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ABSTRACT  

A conformational selection method, based on hydrogen bond (Hbond) network analysis, has 

been designed in order to rationalize the configurations sampled from molecular dynamics (MD), 

which are commonly used in the estimation of relative binding free energy of ligands to 

macromolecules through MM/GBSA or MM/PBSA methods. The approach makes use of 

protein-ligand complexes obtained from X-ray crystallographic data, as well as from molecular 

docking calculations. The combination of several computational approaches, like long MD 

simulations on protein-ligand complexes, Hbond network-based selection by scripting techniques 

and finally MM/GBSA; provides better statistical correlations against experimental binding data 

than previously similar reported studies. The approach has been successfully applied in the 

ranking of several protein kinase inhibitors (CDK2, Aurora A and p38), which present both 

diverse and related chemical structures.  
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INTRODUCTION 

One of the main challenges that face a chemist (medicinal, organic, inorganic, etc.) is a deeper 

understanding of the forces that are involved and govern a chemical reaction or the 

intermolecular interactions that arise when two molecules are close enough to form a stable 

molecular complex (protein – protein, protein – ligand, carrier – drug, etc.). Computational 

methods currently available are of key importance in understanding complex processes taking 

place at the molecular level. Several different computational approaches exist specifically to 

assess the protein – ligand interactions. The spectrum of methods is broad, both in complexity 

and demanding computational time, where cheaper computational methods like molecular 

docking attempt only to predict the structure (or structures) of inter-molecular complexes formed 

between two or more molecules; therefore it has been widely used to suggest the binding modes 

of protein inhibitors.1,2 Most of the docking algorithms are able to generate a large number of 

possible structures, so they also require a means to score each structure to identify those of most 

interest. The “docking problem” is thus concerned with the generation and evaluation of 

plausible structures of intermolecular complexes.3,4 The main disadvantage of docking methods 

is their scoring function, because it may become insufficient to adequately represent all binding 

forces and to rank a set of inhibitors properly. Some improvements have been made in this 

regard and new algorithms are appearing that seem promising to face this challenge.5,6 

Next, in the scale of complexity, are the quantitative structure-activity relationship (QSAR) 

methods.  QSAR relates structural properties of the molecules to its activity by a mathematical 

model. The term “quantitative structure-property relationship” (QSPR) is also used, particularly 

when some property other than biological activity is concerned. In drug design, QSAR methods 

have often been used to consider qualities beyond in vitro potency. The first use of QSARs to 
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 4 

rationalize biological activity is usually attributed to Corvin H. Hansch. He developed equations 

which related biological activity to a molecule’s electronic characteristics and hydrophobicity.7 

QSAR methods fail in the sense they are not predictive at all and, in order to build the QSAR 

equation, one needs to include several non-correlated variables into that equation to get the final 

model. Some of these variables (or descriptors) may not have chemical meaning and render 

useless the method as a reliable structural interpretative tool.  In the middle of the computational 

methods spectrum is the molecular dynamics (MD) simulation. This approach is very powerful 

for the molecular description of very large systems like DNA – drug complexes8,9, polymer 

structures10,11, membrane proteins12,13, protein – ligand complexes1,14, etc.  The simplicity of the 

employed potential energy function of this method makes it suitably to run very long 

simulations, even in the millisecond time scale15, 16, and then allowing to extract valuable 

structural information and energy data from the resulting trajectories. Other more refined 

molecular dynamics approaches like MD-FEP allowed to calculate “absolute” protein – ligand 

binding free energies.17,18 A general methodology for calculating the equilibrium binding 

constant of flexible ligand to a protein receptor was formulated by Woo H-J et al,19 on the basis 

of potentials of mean force (PMF). The mentioned approach avoids the need to decouple the 

ligand from its surroundings (bulk solvent and receptor protein), as it is traditionally performed 

in the double-decoupling scheme, but those approaches are computationally expensive and are 

not applicable to any kind of compounds due to the limitations of molecular force fields. That 

force field’s drawback, in the treatment of organic-inorganic drug like compounds, can be solved 

by means of hybrid calculation methods like QM/MM and/or ONIOM.20,21  On the other hand, 

the “relative” binding free energy may be estimated on the basis of a continuum solvent 

approximation like the Molecular Mechanics/Generalized Born and Surface Area (MM/GB-SA) 

Page 4 of 40Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 5 

method 22,23. A popular procedure of this approach relies on a mixed scheme combining 

configurations sampled from MD simulations with explicit solvent, together with free energy 

estimators based on an implicit continuum solvent model obtained from MM/GBSA 

calculations.24 The main advantage of this protocol is the use of an ensemble of structures 

(snapshots or frames) accounting for the conformational flexibility of the protein-ligand 

complex.25 Furthermore, through the application of the conformational sampling to generate 

ensemble averages, one can also simulate better the protein-ligand reciprocal adaptation, a 

phenomenon commonly referred to as induced-fit.26  Recently, some studies have been 

performed in order to assess the impact of several parameters (force field, ligand charge models, 

length of molecular dynamics simulations, among others) on the performance of MM-GBSA and 

MM-PBSA methods.27–29  It is worth also to mention that, due to popularity among 

computational chemistry community and to the relative good accuracy of this binding free 

energy calculation approach, some automated programs has been developed by Gohlke et al.30, 31 

in order to allow a more straightforward application of this methodology. 

