0 ∼ 1, in Ref.1

is justified by the results of kinetics for systems with a salt
contribution.
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Fig. 2 (Color online) (a-c) Ionic binary systems with Lennard-Jones
and Coulomb interactions for asymmetric particle charges,
ZA = 2,ZB = 1, and fixed parameters κ = 0.5 (weak static
screening). Parameters: [η ,θ ,µ,ζ = 0.4,0.5,0.5,0.75]. Solid line -
for similar and dotted line - for dissimilar pairs. (a) shows the joint
correlation functions for the time t = 224 (curve (1) AA, curve (1′)
BB, and (1′′) AB correlations). (b) the structure factors for the times
t: (1) 218, (2) 224. (c) the screening factors QA(r, t) (curves without
primes) and QB(r, t) (curves with primes) for the same times. (d)
shows the screening factors at times t = 224 for the same
parameters[η ,θ ,µ = 0.4,0.5,0.5], but with two different values of
ζ : (1) 0.5 and (2) 1.0.

The observed structure does not change much by varying
the control parameters (provided that they meet conditions of
the dynamic SA). It may be, however, changed dramatically
during the transition to systems with charge asymmetry.

Fig.2 shows the results for the system, where the charge
of one type of particles exceeds that of other particles: ZA =
2,ZB = 1. (We do not show qualitatively similar results for
other values of the asymmetry of the charge.). Due to the elec-
trical neutrality, we assume nB/nA = ZA/ZB. The relevant cor-
relation functions become asymmetric, FAA(r, t) ̸= FBB(r, t),
Fig.2a. The same is true for the structure factors SAA(q, t) ̸=
SBB(q, t), Fig.2b, or the screening factors QA(r, t) ̸= QB(r, t),
Fig.2c.

This type of structure differs considerably from the previ-
ous case of equal charges. In particular, the oscillations of
the screening factor are no longer observed. However, the be-
havior of the screening factors still has nothing to do with the
results of the Debye-Hückel theory. One may notice that dif-
ferent charges are screened in a qualitatively different way. It
is because NPs with a larger charge, A, are isolated from each
other (their number is relatively small).

As the result, they are mainly surrounded by a cloud of op-
positely charged NPs, B (they are in excess). This cloud re-
duces rapidly the effective charge of the particle A with the
increasing distance. Simultaneously, the sign of the effective
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charge is changing (curves (1) and (2) in Fig.2c. At the same
time, the NPs B aggregate into domains. Their effective charge
is determined by a number of similar particles in the domain,
N. As the result, the effective charge can reach high values
(overcharging, curves (1′) and (2′) in Fig.2c. Fig.2d shows
the behavior of the screening factors for different values of the
parameter ζ .

Summarizing this subsection, we can formulate the funda-
mental result. The use of the Yukawa potential is justified only
at the initial stage of the kinetics, when the structure of the
system is close to gas or liquid. But at the beginning of dy-
namics SA (at the first appearance of dense aggregates), such
a strong dynamic screening effect occurs that makes the use
of the Yukawa potential incorrect. However, there is no other
universal potential for these systems. For each structure, ef-
fective interaction between the particles must be calculated
separately.

3.3 Medium static screening

With further increase of the parameter κ , one gets into an area
which is called medium static screening, Fig.3 for value κ = 1.
A new element here is the sensitivity of the results to changes
in a parameter ζ . Unlike the previous figures, the window
Fig.3b does not show the time evolution of the structural fac-
tors, time is fixed. The only parameter ζ is varied here. Note
that the critical value ζ0, above which dynamic SA disappears,
increases (ζ0 ≈ 3). Curves (4) correspond approximately to
the critical point where the solutions come to the equilibrium.
Here some aggregates are formed, but they are small, as can
be judged by the absence of the characteristic additional ex-
tremum at q0. This extremum arises with decreasing ζ , curves
(3), but in a very narrow range.

The process is non-stationary: the aggregates grow, gluing
of homogeneous domains of the size λ . With further decrease
of ζ this additional extremum of the structure factors disap-
pears again, curves (1) and (2). This is the kinetic effect: in
this range of parameter ζ very large homogeneous domains
are formed that have simply not enough time to stick together
into aggregates over the time interval studied. In turn, the large
size of the domains is the result of a static screening. The size
λ is determined by the contribution of the Coulomb repulsion
of similar particles within the domain, and this repulsion is
now weakened. Moreover, the stucking together of domains
with different charges is suppressed, as the static screening
weakens the Coulomb interaction at large distances.

