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Graphic abstract 

 

Overall water splitting with STH efficiency exceeding 2.5% using an all 

earth-abundant dual-photoelectrode device under parallel illumination without bias 
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The solar-to-hydrogen (STH) efficiency of a traditional mono-photoelectrode photoelectrochemical  

water splitting system has long been limited as large external bias is required. Herein, overall water 

splitting with STH efficiency exceeding 2.5% was achieved using a self-biased photoelectrochemical-

photovoltaic coupled system consisting of all earth-abundant photoanode and Si-solar-cell-based 

photocathode connected in series under parallel illumination. We found that parallel irradiation mode 10 

shows higher efficiency than tandem illumination especially for photoanodes with wide light absorption 

range, probably as the driving force for water splitting reaction is larger and the photovoltage loss is 

smaller in the former. This work essentially takes advantage of tandem solar cell which can enhance the 

solar-to-electricity efficiency from another point of view. 

Introduction 15 

Photoelectrochemical (PEC) water splitting is one of the most 

promising strategies for solar fuel production.[1-5] Many materials 

with wide light absorption range such as BiVO4
[6-11], Fe2O3

[12-14]
, 

Cu2O
[15-16], Ta3N5

[17-21], LaTiO2N
[22-23] and Si[24-25] have been 

investigated as photoelectrodes in traditional mono-20 

photoelectrode vs. Pt counter electrode systems. Despite of great 

efforts such as loading cocatalysts, doping with other elements, 

controlling morphologies, combining with other semiconductors 

and employing new fabrication methods to enhance the PEC 

performance of the photoelectrode, the solar-to-hydrogen (STH) 25 

efficiency for an individual photoelectrode is yet less than 1.8%, 

because large external bias is required for overall water 

splitting.[7-11, 14-21, 26-31] Therefore, it is highly desired to develop 

novel approaches for efficient PEC water splitting without 

external bias. 30 

Constructing dual-photoelectrode system to use the Fermi level 

difference (ΔEf) between them is a feasible solution. But it’s not 

easy to fabricate two photoelectrodes well-matched in the same 

electrolyte, and the STH efficiency reported so far is quite low (< 

0.1%)[11, 32-35], because the photovoltage is usually too small to 35 

overcome the overpotential of the reaction at the electrode. 

Photovoltaic-electrolysis (PV-EL) technology is more efficient 

but usually requires complicated setups and solar cells with rather 

high open-circuit voltage (Voc) of at least 2.0 V[36-42]. Moreover, 

the water splitting ability of the system is mainly determined by 40 

the Voc of the PV cell in a PV-EL system. However, if the PV cell 

is coupled with a semiconductor photoanode to construct a 

photovoltaic-PEC (PV-PEC) device, water oxidation reaction will 

take place on the photoanode surface, and thus the oxidant is the 

photogenerated hole whose energy can be very positive as it is 45 

determined by the valence band edge of the photoanode assisted 

by the PV cell. The most efficient PV-PEC system for water 

splitting reported so far consists of a p-GaInP2 photocathode in 

contact with a GaAs solar cell connected with a Pt counter 

electrode.[43] While, these materials are high cost, toxic and 50 

unstable. In other reports, a solar cell was simply connected in the 

outer circuit of a PEC cell[44-47], directly deposited with water 

splitting photocatalyst[48-50] or combined with photocatalysts in 

tandem[9, 51-52]. The efficiency of such a tandem or monolithic 

configuration is limited because it is difficult to optimize 55 

performances of solar cell and photocatalyst layers with 

complementary light absorption.[51-53] Although a high efficiency 

was achieved recently[9], their device still has flaws: Firstly, the 

efficiency should be quiet low if other materials with a narrower 

band gap were used using their configuration; Secondly, the 60 

fabrication method of the semiconductor layer is limited as Si-

cell cannot tolerate high temperature or any other harsh 

conditions; Lastly, the counter electrode they used is novel metal 

Pt which is unfavourable considering the cost. 

