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A quantum algorithm for obtaining the energy spectrum of a physical system without
guessing its eigenstates

Hefeng Wang∗

Department of Applied Physics, Xian Jiaotong University, Xi’an 710049, China

We present a quantum algorithm that provides a general approach for obtaining the energy
spectrum of a physical system without making a guess on its eigenstates. In this algorithm, a probe
qubit is coupled to a quantum register R which consists of one ancilla qubit and a n-qubit register
that represents the system. R is prepared in a general reference state, and a general excitation
operator acts on R is constructed. The probe exhibits a dynamical response only when it is resonant
with a transition from the reference state to an excited state of R which contains the eigenstates
of the system. By varying the probe’s frequency, the energy spectrum and the eigenstates of the
system can be obtained.

PACS numbers: 03.67.Ac, 03.67.Lx

I. INTRODUCTION

A fundamental problem in the field of many-body sys-
tems is to find efficient ways of simulating Schrödinger
equations. The main difficulty is that the dimension of
the Hilbert space describing a system of n-particles scales
exponentially with n. This makes direct numerical simu-
lation of a large system intractable. On a quantum com-
puter, however, the number of qubits required to sim-
ulate the system increases linearly with the size of the
system. And such problems can be solved efficiently on
a quantum computer.

In quantum chemistry and computational physics, one
often has to diagonalize a large Hamiltonian matrix to
obtain the desired eigenvectors and eigenvalues of a sys-
tem. Classically, the Davidson’s algorithm [1] is a large-
scale, iterative method which is particularly effective for
extracting selected eigenvectors of a Hamiltonian matrix.
In this algorithm, one has to use a trial wave function.
For large systems, however, this method is expensive and
may suffer from slow convergence. Usually this is due to
the fact that the trial wave function is not a good approx-
imation to the eigenvector of the Hamiltonian matrix.
And it is difficult to find a good trial wave function for
a large complicated system, especially when describing
excited states.

In quantum computation, the phase estimation algo-
rithm (PEA) can be used for obtaining the eigenvalues
of a system [2]. In this algorithm, one guesses an ap-
proximated eigenstate of the system, and prepares this
guess state as input for the algorithm on a quantum com-
puter. The success probability of the PEA depends on
the overlap of the guess state with the real eigenstate of
the system. However, in some cases such as the bond-
dissociation process in chemistry or that related to ex-
cited states of a system, it can become impossible to have
a guess state that has any substantial overlap with the
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desired eigenstates [3]. For many complicated systems, it
is very difficult to make even qualitatively correct guess
on their eigenstates, or to prepare such states on a quan-
tum computer efficiently.

In Ref. [4], we proposed another quantum algorithm for
obtaining the energy spectrum of a physical system. In
this algorithm, one also has to make guess on the energy
eigenstates of the system. The guess state does not need
to have large overlap with any particular eigenstate, but
it must have large overlap with one of the eigenstates of
the system in order to achieve high efficiency.

II. THE ALGORITHM

In this paper, we present a quantum algorithm for ob-
taining the energy spectrum of a physical system without
having any knowledge about its eigenstates. In this algo-
rithm, one does not need to make a guess on any energy
eigenstates of the system. Two adjustable elements (evo-
lution time and system-probe coupling strength) can be
varied to improve the efficiency and accuracy of the al-
gorithm. And by introducing a general reference state
and a general excitation operator that can be applied for
any arbitrary physical system, this algorithm provides a
general approach for obtaining the energy spectrum and
eigenstates of a system. The details of the algorithm are
shown below.

We let a probe qubit couple to a (n+1)-qubit quantum
register R, which contains one ancilla qubit and a n-
qubit quantum register that represents a physical system
of dimension N = 2n. The Hamiltonian of the whole
system is constructed in the form

H =
1

2
ωσz ⊗ I

⊗(n+1)
2 + I2 ⊗ H̃ + cσx ⊗A, (1)

where I2 is the two-dimensional identity operator. The
first term in the above equation is the Hamiltonian of the
probe qubit, the second term is the Hamiltonian of the
register R, and the third term describes the interaction
between the probe qubit and R. Here, ω is the frequency
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2

of the probe qubit (~ = 1), and c is the coupling strength
between the probe qubit and R, whereas σx and σz are
the Pauli matrices. The Hamiltonian of the register R is
in the form

H̃ = α|0⟩⟨0| ⊗ IN + |1⟩⟨1| ⊗HS (2)

where IN is the N -dimensional identity operator; α is a
parameter that is set as a reference point for the eigenen-
ergy of the system; HS is the Hamiltonian of the system
with dimension of N . The operator A is defined as:

A = σx ⊗
[

1√
2
(I2 + σx)

]⊗n

. (3)