Concerning the induce-fit concept, some of the previous research work relied on rigid protein-

ligand docking structures; and that structural effect, which is known to be important in the 

binding of small molecules to proteins and other macromolecular targets, was mostly ignored. 

For instance, Du et al.2 applied multiple docking strategies and Prime/MM-GBSA calculations to 

predict the binding modes and free energies of a series of benzoisoquinolinones as Chk1 

inhibitors. The authors found that reliable docking results were obtained using induced-fit 

docking and quantum mechanics/molecular mechanics (QM/MM) docking, which showed 

superior performance on both ligand binding pose and docking score accuracy to the rigid-

receptor docking. Then, the Prime/MM–GBSA method based was applied to the docking 
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 6 

complexes to predict the binding-free energy. Among other targets, protein kinases are particular 

flexible proteins, so that induce-fit effects should be considered in the structure-based design of 

kinase inhibitors.32 

In this work we present a novel interaction-based selection approach of representative structural 

configurations obtained from long MD simulations of several protein kinase-inhibitors 

complexes, which were then subject to MM/GBSA calculations in order to estimate the 

corresponding relative free binding energies. Geometrical parameters (distance and angle) for 

each Hbond were derived from equilibrium geometries exhibited in MD trajectories that were 

weighted in order to score and select those protein-ligand configurations that best represent the 

overall intermolecular interaction behavior. Three protein kinase systems were considered: p38, 

Aurora A and CDK2 (Table 1).  The inhibitors for p38 and Aurora A are congeneric series 

previously reported33,34 and their protein-ligand complexes were obtained from docking 

experiments. The inhibitors for CDK2 are non-congeneric series making the scoring through 

MM/GB-SA more challenging. However, in this case the protein-ligand complexes were 

obtained from crystallographic data available in the Protein Data Bank (PDB)35.  The proposed 

computational protocol seems to capture a relevant feature within binding site in these protein 

kinase systems, the so-called “Hbond network”, present at the protein hinge region, which most 

inhibitors reported so far establish interactions with.36, 37, 38   

 

Please Insert Table 1 around here 
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 7 

METHODS 

 

Data Sets and System Setup. A CDK2 protein-ligand data set with X-ray crystal structures 

previously collected and reported by Dobeš et al.39 were used as the non-congeneric series. p38 

(PDB ID: 2bak) and Aurora A (PDB ID: 2c6e) kinase data sets previously collected and reported 

by Lyne et al.40 were used as the congeneric series.  The in vitro	
  biological activity data reported 

as Ki or IC50 values in the above-mentioned literature for inhibition produced by diverse and 

related chemical derivatives on different protein kinase enzymatic systems were used. For 

modeling purposes, IC50 values were converted into binding free energy (ΔG) values. Biological 

data for the CDK2 set was used as natural logarithm of Ki values (pKi).  All X-ray crystal 

structures were prepared, refined and completed (when needed) with the Protein Wizard 

Preparation module available in Maestro41 visualization software.  Prediction of missing loops 

was made with Prime42 module from Schrödinger Suite. All compounds of the congeneric series 

of p38 and Aurora A were prepared with the software LigPrep (LigPrep, version 2.5, 

Schrödinger, LLC, New York, NY, 2011), while the protonation states were predicted via the 

Epik (Epik, version 2.2, Schrödinger, LLC, New York, NY, 2011) program.43 The analysis was 

performed at biological conditions, i.e., using water as a solvent and pH 7.0. All obtained 

tautomers were further used in docking experiments.  In Table 1 are shown the reference crystal 

structures for each series, the number of compounds used in the series and the resolution of each 

crystallographic structure. 

 

Molecular Docking Simulations.  Docking experiments were performed, for p38 and Aurora A 

inhibitors starting from reference X-ray crystal structures (PDB id codes: 2bak and 2c6e, 
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 8 

respectively), using Glide in standard precision (SP) mode44–46. Glide docking uses a series of 

hierarchical filters to find the best possible ligand binding locations in a previously built receptor 

grid space. The filters include a systematic search approach, which samples the positional, 

conformational, and orientational space of the ligand before evaluating the energy interactions 

between the ligand and the protein. A grid box of 30Å×30Å×30Å was first centered on the 

reference ligand co-crystallized with each targeted protein and default docking parameters were 

used. The docking hierarchy begins with the systematic conformational expansion of the ligand 

followed by placement in the receptor site. Then a minimization of the ligand in the field of the 

receptor is carried out using the OPLS-AA47 force field with a distance-dependent dielectric of 

2.0. Afterwards, the lowest energy poses are subjected to a Monte Carlo (MC) procedure that 

samples the nearby torsional minima. The best pose for a given ligand is determined by the 

Emodel score, while different compounds are ranked using GlideScore, a modified version of the 

ChemScore function described by Eldridge et al.48 that include terms for buried polar groups and 

steric clashes. The docking poses for each ligand were analyzed by examining their relative total 

energy score. The more energetically favorable conformation was selected as the best pose for 

further computational experiments. In Figure 1 is shown an overlay of the molecular docking 

conformations obtained for all inhibitors within the binding site of p38 and AuroraA kinases.  

Those conformations were used as starting point for subsequent long molecular dynamics 

simulations. 

