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In this article we explore the dynamics of a Brownian particle in a feedback-free dynamic thermophoretic trap. The trap contains
a focused laser beam heating a circular gold structure locally and creating a repulsive thermal potential for a Brownian particle. In
order to confine a particle the heating beam is steered along the circumference of the gold structure leading to a non-trivial motion
of the particle. We theoretically find a stability condition by switching to a rotating frame, where the laser beam is at rest. Particle
trajectories and stable points are calculated as a function of the laser rotations frequency and are experimentally confirmed.
Additionally, the effect of Brownian motion is considered. The present study complements the dynamic thermophoretic trapping
with a theoretical basis and will enhance the applicability in micro- and nanofluidic devices.

1 Introduction

Single particle trapping is of high importance for long-time
studies of single molecules or particles in solution without
mechanical immobilization1. This demand led to the develop-
ment of traps to counter-act Brownian motion following dif-
ferent approaches. Optical forces can efficiently manipulate
objects with sufficiently large dielectric contrast to the sol-
vent2–4. Quadrupole traps such as the Paul trap5 have been
developed over half a century to trap ions in vacuum by high-
frequency electric quadrupole fields and are applied in various
fields such as mass spectroscopy6 and quantum information
processing7. In viscous media quadrupole traps are realized
by utilizing dielectrophoresis and electrophoresis8. Recently,
Paul trapping of single submicron-sized particles in aqueous
solution has been demonstrated9,10. Single molecule trapping
efficiency is achieved with ABEL trapping which relies on
adaptively controlled electric fields11–13. Independently from
the electronic properties, particles can be trapped e.g. by hy-
drodynamic flow14 or acoustic waves15.

Temperature gradients have also been demonstrated for par-
ticle and macromolecular manipulation16,17, since they in-
teract on both non-ionic and charged solutes through ther-
mophoresis, an umbrella term for thermally induced motion
at a velocity which is proportional to the temperature gradi-
ent18,19. One prominent effect which leads a charged particle
going from the hot to the cold is caused by the temperature
induced perturbation of its electric double-layer20. While it
is known that thermophoresis can be used to locally increase
the concentration of particles or molecules21–23, recently, a
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method was proposed to trap a single particle in a quasi-static
temperature landscape that is produced by a photothermally
heated gold structure24. In the simplest case, such a structure
consists of a circular hole in a gold film of several microns
in diameter. By illuminating this gold structure by means of
an expanded laser beam, a steady-state temperature field is
generated capable of trapping a single particle within a local
temperature minimum in a film of solvent above the center of
the circular hole.

In the present paper stronger temperature gradients are
achieved by heating the edge of the Au hole using a focused
laser beam, as sketched in Fig. 1a. Also, for such a heat-
ing scheme, the object of interest in the center of the trap is
not under direct illumination by the heating beam, preventing
e.g. bleaching. However, for a typically positive thermodiffu-
sive coefficient leading a particle to move to a colder region,
a steady-state heating by means of a focused laser beam will
end up in a purely repulsive thermal potential forcing a parti-
cle out of the trap immediately. Hence, to prevent the particle
from escaping the trap, the laser beam needs to be steered.
Inspired by the Paul trap and circular scanning particle trap-
ping methods25,26, here, we drive the laser beam along the cir-
cumference of a hole in a gold film at a frequency f = ω/2π

leading the thermal potential to rotate (Fig. 1a). Due to a net
inward component of the thermophoretic drift a confinement
for a particle can be achieved in the center of the trap.

In the following we demonstrate the feasibility of a ther-
mophoretic particle trap using time-dependent temperature
gradients. We give a detailed study of the dynamic properties
of a particle. We theoretically investigate the trapping stabil-
ity and determine the stationary trajectories as a function of the
thermophoretic drift velocity and the rotation frequency which
are experimentally confirmed. In a second step, we account
for Brownian motion and determine the probability density in
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Fig. 1 a) Sketch of the sample: A circular gold structure is heated
by a focused laser beam. b) Simulated steady-state temperature field
directly above the substrate produced by the optically heated gold
film by a focused laser beam. The beam is not steered, but only
illuminates a local spot. The dashed green circle indicates the edge
of the gold structure (diameter 7.3 µm). c) Temperature profile
along the gold edge in the plane of the gold structure (black) and
300nm above (dashed red). Temperatures have been normalized to
the maximum temperature induced at the gold structure. Zero
temperature referes to room temperature. d) temperature line profile
in the plane of the gold structure (black) and 300nm above (dashed
red). The green line indicated the laser profile (in a.u.).

the thermal trapping potential.