It acts on the state space of R and plays the role of an
excitation operator. The operator A provides all possible
excitations between the basis states in the subspace of
α|0⟩⟨0|⊗IN and the basis states in the subspace of |1⟩⟨1|⊗
HS .
To run the algorithm, first we prepare the probe qubit

in its excited state |1⟩ and the register R in a reference
state

|Ψ0⟩ =
1√
N

N∑
j=1

|φj⟩ = |0⟩ ⊗

 1√
N

N∑
j=1

|j − 1⟩

 , (4)

where |j − 1⟩ are the computational basis. This is
achieved by initializing R in state |0⟩⊗(n+1) and applying
an operator I2 ⊗H⊗n

d on R, where Hd is the Hadamard

gate. The states |φj⟩ are eigenstates of H̃ with eigenval-
ues of α and degeneracy of N . Therefore, the reference
state |Ψ0⟩ has an eigenvalue E0 = α.
We then make a guess on the range of the transition fre-

quencies, [ωmin, ωmax], between the reference state |Ψ0⟩
and the excited states |Ψj⟩ = |1⟩|λj⟩, of R, where |λj⟩
(j = 1, 2, . . . , N) are the j-th energy eigenstates of the
system with eigenvalues Ej . As in Ref. [4], this frequency
range is discretized into m intervals, where each interval
has a width of ∆ω = (ωmax − ωmin) /m. The center fre-
quencies are ωk = ωmin + (k + 1/2)∆ω, k = 0 . . . ,m− 1,
and these frequency points form a frequency set.
We set the frequency of the probe qubit to be ωk, and

let the entire system evolve with Hamiltonian H for time
τ . Then read out the state of the probe qubit by per-
forming a measurement on the probe qubit in basis of |0⟩
and |1⟩, which represent the ground and excited states of
the probe, respectively. We repeat the whole procedure
many times to obtain the decay probability of the probe
qubit. Then set the probe qubit in another frequency
and repeat the above procedure until run over all the fre-
quency points in the frequency set. Once we observe a
decay of the probe qubit, it indicates that an excitation
between the reference state and an excited state of the
register R occurs and the last n qubits of R collapse to
an eigenstate of the system.
The procedure of the algorithm is summarized as fol-

lows: (i) prepare a probe qubit in its excited state |1⟩

 !"U

1

0

0 n

dH
 

FIG. 1: Quantum circuit for obtaining the energy spectrum of
a physical system. The first line represents a probe qubit. Hd

represents the Hadamard gate, and U(τ) is a time evolution
operator driven by a Hamiltonian given in Eq. (1). The last n
qubits represent the system whose spectrum is to be obtained.

and a (n+1)-qubit quantum register R in state |0⟩⊗(n+1);
(ii) apply operator I2⊗H⊗n

d on the register R, then R is
prepared in the reference state |Ψ0⟩; (iii) implement the
time evolution operator U(τ) = exp (−iHτ); (iv) read
out the state of the probe qubit in basis of |0⟩ and |1⟩;
(v) perform steps (i) – (iv) a number of times to obtain
the decay probability of the probe qubit; (vi) repeat steps
(i)–(v) for different frequencies of the probe qubit. The
quantum circuit for steps (i) – (iv) is shown in Fig. 1.

The time evolution operator U(τ) = exp (−iHτ) can
be implemented efficiently on a quantum computer as
shown in Ref. [6].

III. EFFICIENCY OF THE ALGORITHM

As discussed in Ref. [4], the efficiency of the algorithm
is defined as the number of times that the circuit in Fig. 1
must be run to obtain the decay probability of the probe
qubit, Pdecay. And it must be at least proportional to
1/Pdecay. In our algorithm, consider the excitation from
the reference state |Ψ0⟩ to the j-th excited state of R,
|Ψj⟩, with the probe qubit frequency being set to ωk, the
decay probability of the probe qubit is

Pdecay=sin
2

(
Ω0jτ

2

)
Q2

0j

Q2
0j+(Ej−E0−ωk)

2 , j=1, 2, . . . , N

(5)
where Q0j = 2c|⟨Ψj |A|Ψ0⟩|, and Ω0j =√

Q2
0j + (Ej − E0 − ωk)

2
. Eq. (5) describes the Rabi

oscillation process in which the probe qubit exchanges
an excitation with the register R. The probe decays
from its excited state to the ground state, while R is
transferred from the reference state |Ψ0⟩ to the excited
state |Ψj⟩ = |1⟩|λj⟩, and the system collapses to its
eigenstate |λj⟩.

