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Abstract 

 The director alignment relative to the temperature gradient in nematic liquid crystal 

model systems consisting of soft oblate or prolate ellipsoids of revolution has been studied by 

molecular dynamics simulation. The temperature gradient is maintained by thermostatting 

different parts of the system at different temperatures by using a Gaussian thermostat. It is 

found that the director of the prolate ellipsoids aligns perpendicular to the temperature gradi-

ent whereas the director of the oblate ellipsoids aligns parallel to this gradient.  

 When the director is oriented in between the parallel and perpendicular orientation a 

torque is exerted forcing the director to the parallel or perpendicular orientation. Because of 

symmetry restrictions there is no linear dependence of the torque being a pseudovector on the 

temperature gradient being polar vector in an axially symmetric system such as a nematic 

liquid crystal. The lowest possible order of this dependence is quadratic. Thus the torque is 

very weak when the temperature gradient is small, which may explain why this orientation 

phenomenon is hard to observe experimentally. In both cases the director attains the orienta-

tion that minimises the irreversible entropy production. 
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1. Introduction 

 Many technological applications of liquid crystals are based on their ability to orient 

relative to external fields, such as electric and magnetic fields. They also orient relative dissi-

pative fields such as velocity gradients and temperature gradients [1, 2]. However, the orienta-

tion caused by the last-mentioned field has been considerably less studied. The reason for this 

is probably that it is hard to observe because there is no linear coupling between the tempera-

ture gradient being a polar vector and a possible orienting torque being pseudovector in an 

axially symmetric system such as a nematic liquid crystal. The lowest possible order of the 

coupling allowed by the symmetry is quadratic in the temperature gradient and consequently 

it will be very weak if the temperature gradient is small. Note, however, that a linear coupling 

is allowed in a cholesteric liquid crystal, where a temperature gradient parallel to the choles-

teric axis induces a torque rotating the director.  

 The first experimental study of a nematic liquid crystal orienting relative to a tempera-

ture gradient was reported by Stewart in 1936 [3], who found that the director attained the 

perpendicular orientation relative to this gradient. This study was then confirmed in a series of 

papers [4-6] by Holland, Stewart and Reynolds, who also ruled out that the orientation phe-

nomena were due to convection. Later on in the 1960’s Picot and Fredrickson [7] and Fisher 

and Fredrickson [8] doubted that any orientation phenomena caused by temperature gradients 

actually existed in nematic liquid crystals while Patharkar, Rajan and Picot [9] provided some 

experimental results supporting the existence of such orientation phenomena. Curry [10] sug-

gested that the phenomenon was due to convection. The possible coupling between the tem-

perature gradient and the director orientation is also of interest in the study of the Bénard in-

stability [11] and of various other convectional instabilities [12, 13] in nematic liquid crystals. 

 In a simulation study in the mid 1990’s [14] the orientation of the director relative to a 

temperature gradient was examined in two molecular liquid crystal model systems consisting 

of soft prolate and oblate ellipsoids of revolution, respectively. It was found that the director 

of a nematic liquid crystal consisting of the prolate ellipsoids oriented perpendicularly to the 

temperature gradient and that the director of the oblate ellipsoids oriented parallel to this gra-

dient. If the director was fixed in another orientation between the parallel and perpendicular 

orientations, a torque was exerted on the director forcing it to the parallel or perpendicular 

orientation. However, the effects of the temperature gradient were created by applying non-

Newtonian synthetic equations motion that included a fictitious mechanical heat field driving 

a heat current without any actual temperature gradient. The field was designed in such a way 
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that the zero field limit of the ratio of heat current and the field coincided with the value of the 

corresponding Green-Kubo relation [15, 16] for the heat conductivity. Unfortunately, the me-

chanical field included an additional torque acting on the molecules, so that it is not impossi-

ble that the observed orientation phenomena were caused by this torque rather than being a 

real effect of a temperature gradient. Therefore, the purpose of the present work is to maintain 

a temperature gradient driving a heat current in the liquid crystal system in a more realistic 

way by thermostatting different regions of the system at different temperatures. Only the 

translational degrees of freedom will be thermostatted, so that the thermostatting mechanism 

itself does induce any torques that could affect the director orientation. Between the thermo-

statted regions the equations of motion will be more or less Newtonian. Thus it will be possi-

ble to unambiguously determine whether there is a coupling between the temperature gradient 

and an orienting torque. 

 The article is organized as follows: in section 2 the necessary theory is reviewed, in 

section 3 the model system is described, in section 4 some technical details are given, in sec-

tion 5 the results are presented and discussed and finally in section 6 there is a conclusion. 

 

2. Theory 

2.1 Order parameter, director and director angular velocity 

 The order parameter S of a nematic liquid crystal consisting of axially symmetric mol-

ecules is defined as the largest eigenvalue of the order tensor 

 

1

3 1 1
ˆ ˆ

2 3

N
uu

i i

iN =

 ′ ′= − 
 

∑u uQ 1 ,        (1) 

where ˆ
iu is the axis vector of molecule i, 1 is the second rank unit tensor and N is the number 

of molecules. When the order parameter is equal to zero, the orientation of the molecules is 

completely random and when it is equal to one the molecules are perfectly aligned. The ei-

genvector corresponding to the largest eigenvalue is called the director, n, and it is a measure 

of the average orientation of the molecules. The orientations n and -n are equivalent. The or-

der tensor can be expressed in terms of the order parameter and the director, 

 
3 1

2 3
S

 = − 
 
nnQ 1 .         (2) 
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The director angular velocity is given by = ×Ω n n& . Since the simulation cell is very small 

compared to a real system there is only one director and one director angular velocity for the 

whole system. 