 

Molecular Dynamic Simulations. Molecular dynamics of all compounds within CDK2, p38 and 

Aurora A binding sites were studied using the OPLS – AA force field in explicit solvent, 

employing the SPC water model (OPLS-AA/SPC) 49, with the Desmond 50, 51 package for MD 
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 9 

simulations. The initial coordinates for MD calculations were taken from reported X-ray 

complexes (CDK2) or from the performed docking experiments (p38 and Aurora A). For 

solvation of the systems an orthorhombic water box was used, which dimensions ensures a 

buffer distance of approximately 10Å between each box side and the protein atoms. This 

guarantees the whole surfaces of the complexes to be covered when the SPC water molecules 

were added. The protein ligand systems were neutralized by the addition of Chloride counter 

ions. After the solvent environment construction, about 34000 atoms composed each protein 

ligand system. Before equilibration and long production MD simulations, the systems were 

minimized and pre-equilibrated using the default relaxation routine implemented in Desmond. 

For this, the program ran six steps composed of minimizations and short (12 and 24 ps) 

molecular dynamics simulations to relax the model system before performing the final long 

simulations. After that, a first 2 ns short equilibration MD simulation was performed on each 

complex system that was followed by a 10 ns long production MD simulation. The OPLS-200549 

force field was used, along with the module MacroModel52 to provide and check the necessary 

force field parameters for the ligands. When MacroModel performs an energy calculation, the 

program checks the quality of each parameter in use. Use of low-quality parameters, especially 

torsional ones, may result in inaccurate conformational energy differences and geometries. All, 

bond, angle, torsional and improper angles parameters were listed as high- and medium-quality 

force field parameters for all the studied ligands.  

 

During MD simulations the equations of motion were integrated with a 2 fs time step in the NPT 

ensemble, where temperature (300K) and pressure (1atm) were maintained using Nosé-Hoover 

thermostat and Martyna-Tobias-Klein (MTK) barostat methods, respectively. The SHAKE 
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 10 

algorithm was applied to all hydrogen atoms; the van der Waals cutoff was set to 9.0Å. Long-

range electrostatic forces were taken into account by means of the particle-mesh Ewald (PME) 

approach. van der Waals (vdW) and short range electrostatic interactions were smoothly 

truncated at 9.0Å and the equations of motion were integrated using multistep RESPA integrator 

with 2.0 fs inner time step for bonded or near non-bonded interactions and 6.0 fs for far non-

bonded interactions. Periodic boundary conditions and restraints were applied to backbone (0.5 

kcal/mol) and ions (3 kcal/mol) in all cases to ensure structural stability.  Data were collected 

every 3 ps during the MD runs. Visualization of protein-ligand complexes and MD trajectory 

analysis were carried out with Maestro. Root mean square deviation (RMSD) analysis for first 2 

ns of MD was performed for all protein-ligand systems studied before starting long MD 

simulations. These analyses showed good structural stability for all equilibration MD simulations 

recorded.  In Figure 2 are shown the plots of RMSD against simulation time for the most potent 

compounds in each series studied (See Figure 1SI in Supplementary Information section for 

RMSD of the remaining ligands). 

 

Binding Site Hydrogen Bond Network Analysis. It is well known that most of protein kinase 

inhibitors establish several hydrogen bonds with residues located at the hinge region, which are 

important for binding stability.36–38 In order to efficiently address the analysis of these 

interactions, a recursive algorithm that progressively evaluates the dynamics of the Hbond 

network, between ligands and protein kinase-binding site, along the MD trajectories was 

developed. The aim was to systematically identify those interactions that may be significant for 

the binding behavior. The algorithm searches for the standard Hbond geometry (see Scheme 1), 

which is defined by distances and certain angles between near hydrogen bond acceptor (HBA) 
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 11 

and hydrogen bond donor (HBD) atoms.53 The algorithm was also coded to allow the study of 

Hbond interactions mediated by one or two water molecules, since the protein kinase binding site 

is accessible to the solvent and large enough to allow the access of water molecules together with 

the compound into the cavity. Search parameters can be tuned to match alternative Hbond 

geometries such as C – H weak hydrogen bonds53, as well as set Hbond equilibrium length and 

threshold time (minimum time span to consider it as a significant interaction; by default is 

500ps).  

 

Please Insert Scheme 1 around here 

 

Conformational Selection Analysis Based on HBond Network. Once the Hbond interactions’ 

relative occurrence had been determined, two conformational selection methods were applied in 

order to select the protein ligand structures (frames) from MD trajectories, which then were 

subject to binding free energy calculations through MM/GBSA method. 

First, a random selection was performed while enforcing a well-spread sampling from a given 

MD protein-ligand conformational population by splitting it into several equally-sized samples 

so then randomly choose one structure from each of them. That could ensure a decent and more 

representative selection of structures while still being completely random. 

 

Second, an interaction-based selection method was implemented, that allowed us to select those 

protein-ligand conformations that presented optimal Hbond interaction geometries according to 

calculated geometrical equilibrium values. To do so, measurements of picked Hbond interactions 

were computed through the entire simulation time, which were defined in an Interaction 
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 12 

Specification Format (ISF) file (See Supplementary Information Section). Based on the collected 

information, every MD trajectory frame was rated by calculating the deviation from the reference 

Hbond geometry by a weighted scoring function defined as: 

𝑆! =    𝑖!× 1 − !!
!!