The excited states |Ψj⟩ of the register R can be
spanned in computational basis as

|Ψj⟩ =
N∑

k=1

djk|µk⟩ =
N∑

k=1

djk|1⟩|k − 1⟩. (6)
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Then Q0j can be written as

Q0j = 2c |⟨Ψj |A|Ψ0⟩|

= 2c

∣∣∣∣∣
N∑

k=1

N∑
l=1

1√
N

djk⟨1|⟨k − 1|A|φl⟩

∣∣∣∣∣
= 2c

∣∣∣∣∣
N∑

k=1

djk

∣∣∣∣∣ . (7)

From Eq. (7), we can see that the decay probability
and thus the efficiency of the algorithm, depends on the
coupling strength c, the evolution time τ and the term∣∣∣∑N

k=1 djk

∣∣∣, which is the summation of the vector ele-

ments of the j-th eigenstate of the system. As we have
discussed in Ref. [4], as long as the number of “energy
levels of interest” is polynomially large, the complexity
of the algorithm grows polynomially with the size of the
system.
It should be pointed out that the coupling strength c

is small (c ≪ ω) and the effect of the perturbation of
the probe qubit to the register R is sufficiently weak.
In this case, its effect on R can be calculated to a first
approximation, by ignoring all the other energy levels of
the register R.
The coupling between the reference state and all the

other energy levels except the one that resonant with the
probe, contributes to the decay probability of the probe
qubit, therefore introduces an error, P err

decay, in Pdecay.
For a system with discrete energy levels, when there is no
energy level that has exponentially large degeneracy, the
error P err

decay can be constrained to be very small because
c can be set polynomially small. In our algorithm we
have cτ ∼ 1. Therefore, in this case, the algorithm can
be run in finite time τ . For a system with exponentially
large number of degenerate states, we may not find a
coupling coefficient c that is polynomially small such that
the evolution time is finite [6].
We consider the case where the transition between

states |Ψ0⟩ and |Ψ1⟩ resonates with the probe qubit with
frequency of ω, such that E1 −E0 = ω. The error P err

decay
can be calculated as follows

P err
decay =

N∑
j=2

sin2
(
Ω0jτ

2

)
Q2

0j

Q2
0j + (Ej − E0 − ω)

2

<

N∑
j=2

Q2
0j

(Ej − E1) 2

= 4c2
N∑
j=2

(∑N
k=1 djk

)2

(Ej − E1) 2
. (8)

For a finite system, if the ground state is not degenerate

and the term
∑N

j=2
(
∑N

k=1 djk)
2

(Ej−E1)2
is bounded by a finite

number M . The term 4c2M can be small by setting c
small. In this case, the algorithm can be completed in
finite time. That is, for a finite system, a sufficiently
small c and a finite evolution time τ exist.
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FIG. 2: (Color online) Transition frequency spectrum be-
tween the reference state, |Ψ0⟩, and the 16 eigenstates of the
water molecule. The blue solid curve represents the decay
probability of the probe qubit at different frequencies with
the coupling coefficient c = 0.002 and the evolution time
τ = 1200. The frequency for the probe qubit is set in the
range ω ∈ [15.8, 19.2], and is divided into 170 equal intervals.
The red dotted vertical lines represent the known transition
frequencies between the reference state and all the 16 eigen-
states of the water molecule.

IV. EXAMPLE: OBTAINING THE ENERGY
SPECTRUM OF THE WATER MOLECULE

In the following, using the water molecule as an exam-
ple, we simulate the algorithm for obtaining the energy
spectrum of a system that we have no information about
its eigenstates.

The Hamiltonian of the water molecule is the same as
shown in Ref [4]. Considering the C2V and 1A1 symme-
tries, the Hartree-Fock wave function for the ground state
of the water molecule is (1a1)

2(2a1)
2(1b2)

2(3a1)
2(1b1)

2.
Using the STO-3G basis set [7] and freezing the first two
a1 orbitals, a model space with 1A1 symmetry that in-
cludes the 3a1, 4a1, 1b1 and 1b2 orbitals is constructed by
considering only single and double excitations to the ex-
ternal space. For simplicity, we remove two of the highest
excitations, then the dimension of the state space of the
water molecule is 16. Therefore four qubits are required
to simulate the water molecule in this calculation.

We set the reference energy E0 = α = −100, and
vary the frequency of the probe qubit in the range
ω ∈ [15.8, 19.2], which is divided into 170 equal inter-
vals. The coupling strength and the evolution time are
set as c = 0.002 and τ = 1200 (here energies and time
are measured in units of Hartree and Hartree−1, respec-
tively). Then we run the algorithm and obtain the spec-
trum of the transition frequencies between the reference
state and the eigenstates of the water molecule. The re-
sults are shown in Fig. 2. From the figure we can see that
most of the spectrum obtained using our algorithm are
in good agreement with the known transition frequency
spectrum (in red) of the water molecule, except that four
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(d)