 

2.2 Macroscopic phenomenological relations 

 In an axially symmetric system such as a nematic liquid crystal a temperature gradient 

drives a heat current [1, 2, 16], 

 
||  ||

[ ( )]
Q

T

T
λ λ⊥⊥= − + − ⋅J nn nn1

∇∇∇∇
,       (3) 

where 
Q

J is the heat current density, n is the director , T is the absolute temperature, T∇∇∇∇  is 

the temperature gradient, ||  ||λ  is the heat conductivity in the direction parallel to the director 

and λ⊥⊥  is the heat conductivity perpendicular to the director. The angular brackets denote 

that the heat current density is the ensemble average of a phase function. The temperature 

gradient is a polar vector that drives a heat current being another polar vector. In isotropic 

systems or axially symmetric systems, the symmetry forbids linear couplings between ther-

modynamic forces and fluxes that are polar vectors and pseudo vectors, respectively [16]. 

Thus a linear coupling between a temperature gradient and an orienting torque is excluded. 

However, it is possible to have a cross coupling between a second rank symmetric tensor and 

a pseudovector in an axially symmetric system. Such a tensor can be obtained by forming a 

dyadic product of the temperature gradient. Then the coupling between the temperature gradi-

ent and the torque density up to quadratic order can be written as (14): 

 / :T

T T T T
V

T T T T
µ µ∇

 = ⋅ = ⋅ × 
 

Γ ε nn n n
∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇

,     (4) 

where µ is a cross coupling coefficient, ε is the Levi-Civita tensor and V is the volume of the 

system. The torque is zero in the parallel and perpendicular orientations but finite in any other 

orientation, thus forcing the director to either of these orientations. It is consequently possible 

for a temperature gradient to orient the director. However, the torque becomes proportional to 

the square of the temperature gradient, so that it will be very weak when the temperature gra-

dient is small. 

 

2.3 Microscopic theory: heat flow algorithm and equations of motion 
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 In a real system the heat flow is driven by a temperature gradient that arises because 

there are different temperatures in different regions of the system. In the simulation cell this 

can be achieved by keeping one region in the system at a high temperature 2T and another 

region at a low temperature 1T , so that heat flows from the hot region to the cold region, see 

fig. 1. Then the heat conductivity is obtained by dividing the heat current by the temperature 

gradient. A molecular dynamics algorithm for calculating the heat conductivity in this way 

was devised by Ikeshoji and Hafskjold [17] in 1994 and a variant of this algorithm will be 

applied in this work. Mathematically, the different temperatures are obtained by constraining 

the kinetic energy to attain different values in the two regions. In order to avoid sharp bounda-

ries of the regions and thereby numerical problems when the equations of motion are integrat-

ed, the temperature is allowed to vary continuously by weighting the kinetic energy of the 

particles according to their position. Therefore two weight functions are introduced, 

 ( )2 2exp[ ] / 2i iW z z aν ν= − − ,        (5) 

where iz  is the z-coordinate of particle i and νz , ν = 1, 2, is the z-coordinate of region 1 and 

2, respectively, 4/1 lz = , 4/32 lz = , l is the length of the simulation cell in the z-direction and 

the parameter a is a decay length. The actual function selected for the weight functions is ra-

ther arbitrary; any well-behaved function can be applied. In order to simplify the algebra the 

normalized weight functions are used, 

 

1

N

i i j

j

w W Wν ν ν
=

= ∑ .         (6) 

The following two constraints of the weighted translational kinetic energy per particle are 

applied, 

 
2

1

1
0

2

N

j j

j

w m Kν ν
=

− =∑ r& ,        (7) 

where ν is equal to 1 or 2, m is the mass of the particles and jr&  is the velocity of particle j, and 

Kν is the translational kinetic energy per particle. If 1K  and 2K are given different values the 

temperatures at 1z  and 2z  will be different. Provided that l is long compared to the decay 

length a of the weight functions these two constraint do not disturb each other and the equa-

tions of motion between the thermostatted regions will be essentially Newtonian. Only the 

translational kinetic energy is constrained whereas the rotational kinetic energy is left free in 

order not to interfere with the angular degrees of freedom and thereby influencing the orienta-
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tion of the molecules and thereby the director. Equations of motion satisfying these con-

straints can be obtained by applying Gauss’s principle of least constraint [15]. Then the con-

straints must be expressed in terms of the accelerations, which can be done by differentiating 

the above constraint equations (7) with respect to time, 

 
2

1

1
0

2

N

j j j j j

i

m w wν ν
=

 ⋅ + = 
 

∑ r r r& && && .       (8) 

In order to conserve the linear momentum, the constraint 

 
1

N

j

i

m
=

=∑ r 0&&           (9) 

is also applied. Note that this is a vector constraint, where the three components of the linear 

momentum are kept constant independently of each other. According to Gauss’s principle, the 

equations of motion are obtained by minimizing a quantity known as the square of the curva-

ture C, 

 