These conclusions are supported by Fig.3d where the be-
havior of the screening factors is shown for the same ζ values.
The curve (4) corresponds to a strongly screened potential,
but very different from the Yukawa one. The curve (3) corre-
sponds to aggregates with charge oscillations. The curves (1)
and (2) confirm the existence of homogeneous domains (there

0 2 4 6

10
-1

10
0

10
1

0 1 2 3
-50

0

50

100

150

0 2 4 6 8 10 12 14
-2

0

2

4

0 2 4 6 8 10 12 14
-2

0

2

4

6

8

10

2'

1'

2

1

(a)

c
o

rr
e

la
ti
o

n
 f

u
n

c
ti
o

n
s

r

4'

4

3'

2'

1'

3

2

1 (b)

s
tr

u
c
tu

re
 f

a
c
to

rs

q

1

2

3

(c)

s
c
re

e
n

in
g

 f
a

c
to

rs

r

4

3

2

1 (d)

s
c
re

e
n

in
g

 f
a

c
to

rs

r

Fig. 3 (Color online) Ionic binary systems with Lennard-Jones and
Coulomb interactions for fixed parameters κ = 1.0 (medium static
screening) and [η ,θ ,µ = 0.4,0.5,0.5]. Solid line - for similar and
dotted line - for dissimilar pairs. (a) shows the joint correlation
functions for ζ = 2.0 and times t: (1) 218, (2) 224. (b) The structure
factors for the time 224. The values of parameter ζ are: (1) 0.75, (2)
1.0, (3) 2.0 and (4) 3.0. (c) The screening factors
Q(r, t) = QA(r, t) = QB(r, t) for for ζ = 2.0 and times t: (1) 218, (2)
222, (3) 224. Note: dashed line - results according the Debye-Hückel
theory, QDH(r) = exp(−κr) (without dynamic screening effects).
(d) The screening factors Q(r, t) at time t = 224 for the fixed time
t = 224. The values of parameter ζ are the same as in window (b).

is an excess charge), but they are not stuck together (no oscilla-
tions). Fig.3c shows the kinetics of adhesion of different-type
domains: how oscillations of the screening factors are well
pronounced.

We supplement the obtained results with one example for
the case of charge asymmetry, ZA = 2,ZB = 1 in Fig.4. When
comparing with the previous results for the weak static screen-
ing, Fig.2, it is difficult to detect qualitative differences. The
quantitative differences, however, are observed, especially a
strong sensitivity of the results to a small change in the pa-
rameter ζ near the critical point ζ0 ≈ 2, Fig.4d (critical value
varies slightly with the appearance of the charge asymmetry).

In other words, for the system with dynamic SA in this
range of parameters the effects of dynamic and static screening
are combined, and the contribution of both effects is essential.
Note that in the case of the charge asymmetry the structure is
more stable and does not change much by variation of the pa-
rameter κ . For this reason, in the next subsection we no longer
give examples for this case.

The case considered here confirms again the absence of
an universal potential (similar to the Yukawa potential), with
which it would be possible to describe all the structures of
SA systems. The effective interactions should be found for
each specific type of structures, by solving the relevant self-
consistent problem.
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Fig. 4 (Color online) Ionic binary systems with Lennard-Jones and
Coulomb interactions for asymmetric charge, ZA = 2,ZB = 1 and
fixed parameters κ = 1.0 (medium static screening). Parameters:
[η ,θ ,µ,ζ = 0.4,0.6,0.5,0.75]. Solid line - for similar and dotted
line - for dissimilar pairs. (a) shows the joint correlation functions
for the time t = 224 (curve (1) - AA, curve (1′) - BB, and (1′′) - AB
correlations). (b) The structure factors for the times t: (1) 220, (2)
224. (c) The screening factors QA(r, t) (curves without primes) and
QB(r, t) (curves with primes) for the same times. (d) The screening
factors at time t = 224 for the same parameters, but two different
values of ζ : (1) 2.0 and (2) 2.2.

3.4 Strong static screening

With further increase of the parameter κ = 2 (strong dynamic
screening) the qualitatively different behavior is found. We
specifically stipulate that all information below, as well as ear-
lier, applies only to the case of relatively small values of the
parameter ζ < ζ0, because there a typical dynamic SA struc-
ture exists. From the Fig.5d one can see again that the small
change of parameter ζ near the point ζ0 ≈ 4 lead to drastic
changes of the screening factor.