Herein, we focus on the PV-PEC strategy which combines 65 

advantages of PEC and PV-EL systems. Overall water splitting 

with STH efficiency exceeding 2.5%, much higher than that of 

traditional mono-photoelectrode PEC and photocatalytic water 

splitting systems reported to date, was achieved with a self-biased 

dual-photoelectrode device. Coupling with semiconductor 70 

photoanode like BiVO4, a Si solar cell (triple or double junction 

Si cell) was employed as photocathode. The decoupling of the PV 

cell and the PEC part in a PV-PEC system using a dual-

photoelectrode configuration is convenient for the fabrication and 

optimization of them. And noble metal Pt electrode is avoided 75 

and all materials are earth-abundant and environmentally benign. 

Besides, illumination mode was found to be important for 

enhancing the efficiency of the system.  
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Results and discussion 

 
Fig. 1 A schematic description of the dual-photoelectrode device 

photoanode vs. Si-solar-cell-based photocathode for direct PEC water 

splitting under parallel (Mode P) and tandem (Mode T) illumination. 5 

 
Fig. 2 I-V curves of FeOOH/Mo:BiVO4, Fe2O3 photoanodes vs. Ni/SiA in 

Modes P and T. Light source: AM 1.5G sunlight simulator (100 mW cm-

2); Scanning rate: 10 mV s-1; Electrolyte: 0.5 M sodium phosphate (pH 7); 

Electrode areas: FeOOH/Mo:BiVO4 or Fe2O3 1 cm2 and Ni/SiA 0.5 cm2. 10 

Fig. 1 schematically shows that a Si solar cell was applied as 

photocathode coupled with a photoanode in two illumination 

modes, one is parallel illumination (denoted as Mode P) with two 

beams of light and the other is tandem illumination (Mode T) 

with one beam of light incident from the photoanode side. Two Si 15 

solar cells (denoted as SiA and SiB, Fig. S1) with different Voc and 

comparable short-circuit currents Jsc were used for comparison, 

and Ni cocatalyst was deposited on the surface of the Si cell to 

protect it from corrosion in the electrolyte and reduce the proton 

reduction potential. Fig. 2 (a) shows that the Jsc are 2.69 mA and 20 

0.63 mA, respectively, when coupling SiA with 

FeOOH/Mo:BiVO4 photoanode in Modes P and T. The STH 

efficiency of Mode P calculated from Jsc is 2.21%, which is about 

3 times of that of Mode T (0.77%). Similar results were obtained 

when changing the area of SiA (Fig. S2). The Voc of the coupled 25 

system in Mode P is 1.88 V which greater than that of Mode T, 

leading to the higher efficiency of Mode P. Fe2O3 photoanode 

was also coupled with SiA likewise in two modes. Fig. 2 (b) 

shows that the Jsc of the system in Modes P and T are 1.5 mA and 

0.56 mA, respectively. The corresponding STH efficiency of 30 

Mode P is 1.8 times of that of Mode T. The Voc difference 

between Modes P and T is 0.5 V which brings about the big 

difference in STH efficiency. The comparison of the photocurrent 

under continuous irradiation between Modes P and T shows the 

same trend (Fig. S3).  35 

 
Fig. 3 (a) I-V curves, Voc and Jsc of SiA under full spectrum illumination 

and illuminated behind FeOOH/Mo:BiVO4, Fe2O3 electrodes, and the 

average I-V curve of FeOOH/Mo:BiVO4 (1 cm2) vs. Pt two-electrode 

system, and (b) UV-visible absorption spectra of SiA cell, Fe2O3, 40 

FeOOH/Mo:BiVO4 photoanode. Electrolyte: 0.5 M sodium phosphate (pH 

7); Light source: AM 1.5G sunlight simulator (100 mW cm-2), Electrode 

area: SiA 1 cm2. 