2

1

1

2

N
j

j

j

C m
m=

 
= − 

 
∑

F
r&& ,        (10) 

where jF  is the force exerted on particle j by the other particles, with respect to the accelera-

tion subject to the above constraints, 

2 2

1 1 1 2 2 2

1 1 1

1 1
0

2 2

N N N

j j j j j j j j j j j

j j ji

C m w w m w w mα α
= = =

 ∂    + ⋅ − + ⋅ + + ⋅ =    ∂     
∑ ∑ ∑r r r r r r β r

r
& && & & && & &&& &

&&
, (11) 

where 
1α , 

2α and β are constraint multipliers, whereby the following equations of motion are 

obtained, 

 1 1 1 2 2 2

1 1

1 1N N

i i i i j j i i j j

j j

m m w w m w w
N N

α α
= =

   
= − − − −   

   
∑ ∑r F r r r r&& & & & & ,   (12) 

after elimination of the momentum constraint multiplier β. The values of the multipliers 1α  

and 2α are determined by insertion of the accelerations in the constraint equations (8). Note 

that Gauss’s principle in the absence of constraints gives the ordinary Newtonian equations of 

motion and that it is identical to Lagrange’s method for holonomic constraints, i.e. constraints 

that only depend on the coordinates. However, Gauss’s principle is more general in that it in 

addition to holonomic constraints also allows some constraints involving both velocities and 

coordinates. 

When these equations of motion are applied, there is no net heat current in the system. 

However, the heat current can be obtained from the rate of change of the internal energy, 
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( ) 2 2

1 1 2 2

1 1 1

0
N N N

i i i i i i i i

i i i

E m m w m wα α
= = =

= ⋅ − ⋅ = − − =∑ ∑ ∑r r F r r r& & && & & & ,  (13) 

 

the average of which is equal to zero in a steady state. Then the first term on the right hand 

side being equal to the rate of energy removed in the cold region and the second term being 

equal the rate of energy supplied in the hot region cancel out in a steady state. Since the heat 

current density is defined as the energy flow per unit area, its z-component perpendicular to 

the hot and cold regions becomes: 

 2 2

1 1 2 2

1 1

1 1

2 2

N N

Qz i i i i

i i

AJ m w m wα α
= =

= − = −∑ ∑r r& & ,     (14) 

where A is the cross sectional area of the simulation cell and the factor of ½ arises because the 

heat flows in two directions from the hot to the cold region. From this relation it is possible to 

calculate the heat conductivity by dividing the heat current by the temperature gradient, 

 
2 1( ) / ( / 2)

QzJ

T T l
λ =

−
.         (15) 

Note, however, that this heat conductivity is the average of the heat conductivity for the tem-

peratures between 1T and 2T , so that it must be linearly dependent on the temperature and the 

temperature profile must by linear if this expression is to yield accurate results. In general the 

conventional methods such as Green-Kubo relations [15, 16] and the Evans heat flow algo-

rithm [15] are more accurate and easier to implement.  

 In angular space the ordinary Euler equations are applied, 

 p pi pi p pi pi
• •= − ×ω ω ω Γ&I I ++++ ,        (16) 

where piω is the angular velocity and pI is the inertia tensor, piΓ is the torque exerted on mole-

cule i by the other molecules and the subscript 'p' denotes the principal frame. The relation 

between the molecular angular velocities and the rate of change of the axis vectors ˆ /id dtu is 

expressed in terms of quaternions [18]. 

 It is also interesting to determine whether a torque is acting on the director when it is 

oriented at an angle between the parallel and perpendicular orientation relative to the tempera-

ture gradient. This can be achieved by fixing the director in a specified direction by adding 

two Lagrangian constraint torques that force the director angular velocity to be zero [14, 19], 
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y z

p pi pi p pi pi y z

pi pi

γ γ• •

∂Ω ∂Ω
= − × + +

∂ ∂
ω ω ω Γ

ω ω
&I I ++++ ,     (17) 

where yΩ  and zΩ  are the y- and z-components of the director angular velocity, yγ and zγ  are 

Lagrangian constraint multipliers determined by the constraint that the director angular accel-

eration be zero. Thereby the director angular velocity remains constant and if it is equal to 

zero initially it will remain zero for all subsequent times whereby the director will be fixed in 

space. It has been shown that these constraints do not affect the ensemble averages of phase 

functions and time correlation functions provided that they do not involve the director angular 

velocity [20]. The constraint torque constΓ  that arises when equation (17) is used balances the 

torque exerted by the temperature gradient T∇Γ , i.e. 

 
y z

const y z T

pi pi

γ γ ∇

∂Ω ∂Ω
= + = −

∂ ∂
Γ Γ

ω ω
,      (18) 

and if we let the z-component of the director be zero we have [19] 

 2
y a

const T y y y

pxi

V Pγ γ∇

∂Ω
= − = = =

∂
Γ Γ

ω
,     (19) 

where a

yP  is the y-component of the antisymmetric part of the pressure tensor, which is equal 

to the external torque density, and the pressure tensor is given by the Irving and Kirkwood 

expression [21],  

 

1 1 1 1

N N N N
i i i i

i i ij ij

i i i j i

V
m m= = = = +

 
= − = − 

 
∑ ∑ ∑ ∑

p p p p
r F r FP ,    (20) 

where ip is the linear momentum of particle i, ijr  is equal to j i−r r and ijF is the force exerted 

on particle i by particle j. 