, 𝑖 = 1
!

!

!

!

 

       (1) 

where 𝑚! represents a single geometrical measurement (i.e. distance, angle and/or dihedral) 

between near HBD and HBA atoms in the frame 𝑓 of the MD trajectory, while 𝑚! represents the 

reference value; both parameters were also included in the ISF file. Additionally, it is possible to 

give a statistical weight to those interactions considered to be crucial in the ligand binding by 

assigning them an importance factor 𝑖!, while ensuring that their sum is normalized to 1. It is 

important to note that, in general, geometrical Hbond reference values are automatically 

estimated by calculating their statistical mode along the MD trajectory, which guarantees 

representative values for the overall binding behavior sampled by MD the simulation; however 

one can set reference values manually to explore particular interaction geometries of interest. 

Finally, all MD frames were ranked according to their score, where those with lowest value were 

selected as the representative structures to be used in MM/GBSA binding free energy 

calculations. 

 

MM/GBSA Free Binding Energy Calculations.  Computational methods that combine molecular 

mechanics energy and implicit solvation models have been widely exploited in free energy 

calculations, therefore their applicability and performance has been addressed in several protein-

ligands systems in recent years54–57. Besides exhibiting a good accuracy and affordable 
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 13 

computational costs, they allow for rigorous free energy decomposition into contributions 

originating from different types of interactions. In this study, protein kinase-ligand free binding 

energies were calculated as the difference between the energy of the bound complex and the 

energy of the unbound target and inhibitor compound, as it is shown in Equation 2: 

𝐸!"#$"#% = 𝐸!"#$%&' −   𝐸!"#$%&' −   𝐸!"#$%& 

                   (2) 

Specifically, after calculating the energy of the protein-ligand complex, the ligand and the 

protein were separated, and their energies were computed using OPLS-AA force field with 

generalized Born implicit solvent model, in order to calculate the averaged binding free energy 

 (ΔG) according to following equation:  

 

∆𝐺!"#$"#%   =   ∆𝐸!! +   ∆𝐺!"/!" +   ∆𝐺!" −   𝑇∆𝑆 

                   (3) 

where ΔEMM includes ΔEinternal (bond, angle, and dihedral energies), ΔEelectrostatic (electrostatic), and 

ΔEvdw (van der Waals) energies; ΔGPB/GB is the electrostatic solvation energy (polar contribution), 

and ΔGSA is the nonelectrostatic solvation component (nonpolar contribution). The polar 

contribution is calculated using either the Generalized Born (GB) or Poisson Boltzmann (PB) 

model, while the nonpolar energy is estimated by solvent accessible surface area (SASA).58 Note 

that the implicit solvent model estimates solvation free energies, and thus, this energy implicitly 

includes entropies associated with solvent. The conformational entropy change -TΔS is usually 

computed by normal-mode analysis on a set of conformational snapshots taken from MD 

simulations.56  
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The MM/GBSA approach was used as implemented in Prime42 module from Schrödinger Suite 

and using default settings. Protein kinase-ligand frames were extracted from long MD 

simulations (10 ns) according to the selection methods described before. Six subsets of frames 

with different populations (10, 20, 50, 100, 150 and 200 frames) were selected in order to 

compare the performance of both selection methods in predicting the averaged relative binding 

free energies of the protein kinase systems selected for this study. During the simulation 

procedure, the ligand strain energy was also considered. No entropy contribution was computed 

for the studied protein-ligand systems to save computational time given the comparative 

purposes of the study. Finally, the computed free binding energies were plotted against 

experimental pKi values, in CDK2 series, and against experimental ΔG values for p38 and 

AuroraA series obtained by the relation: 

∆𝐺 =   −𝑅𝑇 ln 𝐼𝐶!" 

where IC50 is the experimental biological activity. The degree of statistical correlation between 

the two (computed vs. experimental) ΔG values, using the correlation coefficient R2, was 

reported as well. 
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RESULTS AND DISCUSSION 

 

In the present work we introduced a relative binding free energy calculation protocol, based on 

MD and MM/GBSA methods, that incorporates a novel interaction-based structure selection 

approach, which was applied to three series of diverse and chemically related protein kinase 

inhibitors. We have compared two selection methods to assess the performance of this new 

technique: the typical random selection method (using several frames randomly or time-

dependently selected) and our interaction-based method, which was developed taking into 

account the typical geometrical parameters for hydrogen bonding interaction. To do so, the 

protein kinase-ligand complexes were obtained from X-ray structural data collected previously 

from PDB39, 59 (in case of CDK2) or from molecular docking experiments (p38 and Aurora A) 

performed on available protein-derivative X-ray crystal structures deposited in PDB.40 The 

corresponding PDB codes for X-ray crystal structures used in this study are reported in Table 1.  