Thermalization of the plasmonic excitation occurs at a time-
scale of microseconds. Hence, the temperature field follows
almost instantaneously the rotation laser. Because of the
different heat conductivity of gold and water, the resulting
temperature profile is not isotropic but significantly smeared
out along the edge of the gold film, as shown by the nu-
merical simulation results of Fig. 1, b–d). This distor-
tion, however, is of minor importance for our purpose, since
thermophoretic trapping relies mainly on the radial compo-
nent of the temperature gradient. Thus, the following anal-
ysis assumes an isotropic and instantaneous profile T (r,t) =
T0 +Q/(4πκ |r− rL(t)|), where Q is the absorbed power, κ

the heat conductivity and rL the position of the laser. Experi-
ments were carried out in a microscopy setup using the sample
preparation as presented in our previous publication24. Fur-
ther details are described in the Materials and Methods sec-
tion.

2 µm2 µm2 µm

a) b) c)

Fig. 2 a) Position distribution of a 460nm PS sphere within a TP
trap at a laser rotation frequency of 100Hz. b) Same for 0.7Hz. The
dashed green circle indicates the path of the laser beam (in
clockwise direction). c) Same data as in b) after transformation to
the rotating frame, where the laser is immobile (green dot) and
where the fluid rotates counter-clockwise at a frequency of 0.7Hz.
The arrows indicate the particle velocity field.

2 Particle Dynamics in the Rotating frame

The experimental results of the particle dynamics in a rotating
temperature field reveal some general features, which we want
to highlight before starting with an in depth description of the
particle motion.

Fig. 2a) and b) display the positional distribution of a single
460nm PS bead in the same trap structure with equal heat-
ing laser intensity but at different laser rotation frequencies
of 100Hz and 0.7Hz. Both trajectory point distributions indi-
cate the confinement of the particle in the rotating temperature
field, but the distribution for the higher frequency is narrower.
However, while the magnitude of the thermal drift is only de-
pendent on the heating laser intensity and does not change
with rotation frequency, the inward component of the ther-
mal drift seems to decrease for a slower rotation frequency.
Due to the rotating laser field, a tangential component of the
particle drift should appear as well. The particle dynamics
should therefore depend on this tangential drift at slow fre-
quency too. This importance of tangential and radial drift in
the trap structure is better recognized when transforming the
coordinate system into the frame moving with the laser beam.
In such a frame the laser beam and the temperature profile
are at rest but the sample including the fluid rotates counter-
clockwise around the center of the trap. Fig. 2c) shows the
data at 0.7Hz transformed to the rotating frame. The position
of the heating beam is indicated by the green dot. The particles
position distribution is Gaussian but asymmetric and the max-
imum shifted from the center of the trap. These features are
readily understood in terms of the thermophoretic repulsion
from the laser position and the advection by the rotating flow,
and imply in particular that the particle is always in front of
the laser spot. Transforming back to the lab frame smears out
the asymmetry, and one recovers the broadened position dis-
tribution of Fig. 2b). The arrows in Fig. 2c) indicate the parti-
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cle velocity with respect to the rotating frame. They reveal a
circular motion around the center of the distribution function.
These effects will be studied in detail.

3 Stationary points in the flow field

The particle dynamics originates from the thermal forces, ad-
vection, and Brownian motion. As a first step, we discard
Brownian motion and retain the deterministic part only. Due
to the aqueous solvent and small particle size the Reynolds
number is low Re ∼ 10−6, i.e. viscous forces dominate the
motion of the particle. In this over-damped limit, inertia may
be neglected and the particle instantaneously follows the ther-
mal and advection drift.

Then the particle velocity field in the rotation frame can be
written as the sum

u = vT +ω× r (1)

of the thermophoretic drift velocity vT =−DT∇T (r) with the
thermodiffusion coefficient DT at the position r with respect
to the center of the trap and the advection by the rotating fluid
with ω = ωez. In the following we assume an isotropic tem-
perature profile as mentioned above, which implies that the
gradient decays as ∇T = −Q/(4πκR2), with R = |r− aey|
being the distance from the laser position.