 In order to cross check the heat flow algorithm (12-15) and to determine its efficiency 

and accuracy it is useful to compare its estimates of the heat conductivity with those obtained 

by the conventional Green-Kubo relation, 

 
2

0

( ) (0)Q Q eq
B

V
dt J t J

k T
αα α αλ

∞

= ∫ ,       (21) 

where the subscript α denotes the parallel (||) or perpendicular orientation ( ⊥ ) of the director 

relative to the temperature gradient and the subscript eq denotes that the time correlation func-

tion is evaluated in an equilibrium ensemble. The heat current of a system consisting of rigid 

bodies is given by [22], 
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2

1 1, 1,

1

2

N N N N
i i i

Q pi p pi ij ij ij pi pij

i j j i i j j i

V
m m m

• • • • •

= = ≠ = ≠

   = + + Φ − +   
  

∑ ∑ ∑ ∑
p p p

J ω ω r F ω ΓI , (22) 

where 
ijΦ is the pair interaction energy between particle i and j, ijr  is equal to 

j i−r r , 
ijF and 

pijΓ are the force and torque exerted on particle i by particle j. 

 

3. Model system 

 We have studied two different systems consisting of prolate or calamitic soft ellipsoids 

of revolution and oblate or discotic soft ellipsoids of revolution, respectively. The ellipsoids 

interact via a variant of the Gay-Berne potential [14, 23-25], where the Lennard-Jones core 

has been replaced by a purely soft repulsive 181/ r potential, 

 

18

0
12 1 2 12 1 2

12 12 1 2 0

ˆˆ ˆ ˆ ˆ( , , ) 4 ( , , )
ˆ ˆ ˆ – ( , , ) 

GBU
r

κσ
ε

σ κσ
 

=  + 
r u u r u u

r u u
,   (23) 

where 12r  is the distance vector between the centre of symmetry of molecule 1 and the centre 

of symmetry of molecule 2, 1û and 2û  are the axis vectors of these molecules consisting of 

ellipsoids of revolution and 0σ  is the length of the axis perpendicular to the axis of revolu-

tion, i.e. the short axis of the prolate ellipsoids and the long axis of the oblate ellipsoids.  

 The strength and range parameters, 12 1 2
ˆ ˆ ˆ( , , )ε r u u  and 12 1 2

ˆ ˆ ˆ( , , )σ r u u are given by  

 
1/2

2 2

12 1 2 0 1 2
ˆ ˆ ˆ ˆ ˆ( , , )  1 – ( )ε ε χ •

−
 = × r u u u u  

 

 

2
2 2

12 1 12 2 12 1 12 2

1 2 1 2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( + ) ( – )
1 –    

ˆ ˆ ˆ ˆ2 1  1 –  

χ
χ χ

• • • •

•

• •

  ′ 
+  ′ ′+   

r u r u r u r u

u u u u
    (24a) 

and 

 

1
–

2 2 2
12 1 12 2 12 1 12 2

12 1 2 0

1 2 1 2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( + ) ( – )
ˆ ˆ ˆ( , , ) 1 –  

ˆ ˆ ˆ ˆ2 1 1 –

χ
σ σ

χ χ

• • • •

• •

   
= +  +   

r u r u r u r u
r u u

u u u u
,  (24b) 

where 0ε  is the depth of the potential minimum in the orientation where 12r , 1û  and 2û  are 

mutually perpendicular, i.e. the cross configuration, χ is equal to 2 2( –1)/( +1)κ κ , where κ, 

denoting the ratio of the axis of revolution and the axis perpendicular to this axis, has been set 

equal to 3 for the prolate ellipsoids and to 1/3 for the oblate ellipsoids, the parameter χ ′ is 
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equal to 1/2 1/2( –1)/( +1)κ κ′ ′ , where κ', denoting the ratio of the potential well depths of the 

side-by-side and end-to-end configurations of the prolate ellipsoids and the ratio of the edge-

to-edge and the face-to-face configurations of the oblate ellipsoids, has been set equal to 5 in 

the first case and to 1/5 in the second case. Note that a purely repulsive potential is used, so 

there are no potential minima but the values optimised for the Lennard-Jones potential have 

been retained. 

 

4. Technical details 

 The results are expressed in reduced units for the length, density, mass, energy, time 

and temperature equal to 
0σ , 3

0σ − , m, 
0ε , 1/2

0 0 0( / )t mσ ε∗ =  and 
0 / Bkε  where 

Bk  is Boltz-

mann’s constant. The equations of motion were integrated by using a fourth order Gear pre-

dictor-corrector method with a timestep of 0.001 0t
∗

 for the prolate ellipsoids and 0.0005 0t
∗  for 

the oblate ellipsoids. Cutoff radii of 4.5
0σ  and 2.0 

0σ  beyond which the pair interaction po-

tential was set equal to zero were applied for the prolate and oblate ellipsoids, respectively. A 

cell code was used to accelerate the formation of the neighbour list. 

 In order to cancel the numerical drift of the temperature and director constraints aris-

ing because the numerical methods used to integrate the equations of motion never are com-

pletely exact, proportional feedback multipliers [26] were used. Then the actual values used of 

the thermostatting multipliers 1α and 2α are  

 
2

1

1

2

N

j j

j

w m Kν ν ν ν να α ζ
=

 
′ = − − 

 
∑ r& ,       (25) 

where ν = 1, 2 and νζ  is a feedback multiplier. In the same way, the director constraint multi-

pliers in equation (17) were augmented by proportional feedback multipliers [14], i. e. 