 

In all cases, the nature of the chemical structure of the considered inhibitors differs; for instance, 

CDK2 inhibitors are a non-congeneric series that could be problematic to study since it has been 

reported that this kind of molecular sets make the MM/GBSA scoring more challenging.55 On the 

other hand, the p38 and Aurora A inhibitors are congeneric series, whose relative binding affinity 

is supposed to be more straightforwardly estimated by empirical binding free energy methods 

such as the employed here. According to previous studies, the MM/GBSA method in conjunction 

with molecular docking, provides a protocol suitable to rank relative binding affinities within 

congeneric series. For instance Lyne et al.40 used an MM/GB-SA scoring protocol to correctly 

rank a number of congeneric kinase inhibitors, which were previously bounded to protein targets 
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through molecular docking.  They found that such computational protocol of using molecular 

docking (with Glide 43) for pose generation and MM/GB-SA method for rescoring appeared 

promising for the application to structured-based lead optimization of chemical series for 

inhibition of protein kinases. More recently, Kalyanaraman et al.60 reported the “Prime-ligand” 

method for ranking ligands in a congeneric series. The method employed a single scoring 

function, the OPLS-AA/GBSA molecular mechanics/implicit solvent model, for all stages of 

sampling and scoring. They evaluated the method using 12 test sets of congeneric series 

(including those inhibitors of kinases reported by Lyne et al.40, except Jnk-3 kinase because there 

was no crystal structure available in the PDB database at the time35) for which experimental 

binding data were available in the literature, as well as the structure of one member of the series 

bound to the protein.  Despite the fact that their results for congeneric series were promising, and 

better than previous ones for protein kinases (p38 and Aurora A), they stated that allowing the 

receptor flexibility in the reported test cases reduced the correlations between the computed and 

measured binding affinities, being a quite dramatically disagreement in some cases. Thus, at least 

in their experience, the ability to rank/order compounds within congeneric series required use of 

a rigid receptor, presumably due (in part) to a greater cancellation of error. 

Moreover, it is also known that results from free binding energy calculation using methods such 

MM-GBSA can be heavily influenced by the applied simulation protocols, specifically the 

sampling strategy of generating and selecting the snapshots55. 

 

These previous computational data on binding free energy estimation on protein-kinase systems, 

pave the way to perform further computational simulations in order to check three relevant points 

related with the application of the MM/GBSA approach in those systems: (1) the capability of 
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the approach to rank congeneric as well as non-congeneric series of protein kinase inhibitors, (2) 

the impact of including the protein flexibility through MD simulations, and (3) the selection 

analysis method employed in choosing the MD snapshots or frames. In the present research 

work, the abovementioned points were tackled using some protein kinases-ligand complexes as 

test systems.  

 

Molecular Docking Simulations  

 

In Figure 1 are shown the alignments of p38 (13 compounds) and AuroraA (13 compounds) 

inhibitor structures, obtained from molecular docking experiments, within their respective 

binding sites. As it can be seen, most of the p38 kinase inhibitors could establish Hbond 

interactions with the backbone amide NH of residue Met109, which belongs to the protein hinge 

region. There were further Hbonds between the amide NH of some compounds and the 

carboxylate side chain of residue Glu71, and between the amide carbonyl and the backbone 

amide NH of residue Asp168. These Hbond interactions are in fully agreement with previous X-

ray crystal results reported before, allowing us to state that docking protocol used was effective 

for reproducing all key features already seen by other authors in the p38 kinase system.33 

 

Please insert Figure 1 around here 

 

On the other hand, all the inhibitors for the Aurora A data set were successfully docked within 

protein binding site, contrary to the previous docking results obtained by Lyne et al.40 They 

reported that not all compounds were docked satisfactorily (2i – m) by the Glide module. The 
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weakest inhibitor did not yield a docking solution, and four of the inhibitors were docked with 

poor amide conformations in the DFG-out region of the binding site. Our docking results showed 

that all compounds adopted an extended conformation within Aurora A binding site, 

demonstrating the extent of the available binding pocket. Most of them established a hydrogen 

bond between the quinazoline N3 atom and backbone amide NH of residue Ala212. In some of 

the compounds, the amide carboxyl (located between the pyrimidine and benzoyl rings) plus one 

of the pyrimidine nitrogen atoms showed a bifurcated hydrogen bond to the conserved residue 

Lys161, while there were water-mediated contacts between other of the pyrimidine nitrogen 

atoms and the backbone amide NH of residue Asp273. The benzoyl moieties fitted into a 

hydrophobic pocket, which is occupied by Phe274 in the conserved DFG motif. Other Hbond 

interactions were observed at the entrance of binding pocket between Pr(morpholine) substituent 

and residues Arg136 and Arg219. All these protein-ligand interactions are in agreement with 

previous X-ray crystal studies on Aurora A kinase system reported by Heron et al.34 The weakest 

inhibitor (2m) adopted a different conformation within Aurora A binding site due to its long 

structure that occupies all pocked and extends beyond to the solvent pocket. 

 

It is worth to mention that CDK2 inhibitor series were obtained already in complex with the 

protein target from X-ray crystallographic data; and all inhibitors established the well-known 

Hbond interactions with the hinge region, and with other binding site conserved residues (Asp86, 

Lys33, Lys89, Gln131, Asp145), in a major or minor extent. All these observed Hbond 

interactions are in good agreement with previous structural studies based on huge X-ray 

crystallographic information available for CDK2 systems.36–38  
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Molecular Dynamic Simulations and Binding Site Hydrogen Bond Network Analysis. 