In Fig. 3a we plot the calculated flow field u(x,y) in the
upper-right quadrant of the trap for a given set of parameters.
The flow field shows two stationary points, where the ther-
mophoretic drift vT and the advection drift ω× r cancel each
other such that the particle flow vanishes u = 0 (see Fig. 3b).
The upper one is unstable. A slight perturbation is amplified
and the particle either escapes to infinity or moves towards
the lower stationary point, which is stable. The flow field
around this stationary point appears to be spiraling towards
this stationary point. As the flow field is depicted in the rotat-
ing frame, a particle in this stationary point would carry out a
circular motion around the trap center in the lab frame when
neglecting Brownian motion.

We further determine the position of the stationary points
in the trap as a function of laser rotation frequency ω and the
thermophoretic velocity vT. Inserting the temperature gradient
into equation 1 and setting u = 0 yields to the cubic equation
ξ 2y(a− y)2 = a3 and that for the half-circle, x2 = y(a− y),
indicated by the green line in Fig. 3b. Their real solutions
provide the positions of the above described stationary points,
in terms of the dimensionless parameter

ξ =
ωa
uT

, (2)

which is given by the ratio of the tangential laser velocity ωa

Au

a)

c)
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Fig. 3 a) Flow field in the rotating frame u(x,y) for the angular
frequency parameter ξ = 6. The green half circle indicates the line
x2 = y(a− y). The two stationary points u = 0 are clearly visible;
the lower one (red) is an attracting stationary point, whereas the
upper one (blue) is unstable. With increasing ξ the stationary points
repel each other; the unstable migrates toward the position of the
laser, and the stable one toward the center. b) Sketch of the
coordinate system used in the rotation frame. The green dot
indicates the position of the laser beam. c) The curves describe the
radial distance r of the stationary points to the center of the gold
structure as a function of the dimensionless parameter ξ . The upper
branch (blue) corresponds to an unstable stationary point, whereas
the lower one (red) is stable.

1–8 | 3

Page 3 of 10 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



and the thermophoretic velocity

uT = DT
Q

4πκa2 .

The cartesian coordinates of the stable stationary point are
then given by a power series in ξ by y0 = a(ξ−2 +2ξ−4 + ...)
and x0 =

√
y0(a− y0).

Similarly, the position of the stable stationary point may
also be expressed in polar coordinates given by the distance r0
from the trap center

r0

a
=

1
ξ
+

1
ξ 3 + ... (3)

and the angle ϕ0 when tanϕ0 =
1
ξ
+ 3

2ξ 3 + ....
The above equations immediately reveal that both station-

ary points exist only for a sufficiently large value of ξ > ξmin =√
27/4≈ 2.598. This means that the tangential velocity of the

laser on the circumference of the trap has to be larger than the
thermophoretic velocity by a factor of 2.598. If this stability
condition is not fulfilled, the rotating laser is to slow to prevent
the particle from being pushed out of the trap by the thermal
drift. In the case ξ = ξmin, both stationary points are located
at the same position on the half circle. When increasing ξ

further they repel each other and the stable stationary point is
approaching the center of the trap. With typical experimental
parameters, uT ∼ µm/s and a ∼ µm, one finds a minimum
frequency of ω/2π ∼ Hz.

These theoretical findings agree well with experimental
data obtained for a single 460nm PS bead in water recorded at
different laser rotation frequencies ω . At each frequency, the
particle positions have been recorded and were transformed
to the rotating frame. Figure 4a displays the corresponding
histograms of the particle positions for three different laser
rotation frequencies and already reveals the shift of the sta-
tionary point towards the trap center with increasing rotation
frequency ω . The distance of the histogram maximum for dif-
ferent laser rotation frequencies follows nicely the predicted
frequency dependence. Fitting the radial distance as a func-
tion of frequency (eq. 3) in Fig. 4b directly yields a ther-
mophoretic velocity of uT = (3.3± 0.1)µm/s at the trap ra-
dius of a= 4.3 µm. The x,y positions of the measured maxima
are consistently below the half circle x2 = y(a−y) (Figure 4c,
grey squares). While the radial distance r0 is matched by the
theory, the phase ϕ0 is preceding the theoretical phase due to
the fact that the real heat source is smeared out along the rim
of the gold structure (see Fig. 1a), while we model the behav-
ior with a point heat source. We estimate a resulting shift in
angle to be ∆ϕ0 ≈ 10◦. The corrected data is shown with the
colored squared Fig. 4c and follows the half circle indicated
by the green line. Additionally, via the simulated tempera-
ture profile (Fig. 1) and the measured thermal velocity uT, the