0( )y y y y z z zn nγ γ ξ η′ = − Ω + −         (26a) 

and 

 0( )z z z z y y yn nγ γ ξ η′ = − Ω − − ,        (26b) 

where v yξ , zξ , yη  and zη  are feedback multipliers, yΩ  and zΩ  are the y- and z-components 

of the director angular velocity, yn  and zn  are the actual values of the y- and z-components of 

the director and 
0 yn  and 

0 zn  are the corresponding desired values. If the numerical integration 

method of the equations of motion were exact the constraints would be exactly satisfied and 
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the expressions within the brackets and yΩ  and zΩ  would be exactly zero, so that ν να α′ = , 

y yγ γ′ =  and zz γγ =′ . If the proportional feedback multipliers are given values of between 0.1 

and 10 in reduced units there will be very small deviations, i.e. relative errors of the order of 

10
-7

 or less, that will have negligible influence on the ensemble averages of the phase func-

tions and time correlation functions. In the present calculations the νζ ’s were equal to 1.0 and 

yξ , zξ , yη  and zη  were equal to 0.1. 

 Some of the conclusions in this work are based on angular distribution functions ( )p θ  

of the director relative to the temperature gradient, where θ is the angle between the director 

and the temperature gradient. In the simulation these functions are obtained in the following 

way: Every fifth time step of the simulation run, the angle θ between the director and the tem-

perature gradient is calculated. Then an array element with an index equal to the integer part 

of the calculated value of θ in degrees is increased by one. Thus the total array becomes a 

histogram of a sampling of the distribution function ( )sinp θ θ . This sampling is linear in θ. 

By dividing by the factor sinθ  the angular distribution function ( )p θ is recovered. 

 

5. Calculations, results and discussion 

 The first step that must be carried out is to verify that it is possible to use the heat flow 

algorithm (12-15) to obtain estimates of the heat conductivity that are consistent with those 

obtained by evaluation of the conventional equilibrium Green-Kubo relation (21). Therefore a 

calamitic system consisting of 8192 prolate ellipsoids at a reduced density n*= 3

0nσ of 0.30 in 

a cubic box with a length of 30 0σ  was studied. The thermostats were located at 1z =7.5 0σ and 

2z =22.5 
0σ  and the decay length a of the Gaussian weight functions (5) was given a value of 

1.00 0σ . The reduced temperatures 1T  and 2T  were set equal to 0.95 and 1.05, respectively. 

Note that even though the temperature gradient orients the director it will fluctuate around the 

preferred orientation and then the calculated heat conductivity becomes the average over a 

rather wide angular interval. When the heat conductivity in the direction that is not preferred 

is calculated the director is forced away from this direction. Therefore, the constraint equa-

tions (17) were applied to fix the director either parallel or perpendicularly to the temperature 

gradient. The resulting translational temperature profile of the calamatic system where the 

director is parallel to the temperature gradient is shown in fig. 2, where it can be seen that the 

profile is more or less linear. According to the equipartition principle the translational and 
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rotational temperatures are the same at equilibrium but this is not necessarily the case away 

from equilibrium. Here these two temperatures agree with each other within relative errors of 

0.005 or less even though only the translational degrees of freedom were thermostatted. The 

relative difference between the total translational and total rotational kinetic energies of the 

whole system is about 0.0002. When the temperature difference is increased by setting 
1T  and 

2T equal to 1.00 and 2.00, the largest relative difference between the rotational and kinetic 

temperatures is less than 0.025 and the relative difference between the corresponding total 

energies for the whole system is about 0.0005. The translational and rotational temperature 

profiles for the perpendicular orientation are similar to the displayed profile. Since the tem-

perature profile is more or less linear, the temperature gradient can be approximated rather 

accurately by the difference between the high and low temperatures divided by the distance 

between the hot and cold regions. It is found that the maximal temperature maxT  is somewhat 

higher than 2T  and that the minimal temperature minT is somewhat lower than 1T . This is not 

inconsistent because the constraints only require that the averages of the temperatures within 

the range of the weight functions should be equal to 
1T  and 

2T . Consequently, a slightly more 

accurate value of the temperature gradient is obtained by using the expression 

max min( ) / ( / 2)T T l−  rather than 2 1( ) / ( / 2)T T l− . Then the heat conductivity is calculated by 

dividing the rate of change of the internal energy obtained from equation (14) by the tempera-

ture gradient and the cross sectional area of the simulation cell. The estimates of heat conduc-

tivity are compared to the Green-Kubo estimates of equation (21) in table 1 and it turns out 

that the relative difference is less than 5 percent, which is surprisingly accurate not least when 

it is taken into account that these nonequilibrium simulations are four times shorter (4 × 10
3
 

0t
∗ ) than the equilibrium simulations (1.6 × 10

4
 0t

∗ ) used to evaluate the Green-Kubo relations. 

 The heat flow algorithm was also verified for a discotic system consisting of 8192 

oblate ellipsoids, at reduced density of n* of 2.4 in a cubic box with a box length of 15 0σ . 