 

All protein kinase – ligand complexes were submitted to equilibration and production MD 

simulations to relax the structural models as well as to include target flexibility and induce fit 

effects, respectively. This last aspect is extremely relevant in protein kinases which are 

particularly flexible proteins.32 In Figure 2, the RMSD of the heavy atoms is plotted against the 

equilibration MD simulation time (2 ns) for the different protein kinase-ligand complexes (only 

the three most potent compounds in each series are presented), which reached a fairly good 

stability for CDK2 (top) after 0.5 ns at 1–1.2 Å, Aurora A (middle) after 0.5 ns at 1–1.4 Å and 

p38 (bottom) after 0.6 ns at 1–1.1 Å.  Moreover, the evolution over time of the geometry of the 

main Hbond network formed by each inhibitor with key residues within the protein kinase 

binding site was also monitored (see Table 1SI in Supplementary Information section).  In 

general it was observed that the H-bond network distances were maintained for all inhibitors 

during the MD simulations with an average value around of 2.8 Å.  

 

Please insert Figure 2 around here 

 

The abovementioned Hbond network was first carefully characterized through scripting tools 

developed at our laboratory.  These programming tools allowed us to obtain the stability (this 

means a percentage of occurrence in which the geometry of the Hbond interactions was optimal) 

of every Hbond interaction established between the inhibitors and the binding site residues; as 

can be seen in Figure 3, where CDK2 inhibitor NU6102 is shown as a representative example. 

The relevance of these tools in the MD trajectory analysis relies in the straightforward 
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identification, processing and classification of key non-covalent interactions established between 

protein and ligand (for instance the Hbonds analysis performed in this work, o even other 

interactions like cation- π), which come from huge structural data derived from long MD 

simulations. All data concerning the percentage of stability between inhibitors and key residues 

at protein kinases binding site are reported in Table 2SI in Supplementary Information section. 

 

Please insert Figure 3 around here 

 

Once the stability of every Hbond was determined, the next 10 ns long MD simulations were 

performed in order to obtain the conformational structures needed for MM-GBSA calculations.  

These production MD simulations were strictly a continuation of the equilibration ones (same 

simulation water box, restraints, T, V, etc.), and it is expected that all key molecular interaction 

features observed in the short 2ns MD simulations remain stable. According with results from 

interaction network analysis (see Table 2SI), the HBond interactions between all inhibitors and 

residues at hinge region (Glu81 and Leu83 in CDK2, Ala212 in AuroraA and Met109 in p38) are 

the most stable and lasting ones along the production MD simulations (with occurrence 

percentages that range between 62 – 100%), therefore they were selected in order to apply the 

interaction based selection method.  Other interactions were established and characterized, but 

they were ignored in this case due to their lower stability or occurrence in all ligands.  For 

instance, there exist several HBonds mediated by water molecules in most of the protein-ligand 

systems, but these water molecules are located in the solvent channel and not within inner 

binding pocket. Therefore, there is a continuous flow and dynamic change of water molecules in 

several sites of the molecular complexes, which in principle render them problematic to be 
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included in the selection analysis. Our group has already characterized this complex behavior of 

water molecules in other protein kinase ligand systems.61 

 

Conformation Selection Analysis and Prime-MM-GBSA Calculations.   

 

In Table 2 are shown the correlation coefficients (R2) obtained for several subsets of frames 

taken from production MD simulations of protein – ligand complexes.  Two structure selection 

methods were used to search for statistical correlations between computational and experimental 

binding free energies, namely random selection and H-bond network selection. As can be 

observed in all protein kinase – ligand complexes, the random selection method showed 

correlation coefficients varying from medium to very low quality.  For instance, for p38 – ligand 

and Aurora A – ligand complexes, the R2 values were around 0.26 and 0.46 for all the studied 

subsets of frames, which roughly means that only 26% and 46% of the experimental affinity can 

be explained with the computed ∆G values, respectively. For CDK2 – ligand complexes the R2 

values showed a mean of 0.74, which suggest a better estimation of the computed ∆G values and 

therefore their comparison with experimental ones was improved, when compared with the 

previous two cases. That data may suggest two important observations: first, through the random 

selection method could not be possible to get meaningful protein – ligand structures that 

contribute to a good estimation of computed binding free energy. This issue is clearly 

demonstrated by the fact that the inclusion of tenths or even hundreds of MD protein – ligand 

structures into the subset used for computing ∆G values does not have any significant impact in 

the statistical correlation obtained.  And second, the starting protein – ligand structure to be used 

in the MD simulations and subsequent estimation of ∆G values, seems to play an important role 
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in the good estimation of ∆G values. It is worth to point out that CDK2 complexes came from X-

ray data meanwhile the p38 and Aurora A complexes were obtained through molecular docking 

experiments. 

 

Regarding the statistical correlations obtained from H-bond network clustering selection, the 

results are encouraging due to R2, a direct comparison between experimental and computed ∆G 

values, showed values varying from medium to good quality. The p38 and Aurora A complexes 

showed an improvement in their statistical R2 to values around 0.82 and 0.73 for the subset of 10 

frames, respectively.  On the other hand, the improvement in statistical R2 for CDK2 complexes 

was less pronounced taking a maximum value of 0.81 for subset of 10 frames.  The addition of 

further structures into the computation of the averaged ΔG does not improve significantly the 

statistical R2 values except for the Aurora A complexes, which presented a R2 value of 0.83 for 

20 frames.  The subsequent inclusion of more frames (subsets of 50 or more frames) for getting 

the computational averaged ∆G values was in detriment of obtaining better statistical correlations 

against experimental data in all protein kinase – ligand complexes.  All these data may suggest 

that the H-bond-based selection method seems to be more useful in the collection and ordering of 

MD structures for calculation of ∆G values using the MM/GBSA method, as could be seen for 

the three protein kinase – ligand systems reported in this study. 