temperature increase in the trapping center is estimated to be
about 12K.

4 Flow towards the stable stationary point

While the flow field already indicates the two different station-
ary points we can analyze the motion of the particle close to
the tentatively stable stationary point in more detail. We there-
fore linearize the flow u(r) at the distance from the stationary
point, r̂ = r− r0, and then expand in powers of 1/ξ

u = ω× r̂+
ω

ξ
(x̂ex−2ŷey)+ ... (4)

where we have discarded terms of O(ξ−2). The first term de-
scribes the rotation around the stationary point with frequency
ω .

The second term, which is by a factor ξ smaller and there-
fore independent of ω , accounts for the radial flow with re-
spect to the stationary point at r0. The flow along the x̂-
direction with velocity ω x̂/ξ = uT x̂/a is oriented outward,
whereas along the ŷ-direction there is an inward flow to-
ward the stationary point with twice the velocity −2ω ŷ/ξ =
−2uTŷ/a. When averaging over one cycle one finds that there
is a net inward flow towards the stationary point r0, which
proofs the stable nature of this stationary point.

Eq. (4) can be integrated to the following form,

x̂(t) = Ae−Γt cos(Ωt−φ),

ŷ(t) = Ae−Γt sin(Ωt), (5)

a spiral trajectory, where A is the initial amplitude, Ω =
ω
√

1−φ 2 the frequency, Γ = ω/(2ξ ) = uT/(2a) a damping
coefficient and φ = 3

2 ξ−1 the phase describing the asymme-
try. Terms of O(ξ−3) have been neglected. Without taking
thermal fluctuations into account the particle will converge to
the stationary point on a spiral in the rotating frame for t→ ∞

if the stability condition ξ > ξmin is fulfilled. Once the station-
ary point is reached, the particle travels in circles around the
center of the trap in the lab frame. Γ can be interpreted as a
relaxation rate describing how fast a particles reaches the sta-
ble point, which is independent of ω . Hence, while increasing
uT and ω by the same factor does not influence the position of
the stable point, it amplifies the net inward flow. The phase φ

determines the skewness of the trajectory, which reduces to a
circle for φ = 0, for high laser rotation frequencies. Note, that
neither the flow field nor the positions of the stationary points
depend on the size of the trapped particle.

A vector plot of an experimentally observed velocity field
u(x,y) = (ux(x,y),uy(x,y)) in the rotating frame is shown in
Figure 5 for the lowest measured frequency of f = 0.6Hz
(ξ = 4.9). Each arrow represents the average direction of
the particle in the according region, such that the stochastic
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Fig. 4 a) Position distribution histograms in the rotating frame for
0.6Hz (left), 1.1Hz (center) and 2.7Hz (right). Each trajectory
measured consists out of 10000 trajectory points. b) Distance of the
central point of the positional distribution as a function of the
rotation frequency with fit of equation 3. c) Position of the central
point of the positional distributions, i.e. the positions of the stable
point for different rotation frequencies. All points are tilted by 10◦

around the origin to compensate for the finite extend of the heat
source in the experiment. The green arc again indicates the line
x2 = y(a− y). The frequency is color-coded and can be read from
the plot in c. The grey squares is the uncorrected data.

Brownian motion of the particle averages out. To compare
the data to the theoretical description, we plotted the veloci-
ties separated in x and y-direction along the horizontal (green)
and vertical (magenta) lines in figures 5b and 5c. Correspond-
ingly, the black lines were calculated from equations 5 with
f = ω/2π = 0.6Hz, a = 4.3 µm and uT = 3.3 µm/s which
was found from the fit of eqn. 3 in Fig. 4c. As can be seen, the
theory and experimental data agree very well.