The thermostats were located at 1z =3.75 0σ and 2z =11.25 0σ and the decay length a of the 

Gaussian weight functions (5) was equal to 0.5 0σ . The reduced translational temperatures 

were set equal to 0.95 and 1.05 respectively as in the previous case. The temperature profile 

was found to be virtually linear and the translational and rotational temperature profiles coin-

cided within relative errors of less than 0.003. The relative difference between the correspond-

ing energies of the whole system was about 0.0005. The comparison with the Green-Kubo 
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estimates is given in table 1. The relative error is less than 10 percent. Thus we can be confi-

dent that the heat flow algorithm (12-15) gives a more or less linear temperature gradient and 

that the heat conduction follows Fourier’s law. 

 The second step is the principal topic of this work, namely to examine how the direc-

tor of a nematic liquid crystal orients relative to the temperature gradient. It could be thought 

that this would be impossible to determine with the present arrangement of thermostats be-

cause there are two temperature gradients in opposite directions in the system, see fig. 1 and 

fig. 2 and that the director therefore would be twisted in different directions in either half of 

the system. However, since the torque induced by the temperature gradient is proportional to 

the square of this gradient or is at least an even function of the gradient because of symmetry, 

see equation (4), it remains the same when the gradient changes sign and thus it is the same in 

the whole system, so that the director is twisted in the same direction in both halves of the 

system. 

 The most immediate way to examine whether the temperature gradient affects the ori-

entation of the director is to calculate its angular distribution, ( )p θ , relative to this gradient. 

This function, obtained according to the method described in section 5, is displayed in figure 

3 at two state points of the calamitic system, where the two temperatures 1T  and 2T were equal 

to 1.00 and 1.50 at the first state point and to 1.00 and 1.25 at the second one and the run 

length was 1.5 × 10
6
 0t

∗
. As it can be seen, the angular distribution of the director is more or 

less Gaussian in both cases and the maximum is located around the 90 degree orientation or 

the perpendicular orientation. Thus the perpendicular orientation is the preferred orientation. 

The distribution function becomes narrower when the temperature gradient increases because 

a larger gradient induces a larger torque that more efficiently counteracts the spontaneous 

thermal fluctuations of the director out of the perpendicular alignment. These distribution 

functions were compared to the corresponding function of the discotic system, where 
1T  and 

2T were equal to 1.00 and 1.50 and the run length was equal to 1 × 10
6
 

0t
∗

. The angular distri-

bution function is displayed in fig. 4. In contrast to the previous systems the distribution func-

tion here is maximal at the zero degree orientation or the parallel orientation. In this case it is 

more difficult to obtain accurate values of ( )p θ  since it is actually a histogram corresponding 

to ( )sinp θ θ that is calculated and this function goes to zero as θ goes to zero, so that the sta-

tistics becomes very poor for small values of θ. However, still an approximately Gaussian 

angular distribution is obtained.  
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 These distribution functions imply that the temperature gradient forces the director of 

the calamitic system towards the perpendicular orientation whereas the gradient forces the 

director of the discotic system towards the parallel orientation. The angular distributions of 

the director are rather wide since the systems are very small and thus the thermal fluctuations 

are very large. However, in the thermodynamic limit these fluctuations decrease and the 

widths of the distributions go to zero. 

 In order to rule out that the director orientation could be affected by the initial condi-

tions or by the periodic boundary conditions the simulations were started from a crystal con-

figuration that was allowed to melt during a time period of 500 
0t
∗  which should be enough to 

form a nematic liquid crystal. Then the temperature gradient was applied both parallel and 

perpendicularly to the director and it was found that the director of the calamitic system in 

both cases attained the perpendicular orientation. In the same way the director of the discotic 

system attained the parallel orientation independently of the initial orientation. Moreover, the 

director is not statically fixed in the parallel or perpendicular orientation, but it fluctuates 

around these orientations with very large amplitudes, i.e. 30 degrees or more, so that it is not 

locked by the initial configuration. It is also possible that the system size and the period 

boundary conditions could influence the director orientation. This is a problem when smectic 

phase are studied because then a stress arises if the length of the simulation box is not an inte-

ger multiple of the layer spacing. However, this is less of a problem in the nematic phase that 

was simulated in the present work, since there is only orientational order but no translational 

order. In addition the systems are very large, i.e. the length of the simulation cell is equal to 

10 molecular lengths in the calamitic system and to 15 molecular diameters in the discotic 

system. Finally, a great deal of experience on simulation of rotation and tumbling of nematic 

liquid crystal model systems in order to obtain the twist viscosity has been accumulated, see 

refs. [19, 27, 28] and the general conclusion is that the periodic boundary conditions do not 

affect the rotation to any greater extent. 