 

In Figure 4 are shown the best statistical correlation plots obtained from the H-bond network 

selection method.  In all the graphs, the computed binding affinity values for all compounds are 

presented as ∆∆Gbind values, which means that they are relative with respect to the more 

favorable ligand ∆G value.  For CDK2 complexes, which ligands are chemically diverse, it can 
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be seen that the more and less active compounds were correctly ranked by MM/GBSA method.  

The difference in energy between them was about 32.5 kcal/mol. The rest of compounds could 

fit pretty well the correlation trend line except for 2FVD ligand, which if it is removed from the 

dataset the correlation is slightly improved to a R2 value of 0.86.  The present results are in 

decent agreement with those presented by Hobza et al.39 that studied the same compound data set 

using quantum semi empirical methods. Those authors obtained a correlation coefficient of 0.87, 

but they used a PM6 - DH2 method that accurately covered the dispersion interaction and H-

bonding in the abovementioned system.  In that regard, our results are encouraging because they 

only rely upon a scoring function based on molecular mechanics, the solvation terms calculated 

with a continuum approximation, as they have been implemented in MM/GBSA method, and the 

H-bond network selection method proposed in this work. It is expected that inclusion of such 

energy terms and an enhanced representation of H-bonding network pattern in protein kinase – 

ligand systems, allowed us to get better correlations. In order to evaluate the impact of including 

the target flexibility through the use of MD simulations on protein kinase – ligand complexes, 

the correlation coefficient was also calculated upon the X-ray crystallographic structures of 

CDK2 complexes. As can be seen in Figure 4 (top graph, closed red circles and red trend line), 

the R2 value obtained was about 0.64, which roughly means that correlation coefficient for this 

comparison could be actually improved by including the flexibility of the target and rationalizing 

the selection of frames for ∆G estimation. 

 

According to previous results, the p38 data set33 studied here provides a number of challenges. 

The inhibitors bind to a p38 protein in a DFG-out conformation that makes possible that the 

ligands could bind to an additional hydrophobic pocket that is not present in the DFG-in protein 
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configuration. The substitution pattern around the middle phenyl ring of the compounds 

corresponds to subtle changes in structure that have a dramatic effect on the measured biological 

activities and the range of IC50 is quite small (10 nM to 2.1 µM), which is typical of the range 

being considered during lead optimization stages of a project.40 Our computational protocol 

could rank correctly the more and less active compounds in this congeneric series; and moreover, 

the obtained statistical correlation (R2 = 0.82) was better than the reported ones in similar 

previous studies (See Figure 4, middle).  For instance, Lyne et al.40 and Rapp et al.60 found that 

statistical correlations between computed and experimental binding free energies, using their 

own developed computational protocols, were 0.71 and 0.70, respectively. Interestingly, the 

latter authors stated that allowing receptor flexibility in the test cases reported reduced the 

correlations between computed and measured binding affinities, in some cases quite 

dramatically. This is opposing to our findings that could suggest that including receptor 

flexibility is important in the correct estimation of relative ∆G values. The last tested case was 

the Aurora A complexes (Figure 4, bottom), which was also studied previously by same 

abovementioned authors. In previous reports, the statistical correlations leaved some compounds 

out due to poor docked conformations (in Lyne’s work they were able to dock only 8 out of 13) 

or skipped the less active compound (Rapp’s work).  For Aurora A kinase, our result of R2 equals 

to 0.83 is better than those reported before by Lyne and Rapp (R2 = 0.56 and R2 = 0.63, 

respectively).40, 60  Despite our computational protocol could not rank the more active compound 

accurately in this congeneric series, it could do it for the less active one; moreover, the difference 

in binding energy between the more active compound and the best one according to MM/GBSA 

scoring was only about 1.5 kcal/mol. 
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All abovementioned results may suggest that our computational protocol, which included a novel 

H-bond network selection method applied to the estimation of binding free energies through the 

MM/GBSA method, seems to be able to improve the results from the currently used scoring 

functions and moreover, it was able to explain about 82% of the data variability in the binding 

affinities for a series of congeneric as well as non-congeneric compounds in the protein kinases 

systems selected as test cases. Ongoing research work is being performed in our group in order 

to test this protocol in other protein – ligand systems and to extend the H-bond network selection 

in the prediction of binding affinities using hybrid calculation methods, namely QM/MM or 

ONIOM approaches. 
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CONCLUSIONS 

 

In the present work a selection method, namely H-bond network-based selection, was presented. 

The method was used in the recruitment and ordering of protein kinase – ligand structures 

derived from long molecular dynamic trajectories that were further used to estimate binding free 

energies by means of the MM/GBSA approach. The overall protocol was composed by two 

scripting subroutines that performed separate tasks: first, these accomplished a systematic 

evaluation of the H-bond network between inhibitor and residues surrounding it, obtaining as a 

result the occurrence (as a percentage) and stability of H-bond network. Second, and taking only 

into account the most stable H-bonds, the routine evaluated the geometrical deviation of selected 

contacts (distance, angles or dihedrals) from ideal values (calculated by statistical mode along 

MD or given as user input) in all MD trajectory structures and further ranked them by means of a 

proposed scoring function. Finally, the computed ∆G average values were obtained from several 

subsets of ranked frames. ∆G average values were also obtained for subsets of same size, but 

selected by random selection. 