Although working at much lower frequencies, the motion
that is observed for a particle in a thermal trap with a rotat-
ing temperature field exhibits strong similarities to the motion
of ions in a Paul trap, which travel on non-trivial trajecto-
ries within the trap. Depending on the stability parameters
a macro-motion is observed superimposed with the micro-
motion at the frequency of the rotating quadrupole field5,27.
In our description of the thermal trap we decoupled the micro-
motion at ω by switching to the rotating frame. Within this
frame, we observe a harmonic oscillation (macro-motion) at
a frequency Ω which also depends on the trapping parame-
ters. However, due to the viscous damping at low Reynolds
number in the thermal trap this macro-motion disappears ex-
ponentially and the particle reaches the stable point in the long
time limit28 whereas it sustains for ion trapped in vacuum.

Eqns. (5) resemble a solution of a two-dimensional damped
harmonic oscillator. Hence, from this trajectory it is clear that
the particle is confined in an effective anisotropic harmonic
potential in the rotating frame, leading to an anisotropic Gaus-
sian positional distribution.

5 Diffusion and probability distribution

So far we have not taken into account the Brownian motion of
the particle. The corresponding convection-diffusion problem
is described by the stationary Smoluchowski equation for the
particle concentration,

∇ ·J = 0, J = cu−D∇c. (6)

Because of the rather intricate velocity field u there is no gen-
eral analytical solution. In the following we derive an approx-
imate steady-state distribution function.

The drift velocity (4) is linearized in powers of x̂ and ŷ. Its
radial and angular components read to leading order in 1/ξ ,

ur̂ =
ω

ξ

x̂2−2ŷ2

r̂
, uϕ = ω r̂. (7)

Note that the radial drift occurs outward along the x̂-axis
and towards the center along the ŷ-axis. Thus, without the
angular motion, the particle would escape within the cones
x̂2−2ŷ2 > 0. Yet since both radial drift and diffusion are slow
as compared to the angular motion, the distance r̂ changes
rather little during one cycle.
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Fig. 5 a) Experimental flow field calculated from the trajectory for a
rotation frequency of f = 0.6Hz. The green dot indicated the
position of the heated spot. The red dot shows the location of the
stationary point. Note that in this image the length of the arrow does
not represent |u|. b) and c) Flow velocities in x and y-direction
along the green and magenta lines in a). The black lines are not fits,
but calculated according to eqns 5 for a trap radius a = 4.3 µm and
uT = 3.3 µm/s as obtained earlier.

Thus, we may, in a first approximation, replace the radial
velocity with its time average ūr̂. From (5) one finds x̂2 =
1
2 r̂2 = ŷ2, and with the definition of ξ one readily has

ūr̂ =−uT
r̂

2a
. (8)

Since uT > 0, there is an effective drift towards the stationary
point. Hence, trapping arises from the superposition of the fast
angular motion and the minus sign of the mean radial velocity
ūr̂. The stationary state is obtained requiring that the radial
current J̄r̂ = cūr̂ −Ddc/dr̂ vanishes. Solving J̄r̂ = 0 results
in the Gaussian probability distribution c = c0e−r̂2/2σ2

, where
the mean-square distance

σ
2 =

2Da
uT

(9)

is determined by the ratio of the diffusion coefficient and the
thermophoretic velocity.

Both from the stream lines in Fig. 3 and from the trajec-
tories (5), it is clear, however, that c(x̂, ŷ) is not isotropic in
the x̂− ŷ-plane. The anisotropy is best expressed in terms of
the non-zero correlation x̂ŷ = 1

2 r̂2 sinφ , which follows directly
from (5). The correlation matrix is diagonalized by adopting
skew coordinates r̂± = (x̂± ŷ)/

√
2, resulting in the steady-

state distribution

c(x̂, ŷ) = c0 exp
(
−

r̂2
+

2σ2
+

−
r̂2
−

2σ2
−

)
, (10)

with mean-square displacements

σ
2
± = (1± sinφ)

2Da
uT

. (11)

By expanding in inverse powers of ξ , we find sinφ = 3
2ξ

.
This parameter is largest at small frequency and decreases
with increasing ω . At large frequency the widths σ± become
equal, the trajectory in the trap approaches a circle, and the
probability distribution reduces to (9). While the flow field
and the positions of the stationary points are indpendent of the
particle size, the probability distribution width are affected by
the size via the diffusion coefficient.