 In order to further confirm these results on the director orientation and to provide addi-

tional evidence for that the orientation is independent of the initial conditions, the constraint 

algorithm (17) was used to fix the director at given angles relative to the temperature gradient 

to calculate the exerted torque T∇Γ  (18, 19) as a function of the orientation angle. In these 

calculations the director is confined to the zx-plane, the temperature gradient is applied in the 

z-direction and a possible torque is exerted on the director around the y-axis, see fig. 5. Then a 
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positive torque twists the director clockwise towards the perpendicular orientation and a nega-

tive torque twists the director counter clockwise towards the parallel orientation. In this ge-

ometry the dependence of the torque on the director orientation angle θ and the temperature 

gradient (4) becomes: 

2

/ sin 2 z
Ty

T
Γ V

T
µ θ∇

∂ =  
 

.        (27) 

 In figs. 6a and 6b the torque density /
Ty

Γ V∇  is shown as a function of the angle be-

tween the director and the temperature gradient for the calamitic system at the same state 

points as above, i.e. the two temperatures 1T and 2T were equal to 1.00 and 1.50 at the first 

state point and to 1.00 and 1.25 at the second one. Run lengths of 1.2 × 10
5
 0t

∗
 and 1 × 10

6
 0t

∗  

were used for the large and small gradients, respectively. As it can be seen, the torque is clear-

ly positive for all angles between 0 and 90°, so the director is twisted towards the perpendicu-

lar orientation at any other orientation even close to the parallel orientation. This provides 

further evidence that a temperature gradient forces the director of a calamitic nematic liquid 

crystal towards the perpendicular orientation independently of the initial orientation. The ratio 

of the maximal torque density and the temperature gradient in reduced units is about 0.1 for 

the large temperature gradient and 0.03 for the small temperature gradient. This is two orders 

of magnitude less than the heat conductivity, so the cross coupling is very weak. 

 According to equation (27) 
Ty

Γ∇ should be a symmetric function of the orientation 

angle, proportional to θ2sin with a maximum at the 45 degree orientation. However, this 

does not seem to be the case, instead the absolute value of the torque is maximal at the 30 

degree orientation and it falls off linearly towards the 90 degree orientation and in a more 

curved fashion towards the 0 degree orientation both in case of the large and the small tem-

perature gradient. The torque should also be proportional to the square of the temperature gra-

dient but this does not seem to be the case either. The reasons for this could be that the tem-

perature gradients applied are too large, so that terms of higher order than quadratic become 

important. Had we applied smaller temperature gradients it might have been possible to ob-

serve a quadratic angularly symmetric dependence but this would have required prohibitively 

long simulation runs. Another factor that could contribute to the deviations from equation (27) 

is that the order parameter difference between the two temperatures is rather large, see table 2. 

However, the order parameters are still rather large, so the systems are far enough from the 

nematic-isotropic phase transition where fluctuations of these parameters could affect the di-
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rector alignment. Note also that even though the change of the order parameter is rather large, 

this does not imply that the order parameter fluctuations are large, at least not far from the 

phase transitions points.  

 Also for the discotic system the torque density /
Ty

Γ V∇ was evaluated as a function 

of the orientation angle by applying the constraint algorithm (17) to fix the director. The state 

point was the same as the one above where the director angular distribution function was cal-

culated, i.e. 
1T and 

2T were equal to 1.00 and 1.50. The results obtained from run lengths of 

1 × 10
6
 0t

∗ are shown in fig. 7 where it can be seen that the torque now is negative for every 

angle between 0 and 90° even when the angle is close to 90° thus forcing the director towards 

the parallel orientation irrespective of the initial orientation. Also here the torque dependence 

on the orientation angle is nonsymmetrical around the 45 degree orientation. Instead, the max-

imum of the absolute value of the torque appears at the 60 degree orientation and the func-

tional forms of the decay on either side of the maximum differ.  

 The ratio of the maximal torque density and the temperature gradient is only about 

0.05 in reduced units, so the cross coupling must be regarded as very weak even in the discot-

ic system studied. This ratio is likely to be even smaller in real systems because there the 

molecules are more irregular and the order parameter is lower and consequently the cross 

coupling coefficient µ in equations (4) and (27) become smaller, so that it will be very diffi-

cult to observe this orientation effect experimentally. 

 We finally observe that in both the calamitic system and the discotic system the direc-

tor attains the orientation where the irreversible entropy production caused by the heat flow is 

minimal. 

 

6. Conclusion 

 A heat flow was driven through two different liquid crystal model systems consisting 

of soft ellipsoids of revolution interacting according to a purely repulsive version of the Gay-

Berne potential, one of which was a calamitic system composed of prolate ellipsoids of revo-

lution and the other one was a discotic system composed of oblate ellipsoids of revolution. 

The heat flow was driven by applying a thermostat that kept one part of the system at a high 

temperature and another part at a low temperature, so that temperature gradient inducing a 

heat flow arose. The thermostat was based on a Gaussian constraint algorithm for the kinetic 

energy where a continuous and differentiable spatial weight function is used to constrain the 
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kinetic energy of the particles in a limited region in the system. If two such regions are intro-

duced and they are far away from each other the kinetic energy can be constrained to different 

values in the two regions and thereby their temperatures become different so that a tempera-

ture gradient and a heat flow arise. It is possible to use the heat flow and the temperature gra-

dient to calculate the heat conductivity even though the conventional Green Kubo methods or 

the Evans nonequilibrium molecular dynamics heat flow algorithm are more convenient to 

apply. However, the estimates of the heat conductivities for the liquid crystal model systems 

were found to agree very well the corresponding Green-Kubo estimates. 