The curves (1) and (2) in Fig.5d indicate the existence
of domain of similar particles, resulting in the effect of
overcharging at short distances. At the same time, there are no
previously observed oscillations of the structure factors. This
means that domains with different charges practically do not
attract each other: domains no longer stick into the aggregates.
This is not surprising, since the effect of the static screening is
very strong and the interaction of NPs with the chosen value of
the parameter κ is practically short-range. When the electro-
static interactions are weak, the most important contribution
in the short-range part of the potential is the Lennard-Jones
one. For qualitative understanding, the long-range suppresed
Coulomb interactions could be neglected. Since in our model
similar particles attract each other whereas and dissimilar re-
pel, only homogeneous aggregates (domains of similar parti-
cles) can grow.
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Fig. 5 (Color online) Windows (a-d): Ionic binary systems with
Lennard-Jones and Coulomb interactions for fixed parameters
κ = 2.0 (strong static screening) and [η ,θ ,µ = 0.4,0.7,0.5].
Information: solid line - for similar and dotted line - for dissimilar
pars. The window (a) shows the joint correlation functions for
ζ = 3.0 and times t: (1) 218, (2) 224. The window (b) shows the
structure factors for times: (1) 222, (2) 224. The window (c) shows
the screening factors Q(r, t) = QA(r, t) = QB(r, t) for the times t: (1)
220, (2) 222, (3) 224. Note: dashed line - results without salt
contribution. The window (d) shows the screening factors Q(r, t) at
time t = 224. The values of parameter ζ are: (1) 3.1, (2) 3.3 and (3)
4.0.

At the same time, such the behavior of the screening factors
is no longer observed, see curve (3), Fig.5d. Moreover, the
screening factors are very close to the exponential (the dashed
line), thus corresponding to the Yukawa potential. Here the
formation of large domains is no longer possible, instead, the
stationary distribution of small aggregates occurs, where the
contribution of the dynamic screening effects is no longer im-
portant.

In areas with continuous increase of the domain size, the
screening factors show no steady-state, Fig.5c. Moreover, the
behavior of other structural characteristics is also not station-
ary: see the correlation functions, Fig.5a, and the structural
factors, Fig.5b.

The behavior of the structural factors differs fundamentally
from those presented earlier. In the case of the formation of
aggregates with the charge oscillations, all the structural fac-
tors reveal a maximum near the point q= 0. Here we see, how-
ever, that only the functions Sαα(q, t) for the similar particles
have a maximum, whereas the function SAB(q, t) has a mini-
mum. This behavior was observed earlier for a system with-
out Coulomb interactions1. The effect is very simple: there
is aggregation of similar particles and segregation of disimilar
ones. Thus, a strong static screening virtually eliminates all ef-
fects associated with the presence of the long-range Coulomb
interaction, since the pattern formation rules can be observed
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in the systems with purely short-range interactions. Again, we
conclude that there is no universal potential for this case for a
simple description of the electrostatic interactions.

4 Conclusions

In this paper, the competition between static and dynamic
screening effects was investigated for electrostatic dynamic
self-assembly in ionic three-dimensional systems. The static
effects results from a rapid redistribution (quasi-equilibrium)
of small and mobile charged ions in the electrolyte (salt)
around the charged nanoparticles. Instead, the dynamic
screening effects arise due to the rearrangement of large,
charged and slow mobile NPs in the process of self-assembly.

During the self-assembly of nano-particles, dense structural
units (aggregates) are formed, wherein the particles have a lo-
cal density close to solid state. As a result, unlike the static
effects, the dynamic screening effects are almost independent
of the average NPs concentrations. We have shown that the
traditional description of a system of charged particles, based
on the use of the short-range Yukawa potential, is hardly suit-
able to describe the self-assembly process, but still could be
used under some specific condition (high salt concentration or
static self-assembly with small sizes of aggregates).

The integrated approach based on combined analytical and
numerical solution of nonlinear self-consistent kinetic equa-
tions was developed and applied. This allows us to study ki-
netics in the complex systems with long-range interactions on
the time scale exceeding many orders of magnitude what could
be performed by means of commonly used kMC or MD.