Results in Fig. 3 can partly explain the efficiency difference 

between Modes P and T. As shown in Fig. 3 (a), the efficiency of 45 

SiA is dramatically reduced if the incident light is firstly absorbed 

by a photoanode. The Jsc of SiA drops from 9.4 mA to only 2.5 

mA and 2.2 mA for FeOOH/Mo:BiVO4 and Fe2O3, respectively. 

And the Voc is reduced by 0.14 V. The solid line is the average I-

V curve of FeOOH/Mo:BiVO4 electrode vs. Pt counter electrode 50 

in a two-electrode system. Its intersections with the I-V curves of 

SiA are approximately the working points of the coupled system. 

The working photocurrent is obviously reduced when the light is 

incident through a photoelectrode. Fig. 3 (b) shows that the light 

absorption band edge of FeOOH/Mo:BiVO4 and Fe2O3 are about 55 
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540 nm and 620 nm, respectively, and SiA shows light absorption 

until 850 nm. Thus, after absorption and scattering by the 

photoanode, only a small portion of long wavelength photons are 

left for SiA, resulting in a great decrease of the efficiency of SiA. 

This suggests that the match of the light absorption of the 5 

photoanode and the solar cell is very important for achieving high 

efficiency of a PV-PEC device. In other words, illumination 

mode is important to optimize the efficiency. For photoanodes 

with wide light absorption range, dual-photoelectrode system 

under parallel illumination is demonstrated to be superior to those 10 

under tandem illumination and may be more efficient than the 

previous reported monolithic forms[9, 48-52]. Essentially, this is not 

contradictory to that tandem solar cell can enhance the solar-to-

electricity efficiency but takes advantage of tandem solar cell 

technology from another point view. 15 

Table 1 Results of the analysis of the photovoltage loss of the coupled 

system SiA vs. FeOOH/Mo:BiVO4 and Fe2O3 photoanodes in Modes P and 

T. Voc is the open voltage of the coupled system, Voc-Si is the open voltage 

of SiA itself, and Vloss is the photovoltage loss of the coupled system (Vloss 

= Voc-Si - Voc). 20 

 

 
Fig. 4 (a) Short-circuit I-t curves of FeOOH/Mo:BiVO4 photoanode (1 

cm2) vs. Ni/SiA photocathode with different areas(1, 1 cm2; 2, 0.45 cm2; 3, 

0.2 cm2) in Mode P, and (b) the I-V curve of the FeOOH/BiVO4-porous 25 

photoanode (0.98 cm2) vs. Ni/SiA (0.4 cm2) in Mode P. Light source: AM 

1.5G sunlight simulator (100 mW cm-2); Scanning rate: 10 mV s-1; 

Electrolyte: 0.5 M sodium phosphate (pH 7). 

Table 1 shows the analysis of the photovoltage loss (Vloss) of 

SiA vs. FeOOH/Mo:BiVO4 and Fe2O3 photoanodes in Modes P 30 

and T. For FeOOH/Mo:BiVO4, the measured Voc of the device in 

Mode P (Voc-P) is 1.88 V and the Voc of SiA itself (Voc-Si ) is 2.23 

V, thus the Vloss of the device in Mode P (Vloss-P) is 0.35 V. Vloss 

is composed of two parts: one is the bias required to overcome 

the overpotential and compensate for the energy deficiency of the 35 

photoanode for overall water splitting, the other is the voltage 

loss due to the resistances of the photoanode, the Si-cell, the 

electrolyte as well as photoelectrode-cocatalyst and electrode-

electrolyte interfaces. We previously found that the minimum 

bias required for cocatalyst/BiVO4 photoanode to realize overall 40 

water splitting is about 0.3 V.[9] Namely, the voltage loss due to 

the coupling between FeOOH/Mo:BiVO4 and SiA is negligible, 

only 0.05 V, indicating the successful coupling between the 

photoanode and SiA in Mode P. In contrast, the Vloss in Mode T 

(Vloss-T) is 0.43 V, larger than Vloss-P by 80 mV. Similarly, Vloss-T 45 

is larger than Vloss-P by 360 mV in the case of Fe2O3. And similar 

results were also obtained for WO3 photoanode (Table S1). Thus, 

it is inferred that more charge carriers are generated and survived 

after recombination in Mode P, which leads to a higher efficiency. 