Equations 10 and 11 can be directly compared to the ex-
perimental data (Figure 6). Although the data points of σ+

and σ− do not quantitatively follow the predictions in Figure
6a, it can clearly be seen that the average values of the width
are consistent with the theory. Also, the anisotropy σ+/σ−
is clearly visible for low rotation frequencies and disappears
for higher frequencies as expected. The main discrepancy be-
tween theory and experimental data is again attibuted to the
spatially extended heat source and strong thermal conductiv-
ity of the gold layer, which disturbs the temperature profile in
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Fig. 6 a) Width σ+ (black) and σ− (red) as a function of the laser
rotation frequency. The curves show the theoretical dependence of
equations 10 and 11 again with uT = 3.3 µm/s and a = 4.3 µm. b)
Anisotropy σ+/σ−.

the experiment as compared to the modelled system, where a
pure one-over-distance temperature field was assumed.

The parameters σ± give the width of the trapping poten-
tial in the rotating frame. They are determined by the ratio
of advective and diffusive transport rates and hence are in-
versely proportional to the square-root of the Péclet number
Pe = uT a/D. In the experiment, with a diffusion coefficient
of D = 0.59 µm2/s, a thermal drift of uT = 3.3 µm/s and
a trap radius of a = 4.3 µm a Péclet number of Pe ≈ 24 is
achieved. The widths are also inversely proportional to the
the square-root of the Soret coefficient and excess temperature
σ± ∝ (ST∆T )1/2 similar as found in24.

6 Conclusion

We have studied the motion of a single colloidal particle in a
dynamic feedback-free thermal trap using a rotating temper-
ature field to create confinement. Since the temperature field
is repulsive for the colloidal particles, the confinement is the

result of the dynamics of the temperature field and requires
a certain threshold rotation frequency. For frequencies below
this threshold particles are pushed out of the trap, while above
the threshold a metastable and a stable trapping point exist.
The motion of the particles around the stable stationary point
is reminiscent of the complex motion in an electrodynamic
Paul trap. The particle motion, however, is strongly damped
as compared to the ion motion in the Paul trap due to the vis-
cous environment. The theoretical findings are well supported
by experiments confirming the main characteristics of the mo-
tion and provide a first glimpse on how single particle or even
single molecule motion might be manipulated with dynamic
temperature fields.

7 Materials and Methods

The preparation of the gold structure is fully analogous to a
previous publication24. A clean glass substrate is coated by
5nm chromium film as an adhesion layer for the gold struc-
ture. Isolated polystyrene beads (∼ 8 µm diameter) are pre-
pared on a glass substrate by spin coating. After coating the
glass and the beads with a 50nm gold layer by thermal evapo-
ration, the beads are removed by sonication and toluene. The
gold film with circular holes of about 8 µm diameter remains
on the glass substrate. The chromium film uncovered by the
gold is removed by etching. The experimental sample con-
sists of two parallel glass slides, where the lower one carries
the gold structure. A water film of about 700nm thickness
is confined between the glass slides. The water film contains
dye-doped colloidal PS beads of 460nm diameter. The motion
of the colloidal particles is monitored by widefield fluores-
cence microscopy, where the fluorecence is excited at 532nm
wavelength by an expanded laser beam (ω0,w ≈ 20 µm), col-
lected by an Olympus lens (100x/1.4) and imaged onto an An-
dor Ixon EMCCD camera in an inverted microscope. A fram-
erate of 100Hz was used at a 2× 2 binning. An additional
focused laser beam (ω0,h ≈ 1 µm) also of 532nm wavelength
can be steered in the sample plane with the help of an acousto-
optic deflector (AOD) and is used for the plasmonic heating of
the gold structure. The heating laser spot is driven in circles
along the circumference of the gold structure at a rotation fre-
quency f = ω/2π . The data shown in Figures 4, 5 and 6 were
acquired on the same bead.
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In this article we explore the dynamics of a Brownian particle in a

feedback-free dynamic thermophoretic trap.
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