 When the nematic phase of the liquid crystal model systems were subjected to the 

temperature gradient the director was oriented. It was found that the director of the calamitic 

system displayed an approximately Gaussian angular distribution function around the perpen-

dicular orientation relative to the temperature gradient. On the other hand, the director of the 

discotic system was found to orient parallel to the temperature gradient, also with a more or 

less Gaussian angular distribution function. In order to verify these results, the director was 

fixed at different angles relative to the temperature gradient by applying a Lagrangian con-

straint torque that exactly cancels out any torque that is exerted on the director, in this case a 

torque exerted by the temperature gradient. In the calamitic system it was found that a torque 

twisting the director towards the perpendicular orientation was exerted by the temperature 

gradient when the director attains any other orientation. The torque was maximal around the 

30 degree orientation, i.e. the torque was not symmetric around the 45 degree orientation. In 

the discotic system the director was found to be twisted towards the parallel orientation if it 

attained any other orientation relative to the temperature gradient. The torque was maximal 

around the 60 degree orientation. In both cases the torque was found to be very weak. The 

reason for this could be that a linear coupling between a temperature gradient being a polar 

vector and torque being a pseudo vector is forbidden because of symmetry restrictions; the 

lowest possible order is quadratic. Thus the torque becomes very weak if the temperature gra-

dient is low. Even though very regular molecules that form liquid crystals with high order 

parameters compared to real liquid crystals were employed, the torques were very small and 

thus they are probably even smaller in real systems with more irregularly shaped molecules 

and lower order parameters, so that this could be one of the reasons why it is hard to observe 

experimentally. The results obtained confirm the results of an earlier work [14] where the 

Evans synthetic heat flow algorithm was used to drive the heat flow. Unfortunately, when that 

algorithm is used a mechanical heat field is applied where an explicit torque is exerted direct-
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ly on the molecules. Thus it could not be ruled out that the orientation was caused by this 

field. However, no explicit torque is exerted when the heat flow algorithm (12-15) is applied, 

so that the orientation phenomena found in the present work can be unambiguously attributed 

to the temperature gradient. Finally we note that in both the calamitic system and the discotic 

system the director attains the orientation that minimizes the irreversible entropy production 

caused by the heat flow. 
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Figure Captions 

 

Fig. 1 

 The thermostat arrangement. One region is kept at a high temperature and the other 

region is kept at a low temperature, so that heat flows from the hot region to the cold region 

orienting the director relative to the temperature gradient. 

 

Fig. 2 

 The translational temperature profile (dotted curve) of a calamitic system where the 

director is kept perpendicular to the temperature gradient by application of the director con-

straint algorithm (17). The hot region is kept at a reduced temperature of 1.05 and the cold 

region at a temperature of 0.95. The full curves are the Gaussian weight functions (5). 

 

Fig. 3 

 The angular distribution of the director, ( )p θ , of the calamitic liquid crystal, 1T  =1.00 

and 2T = 1.50 (filled circles) 1T  =1.00 and 2T  = 1.25 (open circles). The error bars are of the 

of same size as the symbols. 

 

Fig. 4 

 The angular distribution of the director, )(θp , of the discotic liquid crystal, 1T =1.00 

and 2T  = 1.50. 

 

Fig. 5 

 The geometrical arrangement for the evaluation of the torque acting on the director. 

The temperature gradient points in the z-direction, the director n is constrained to the zx-plane 

at an angle θ to the z-axis and a possible induced torque is parallel to the y-axis. 

 

Fig. 6a 

 The torque density, VΓ Ty /∇ , acting on the director of the calamitic liquid crystal as 

a function of the angle relative to the temperature gradient, where 
1T  = 1.00 and 

2T  = 1.50. 
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Note that the torque density has been multiplied by a factor of 1 000. The error bars are of the 

same size as the symbols. 

 

Fig. 6b 

 As in fig. 6a but 
1T =1.00 and 

2T  = 1.25.  

 

Fig. 7 

 The torque density, /
Ty

Γ V∇ , acting on the director of the discotic liquid crystal as a 

function of the angle relative to the temperature gradient, filled circles 1T  =1.00 and 2T  = 

1.50. Note that the torque density has been multiplied by a factor of 1 000. 
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Table captions 

 

Table 1 

 Comparison of the estimates of the heat conductivities obtained by the conventional 

Green-Kubo relations (lines 1 and 3) and those obtained by the nonequlibrium molecular dy-

namics algorithm, (12-15). The temperatures 
maxT  and 

minT  are the maximal and minimal tem-

peratures that have been used to evaluate the temperature gradient. The last column is the run 

length in reduced time units ∗
0t  that were used to obtain the results. 

 

Table 2 

 The order parameter at the different temperatures for the calamitic and discotic sys-

tems. 
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Table 1 

System 
|| ||λ  

maxT  
minT  ⊥⊥λ  maxT  

minT  run length/ ∗
0t  

calamitic 
9.5 ± 0.5   4.8 ± 0.3   1.6 × 10

4
 

9.5 ± 0.1 1.054 0.947 5.0 ± 0.3 1.054 0.947 4 × 10
3
 

discotic 
10.8 ± 0.8   31.5 ± 1.5   1.6 × 10

4
 

11.8 ± 0.3 1.056 0.949 32.5 ± 0.7 1.057 0.949 4 × 10
3
 

 

Table 2 

T S (calamitic) S (discotic) 

1.00 0.749 ± 0.001 0.783±0.0004 

1.25 0.696 ± 0.003 - 

1.50 0.623 ± 0.003 0.747±0.002 
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Fig. 4 
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Fig. 6a 
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Fig. 6b 
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Fig. 7 
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Colour graphics  

Nematic liquid crystal oriented by a temperature gradient  
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