This may be ascribed to the larger driving force Voc and the better 50 

match of carrier flux between the photoanode and the 

photocathode in Mode P. 

 
Fig. 5 I-V curves of Ni/SiA or Ni/SiB vs. (a) FeOOH/Mo:BiVO4 (b) Fe2O3 

and (c) WO3 photoanodes in Mode P. Light source: AM 1.5G sunlight 55 

simulator (100 mW cm-2); Scanning rate: 10 mV s-1; Electrolyte: 0.5 M 

sodium phosphate (pH 7); Electrode areas: FeOOH/Mo:BiVO4, Fe2O3 and 

WO3 1 cm2 and Ni/Si 0.5 cm2. 

Fig. 3 also indicates that the photocurrent of SiA photocathode 
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is much higher than that of the photoanode, which means the hole 

flux from SiA is largely excessive to the electron flux from the 

photoanode. In order to optimize the efficiency of the system, the 

charge flux of two photoelectrodes should be matched via 

changing the ratio of electrode areas or thickness of the 5 

photoanode. Fig. 4 (a) shows that the STH efficiency (calculated 

from the average current in 2 h) increases from 1.27% to 1.51% 

when the area of SiA is decreased from 1 cm2 to 0.2 cm2. On the 

premise of providing enough hole flux, smaller SiA means less 

light energy consumption and higher efficiency of the whole 10 

device. The efficiency of the system can also be improved if the 

photocurrent of the photoanode is increased. Fig. 4 (b) shows that 

the STH efficiency of the device FeOOH/BiVO4-porous vs. 

Ni/SiA reaches 2.52% via using a more efficient FeOOH/BiVO4-

porous photoanode (Fig. S4) prepared as recently reported[8]. 15 

Undoubtedly, the efficiency is expected to be higher if the PEC 

performance of the photoanode is further enhanced. 

Since ECB of BiVO4 is only slightly lower than the proton 

reduction potential,[54] another Si solar cell (SiB) with a smaller 

Voc (1.22 V, Fig. S1) was coupled with FeOOH/Mo:BiVO4 20 

photoanode for comparison. Fig. 5 (a) shows that the obtained 

photocurrent of the system with Ni/SiB is much lower than that 

with Ni/SiA. Fe2O3 and WO3 photoanodes with more positive ECB 

than BiVO4 were also coupled with Ni/SiA and Ni/SiB, 

respectively. As shown in Fig. 5 (b, c), the Jsc of Fe2O3 vs. Ni/SiA 25 

is nearly 9 times of that of using Ni/SiB. That is because Fe2O3 

has a large overpotential for water oxidation and a large external 

bias is required.[13, 55] For WO3, the Jsc of the system with Ni/SiA 

is also higher than that of using Ni/SiB. In brief, efficient overall 

water splitting can also be achieved using a Si cell with Voc below 30 

1.23 V, which is impossible in PV-EL system. While SiB with 

smaller Voc will result a low efficiency if the ECB of the 

photoanode is too positive or the water oxidation overpotential is 

too large. In this case, loading efficient cocatalysts on the 

photoelectrode will be necessary to enhance the photocurrent and 35 

reduce the overpotential for higher efficiency.  