A complete set of statistical characteristics of the system,
including the sets of the joint correlation functions (radial dis-
tribution functions), partial structure factors, as well as the
charge screening factors was obtained. The results obtained
could be useful for understanding of the electrostatic dynamic
self-assembly of nanoparticles and large molecules in chem-
istry, physics and biology.
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5 Appendix

5.1 The mean force potentials

The formally exact definition of the potentials of mean forces
were discussed in our previous paper; eq.(9) in Ref.12. These
definitions are rather cumbersome for a general case of a sys-
tem containing many types of different particles, as they must
take into account various combinations of pair interactions.
However, the structure of equations is quite simple. The mean
force acting on a particle A has both the contribution from
direct interaction with another particle (A or B type) as well
as from indirect interactions (integral terms). It is the latter
integral terms which make numerical solution very time con-
suming.

For illustration, we present here only one typical indirect
term, omitting details (such as indices determining the types
of particle). After using the Kirkwood superposition approxi-
mation20, we obtain a set of standard-type integrals:

∇W (r) = n
∫

∇U(r′′) f (r′′)g(r′)dr′, (14)

r′′ = r− r′ (15)

containing the potential U(r) for short-range interaction
within pairs AA, BB or AB, respectively. These potentials are
defined by eqs.(11) and (12). To simplify the notations, we
introduced two functions of the coordinates ( time argument
is omitted) f (r) and g(r), which are different joint correlation
functions, Fαβ (r, t). Thus, the rhs of the mean force poten-
tial definition, eq.(14), is non-linear, and this non-linearity is
of the second-order (for the correlation functions). The same
is true for the expression of full potentials which are sums of
such the terms discussed here.

To solve the kinetic eqs.(2), we need to know only the radial
part of eq.(14). After a series of analytic transformations, the
problem can be reduced to the standard form:

∂
∂ r

W (r) = πn
∫ ∞

0

∂
∂ r′

U(r′) · f (r′)dr′∫ r′′max

r′′min

L (r,r′;r′′)r′′dr′′, (16)

L (r,r′;r′′) = g(r′′)
r2 +(r′)2 − (r′′)2

r2 . (17)

where

r′′min = |r− r′|, (18)
r′′max = r+ r′. (19)

As one can see, it is necessary to calculate a set of one-
dimensional integrals, where the calculation results of one
of the integrals are used to calculate other integrals. After
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the standard discretization with coordinate increments △r,
ri = i△r, the integrals can be calculated by means of the stan-
dard trapezoid method. The calculation of the integral terms
for short-range potentials is time-consuming since the integral
kernels here depend on the correlation functions and cannot
be calculated preliminary.

It should be noted that the determination of the potentials
of mean forces for the Coulomb interaction is a simple task,
since only differential eq.(8) is solved in radial coordinates.
From the structure of eq.(8), where the rhs is the functional
of the correlation functions, it is clear that the electrostatic
potentials, and hence the potentials of the mean forces, are
functionals of the correlation functions.

As can be seen from the above example, the potentials of
mean forces are, in general, non-linear functionals of the cor-
relation functions. Thus, a formally simple kinetic eqs.(2)
are in fact strongly nonlinear, which is typical of the self-
consistent theory.

Along with calculating the potentials, it is necessary to
solve several other technical problems described below.

5.2 Solving of kinetic equations

The main problem arises due to the necessity of solving non-
linear, partial differential equations with singular potentials.
To illustrate our method of their solution, let us consider the
typical equation for 3d case

∂g(r, t)/∂ t = r−2∂ [r2 j(r, t)]/∂ r, (20)

j(r, t) = ∂g(r, t)/∂ r+∂W [g,r, t]/∂ r g(r, t) . (21)

Here W [g,r, t] are functionals of g(r, t) sought for and W [g,r, t]
has a singularity: W [g,r, t] = ∞ as r → 0. After the discretiza-
tion of the equation using the standard method, ri = i△r, tm =
m△t, g(ri, tm) = g0

i , g(ri, tm+1) = gi, we arrive at the differ-
ence equation which could be presented in a quasi-linearized
traditional tridiagonal form26

ai[ḡ]gi−1 +bi[ḡ]gi+1 − ci[ḡ]gi −gi/△t =−g0
i /△t , (22)

where coefficients ai,bi,ci arise due to the approximation of
r−2∂ [r2 j(r, t)]/∂ r. These coefficients depend on W [g,r, t] and
thus are functionals of g. Solution of eq.(22) is obtained by
means of a quasi-linearization: (i) ḡi = g0

i is used as an initial
guess, (ii) eq.(22) is solved in the standard way, (iii) then we
substitute ḡi = gi and (iv) the iterative process continues until
convergence is achieved within a requared tolerance. In this
way we avoid a problem of the non-linearity of the kinetic
equations.