 

The abovementioned computational selection protocol, in conjunction with molecular docking, 

MD simulations and the MM/GBSA method, was used in the ranking of several inhibitors with 

measured biological activity (Ki and IC50 values) against CDK2, p38 and Aurora A kinases, that 

were used as test cases.  The correlation coefficient values (R2) obtained for comparison between 

experimental and computed binding free energies, and their evaluation against R2 values obtained 

from random selection method, suggested that inclusion of H-bonding geometrical parameters in 

the selection of frames for MM/GBSA calculations seem to be useful in obtaining better 
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statistical correlations than those previously reported. The method was applied to congeneric 

(p38 and Aurora A kinases) as well as to non-congeneric series (CDK2) of compounds, with 

starting protein – ligand structures that came from both X-ray experiment and molecular 

docking, for CDK2 and p38 and Aurora A kinases, respectively.  The computational protocol 

successfully ranked both kind of compounds and moreover, it was evidenced the importance of 

including the target flexibility by means of MD simulation on protein – ligand complexes. The 

starting protein – ligand structure seemed to play a minimal role in the H-bond selection method, 

but it acquired some importance when the selection of frames was made randomly, mostly in 

structures derived from molecular docking experiments. 

The proposed computational protocol is under testing in other protein – ligand systems in order 

to check its robustness and to introduce some improvements in the H-bond network analysis and 

selection scripts with the aim to get a straightforward and more accurate evaluation of H-bonds. 

Some other non-covalent protein – ligand interactions (i.e. cation – π) would be also included to 

improve the selection of MD frames for MM/GBSA binding free energy calculations. 
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FIGURES  

Figure 1. Conformational overlay of compounds within binding site of p38 (top) and Aurora A (bottom) 

kinases.  Protein-ligand complexes were obtained from molecular docking experiments using as starting 

structures the p38 (2bak) and AuroraA (2c6e) crystallographic data deposited in PDB. 
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Figure 2.  Plots of RMSD (Angstroms) values against simulation time (picoseconds). Data 
correspond to equilibration molecular dynamics of most potent compounds on the series studied. 
CDK2, Aurora A and p38 kinases are shown in graphs A, B and C, respectively. 
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Figure 3.  On the left, an atomic representation of all Hbond interactions (green arrows) 

established between CDK2 inhibitor NU6102 and key residues (and water) within protein 

binding site. On the right, a 2D schematic representation of the most stable (in percentage) 

Hbond interactions, between NU6102 and CDK2, identified along MD simulation time with the 

aid of developed scripting tools. 
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Figure 4.  Best correlation plots obtained for comparison between calculated relative binding 

free energy and experimental biological activity expressed as LnKi, in case of CDK2 inhibitors 

(top), or ΔGexp for p38 and Aurora A inhibitors (middle and bottom, respectively), when 

structural-based clustering analysis was applied to all systems. For CDK2 plot is also included 

the correlation obtained when MM/GBSA was applied to protein ligand X-ray structures (red 

circles). 
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Scheme 1. Typical H-bond geometrical parameters included for defining the interactions 

between inhibitors and the studied protein kinases. The interactions between heterocyclic ring in 

a modeled inhibitor against residue Leu83 are taken as example.  

 

 

Table 1. Test set information 

Targeted proteins 

Name PDB id Res.a No. 
Ligands 

p38 kinase 2bak 2.20 13 

Aurora A kinase 2c6e 2.10 13 

CDK2 1aq1, 1e1x, 1pkd*, 1pxj, 1pxl, 
1pxm, 1pxn, 1pxp, 2fvd, 1h1p*, 
1h1s*, 1ogu*, 2a4l, 2exm, 2x1n 

2.00, 1.85, 2.30, 2.30, 2.50, 
2.53, 2.50, 2.30, 1.85, 2.10, 
2.00, 2.60, 2.40, 1.80, 2.75 

15 

a Res. (in Angstroms) is the experimental mean resolution of the respective X-ray structure. 

* These structures contain the fully active form of CDK2. Only CDK2 with inhibitor was 
considered for calculations. 

 

 

Page 33 of 40 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 34 

Table 2.  Statistical correlation coefficients (R2) obtained for comparison between experimental 

and computational binding free energies in protein kinase – ligand complexes. Two frame 

selection methods, and several subset frames, were used in the statistical comparison. 

Random selection 
 

H-bond clustering selection 

# of frames 10 20 50 100 150 200 10 20 50 100 150 200 

Correlation coefficients (R2) 

Aurora A 0.521 0.456 0.440 0.444 0.434 0.466 0.725 0.832 0.693 0.628 0.614 0.588 

CDK2 0.741 0.758 0.742 0.743 0.726 0.738 0.810 0.807 0.796 0.788 0.784 0.782 

p38 0.285 0.210 0.271 0.267 0.263 0.270 0.825 0.800 0.703 0.729 0.720 0.705 
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