Gas evolutions from the FeOOH/Mo:BiVO4 vs. Ni/Si-cell 

system were determined. Fig. 6 (a, b) shows that H2 and O2 can 

be produced efficiently from the system in stoichiometric ratio 

without external bias. To evaluate the contribution of the 40 

photoanode in the PV-PEC system, we replaced it with a CoPi 

electrode which has been developed as one of the most efficient 

water oxidation electrocatalysts in neutral phosphate 

electrolyte.[56] Fig. 6 (c, d) shows that the activity of the resulting 

PV-EL system CoPi vs. Si-cell is much lower than that of 45 

FeOOH/Mo:BiVO4 vs. Ni/Si-cell. The STH efficiency of 

FeOOH/Mo:BiVO4 vs. Ni/Si-cell photoanode is about 3 (for 

Ni/SiA) and 8 (for Ni/SiB) times of that of using CoPi, indicating 

the potential advantage of PV-PEC systems over PV-EL systems. 

To reveal the role of the Si-cell in the coupled system, we 50 

replaced the Si-cell with a Pt modified p-Si photocathode (Pt/p-Si 

NW) fabricated from a Si single crystal wafer as schematically 

shown in Fig. 7 (a). The Voc of the dual-photoelectrode system is 

0.31 V and the Jsc is 20 μA (Fig. 7(b)), indicating that 

photoelectrons can transfer from the photoanode to the 55 

photocathode without external bias but the STH efficiency is only 

about 0.01%, much lower than that of using Si-cell photocathode. 

Fig. 7 (c, d) shows that O2 and H2 can be produced from the 

FeOOH/Mo:BiVO4 vs. Pt/p-Si NW system under a bias of 0 V or 

0.2 V, but the activities are quite low. And the H2/O2 ratio 60 

deviates from stoichiometric value due to the corrosion of p-Si 

and the H2 evolution even exceeds the amount of e/2 probably 

because of the reaction of Si with H2O and reverse reactions. 

When using the Pt/TiO2/Ti/p-Si electrode which is more active 

and corrosion resistant[57], the activity is still low despite a slight 65 

increase (Fig. S5). The reason may be that the driving force ΔEf 

between two photoelectrodes is too small and limits the 

efficiency of the whole system. In contrast, in the PV-PEC 

system, the photovoltage generated from the PEC and PV 

systems can easily meet the requirement for overall water 70 

splitting reaction. 

 
Fig. 6 Time courses of gas evolutions and corresponding e/2 amounts of 

FeOOH/Mo:BiVO4 photoanode vs. SiA (a) and SiB (b) coupled systems in 

Mode P, and those of CoPi electrode vs. SiA (c) and SiB (d). Light source: 75 

300 W Xe lamp; Scanning rate: 20 mV s-1; Electrolyte: 0.5 M sodium 

phosphate (pH 7); Electrode areas: CoPi and FeOOH/Mo:BiVO4 1 cm2 

and Ni/Si 0.5 cm2. 

 
Fig. 7 (a) A schematic description of the dual-electrode system with 80 

BiVO4 photoanode vs. p-Si photocathode for direct PEC water splitting, 

(b) I-V curve of the two-electrode system FeOOH/Mo:BiVO4 vs. Pt/p-Si 

NW photocathode under AM 1.5G sunlight illumination (100 mW cm-2), 

and (c, d) time courses of gas evolution and corresponding e/2 amounts of 

FeOOH/Mo:BiVO4 photoanode vs. Pt/p-Si NW under 300 W Xe lamp 85 

irradiation with a bias of 0 V and 0.2 V. Electrolyte: 0.5 M sodium 
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phosphate (pH 7); Electrode areas: FeOOH/Mo:BiVO4 1 cm2 and Pt/p-Si 

photocathode 1 cm2; Scanning rate: 10 mV s-1. 