Eq.(22) can be conveniently solved using the tridiagonal
matrix algorithm (also known as the Thomas algorithm)26.

Note that the so-called stable schemes avoid a problem of un-
limited growth of errors in the numerical calculations. In par-
ticular, this algorithm will always converge if the tridiagonal
system is diagonal dominant26, that is, if

|ci +1/△t| ≥ |ai|+ |bi|. (23)

Unfortunately, the standard approximation does not guarantee
fulfillment of this condition, coefficients ai and bi generally
do not have a definite sign and can take a very large absolute
values. The reason is that potentials can change rapidly in a
narrow interval of variables. Moreover, they are singular at
r → 0. Accordingly, the stability can only be achieved within
a very small time steps, △t → 0. As a result, the standard
methods can yield results only for a small time interval, which
is unacceptable for our physical problem.

There is, however, a relatively simple method to obtain
a stable scheme for diffusion problems. The idea of this
method (renormalization of the diffusion equation) has been
demonstrated previously for the diffusion equation in one-
dimensional problem27. We generalized this idea for the
three-dimensional systems.

5.3 Renormalization of the diffusion equation

Let us consider in detail the non-trivial expression of
r−2∂ [r2 j(r, t)]/∂ r. The procedure is as follows. To obtain a
conservative difference scheme, one integrates the initial dif-
ferential equation in the spherical layer within the coordinate
interval r ∈ [ri−1/2,ri+1/2] with ri±1/2 = (i ± 1/2)△r. The
problematic term reads now∫

(r−2∂ [r2 j(r, t)]/∂ r)r2dr = r2
i+1/2 ji+1/2 − r2

i−1/2 ji−1/2.

(24)
In the equation for the flux density, j = ∂g/∂ r+(∂W/∂ r)g,
substitution g = exp(−W )ω gives j = (∂ω/∂ r)exp(−W ). It
is important that the exponent, exp(W ), has the argument W
rapidly changing on the scale of coordinate increment ∆r and
thus also changes rapidly as compared to the slowly vary-
ing function j 27. This is why the integral in the interval
r ∈ [ri−1,ri] ∫

j exp(W )dr = ωi −ωi−1 (25)

could be estimated as∫
j exp(W )dr ≈ ji−1/2

∫
exp(W ) dr ≈

≈ ji−1/2
∆r
2

(exp(Wi)+ exp(Wi−1)) . (26)

Now returning from the intermediate function ω to g sought
for, one obtains the basic relation for the difference scheme
coefficients

ji−1/2 = (gi exp(∆Wi)−gi−1)
2
△r

1
exp(∆Wi)+1

, (27)
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ji+1/2 = (gi+1 exp(∆Wi+1)−gi)
2
△r

1
exp(∆Wi+1)+1

. (28)

where ∆Wi = Wi −Wi−1. As it should be, the flux density de-
pends not on the very potential W but on its derivative. The ob-
tained approximation, eq.(26), is then used in eq.(24) to calcu-
late the coefficients ai,bi,ci in the difference scheme, eq.(22).

Here are the basic formulas:

aigi−1 +bigi+1 − cigi =
1
vi

∫
(r−2∂ [r2 j(r, t)]/∂ r)r2dr, (29)

vi =
∫

r2dr =
r3

i+1/2 − r3
i−1/2

3
. (30)

ai =
r2

i−1/2

vi∆r
2

exp(∆Wi)+1
, (31)

bi =
r2

i+1/2

vi∆r
2

exp(−∆Wi+1)+1
, (32)

ci =
r2

i−1/2

vi∆r
2

exp(−∆Wi)+1
+

r2
i+1/2

vi∆r
2

exp(+∆Wi+1)+1
. (33)

It can be easily seen that the proposed scheme, all coef-
ficients have a definite sign (positive), with the magnitudes
bounded above and related to each other by simple relations.
Now for this stable scheme we can easily use relatively large
value of the time increments.
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