Conclusions 

A self-biased dual-illumination PEC device consisting of a 

semiconductor photoanode and a Si-solar-cell based 5 

photocathode connected in series was constructed for overall 

water splitting. The STH efficiency of the FeOOH/BiVO4 vs. Si-

cell system can exceed 2.5%, much higher than that of traditional 

mono-photoelectrode PEC and photocatalytic water splitting 

systems to date. In this configuration, noble metal electrode is 10 

avoided and all materials are earth-abundant and environmentally 

benign. And the decoupling of the PV cell and the PEC part using 

a dual-photoelectrode configuration is convenient for the 

fabrication and optimization of them. It is found that parallel 

illumination mode shows higher efficiency than tandem 15 

irradiation for photoanodes with wide light absorption range, 

probably as the driving force for water splitting reaction is larger 

and the photovoltage loss is smaller in the former. This indicates 

that a dual-photoelectrode PV-PEC device under parallel 

illumination is superior to those in tandem or monolithic forms. 20 

From another point of view, this work essentially takes advantage 

of tandem solar cell technology which can enhance the solar-to-

electricity efficiency. Besides, the efficiency is obviously 

decreased when the photoanode is replaced by a CoPi electrode 

or when Si-cell is substituted by a p-Si photocathode. This 25 

clarifies roles of the photoanode and the solar cell in the coupled 

system and demonstrates the potential advantage of PV-PEC 

systems over PV-EL systems. 

Experimental Section 

All chemicals were analytical grade and were used as 30 

purchased without further purification. Solutions were prepared 

using high purity water (resistivity > 18 MΩ·cm). The FTO 

(fluorine-doped tin oxide, < 14 Ω/square) conductive glass was 

purchased from Nippon Sheet Glass Company (Japan) and was 

ultrasonic cleaned with acetone, isopropanol, ethanol and 35 

deionized water for 20 min each prior to use. 

Fabrication of Ni/Si-cell, FeOOH/Mo:BiVO4, Fe2O3, WO3, 

CoPi, and Pt/p-Si electrodes: Si solar cells used for 

photocathode fabrication are commercial Si solar cells (Hanergy 

Companay, China). Two types of Si-cell with different Voc and Jsc 40 

(Fig. S1): one is triple-junction SiA composed of one layer of 

amorphous Si and two layers of nanocrystal Si and the other is 

double-junction SiB, were used. The anode side of the Si-cell was 

connected with the photoanode using Cu wire and Ag conductive 

adhesive. The cathode side is deposited with Ni cocatalyst (about 45 

100 nm in thickness) by d.c. reactive magnetron sputtering. The 

Si-cell was illuminated from FTO side. Mo:BiVO4 electrodes 

were prepared by a modified electrodeposition method.[10, 54] To 

stabilize and enhance the PEC performance, FeOOH cocatalyst 

was deposited on the surface of Mo:BiVO4 photoelectrode via 50 

PEC oxidation of FeCl2·xH2O (99%, Alfa Aesar)[10] (Fig. S4, 

Electronic Supplementary Information). The FeOOH/BiVO4-

pourous electrode was prepared as recently reported.[8] Fe2O3 

electrodes were prepared by chemical bath deposition and 

annealing method, WO3 electrodes were fabricated by d.c. 55 

reactive magnetron sputtering system, and CoPi electrodes were 

prepared by electrodeposition (Electronic Supplementary 

Information). Pt/p-Si NW and Pt/TiO2/Ti/p-Si photocathodes 

were prepared from p-Si (100) wafers as reported[57-58], and both 

of them show high cathodic photocurrent (Fig. S5, S6).  60 

PEC characterizations and measurements of gas evolutions: 

Photocurrent measurements were performed in a two-electrode 

cell with Pt (2 cm × 3 cm) or a three-electrode setup with SCE 

reference electrode (0.242 V vs. NHE). The electrolyte was 

purged with Ar for 30 min before PEC measurements and 65 

bubbled with Ar during the tests. The light source was an AM 

1.5G sunlight simulator (100 mW cm-2) unless otherwise stated. 

Measurements of gas evolutions were carried out in a two-

electrode cell as reported before.[54] STH efficiencies were 

calculated according to equation (1)[1] supposing the Faradic 70 

efficiency (ηF) is 100%: 
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