FIG. 3: (Color online) Same as in Fig. 2, except that in (a)
and (b), c = 0.002 and τ = 1200. In (a) the frequency of
the probe qubit ω is set in the range ω ∈ [15.8, 17.0] and is
divided into 240 equal intervals; in (b) ω ∈ [17.2, 18.0] and is
divided into 160 equal intervals. In (c), c = 0.001, τ = 2400,
ω ∈ [18.0, 19.2] and is divided into 240 equal intervals. In (d),
c = 0.001, τ = 20000, ω ∈ [17.4, 17.6] and is divided into 400
equal intervals.

peaks (the 3rd, 7-th, 9-th, and 13-th) are missing.
Some missing peaks can be found by only increasing

the density of the frequency points in certain frequency
range. We vary the frequency of the probe qubit in the
range ω ∈ [15.8, 17.0] and divide this frequency range
into 240 equal intervals, run the algorithm. The results
are shown in Fig. 3(a). We can see that the 3rd peak at
ω = 16.9705 is visible now. We then vary the frequency
of the probe in the range ω ∈ [17.2, 18.0], which is di-
vided into 160 equal intervals, run the algorithm, from
the results shown in Fig. 3(b), we can see that the 9-th
peak at ω = 17.5552 appears. We vary the frequency
of the probe in the range ω ∈ [18.0, 19.2], which is also
divided into 240 equal intervals, and set c = 0.001 and
τ = 2400. From the results shown in Fig. 3(c), we can
see that the 13-th peak at ω = 18.2082 is clearly visible
now.
In the case where the term |

∑N
k=1 djk| is small (then

the decay probability is small), increasing the evolution
time τ can increase the height of the peak. For the 7-th

eigenstate of the system, we have
∑N

k=1 djk = 0.0305153,
which is a small number. We vary the frequency of the
probe in the range ω ∈ [17.4, 17.6], which is divided into
400 equal intervals, set c = 0.001 and τ = 20000, then
run the algorithm. The results are shown in Fig. 3(d).
We can see that the 7-th peak at ω = 17.4594 appears
now.

V. DISCUSSION

As we have demonstrated in the example for obtaining
the energy spectrum of water molecule, by varying the

coupling strength c, the evolution time τ and increas-
ing the density of the frequency points, one can obtain
the entire energy spectrum and the corresponding eigen-
states of a system. As we have discussed in Ref. [4],
the accuracy of the algorithm is defined by the parame-
ters c and τ . We need to set c to be small so that the
system-probe coupling is weak, and the evolution time
τ to be large. The size of the frequency intervals ∆ω
is set by the choice of c and τ : ∆ω should be smaller
than the width of the peaks in order to avoid missing
some of the peaks. And the width of the j-th peak is
given by max [c⟨Ψj |A|Ψ0⟩, 1/τ ] [8], where c⟨Ψj |A|Ψ0⟩ =
c
∣∣∣∑N

k=1 djk

∣∣∣ as derived in Eq. (7). In the case of near-

degenerate states, to separate them one has to increase
the density of the frequency points and increase evolution
time. To avoid missing the near-degenerate states, the
frequency interval ∆ω should be smaller than the transi-
tion frequency between these states and smaller than the
width of the peaks.

It should be pointed out that our algorithm cannot be
used for obtaining the eigenenergies of eigenstates that
have anti-symmetric symmetry. As shown in Eq. (7), the
term Q0j is zero therefore the decay probability of the
probe is zero. By using some other techniques, such as
group theory, one can determine the anti-symmetric state
and using the PEA to obtain its eigenenergy. Also, in our
algorithm, one cannot tell whether a given energy level
is degenerate or not. It is also difficult to separate the
near-degenerate states. In these cases, by applying our
algorithm, once the probe qubit collapses to its ground
state, the system is in a superposition of the degenerate
eigenstates of the system. One can use this state as the
input for the PEA to resolve the eigenenergy and the
corresponding eigenstates.

We now compare this algorithm with the algorithm we
proposed in Ref. [4]. In the previous algorithm, we pre-
pare the system in an initial state that is close to one of
its eigenstates, and construct an excitation operator that
transfers the initial state to another state of the system.
By coupling with a probe qubit, the system is evolved to
the desired eigenstates of the system. The form of the ex-
citation operator depends on the guess state and the part
of the energy spectrum that is of interest. In Ref. [6], we
proposed a quantum algorithm for solving some discrete
mathematical problems. The algorithm we proposed in
this paper and the one in Ref. [6] have some similarities:
both use the phenomena of Rabi-oscillation. But, they
are very different, although the quantum circuits for both
algorithms are the same. First, the applications of the al-
gorithms are quite different. The algorithm we proposed
in Ref. [6] is used for solving some discrete mathemati-
cal problems and the algorithm in this paper is used for
obtaining the energy spectrum of a physical system. Sec-
ond, the details of running the algorithms are different,
in the algorithm proposed in this paper, the frequency
of the probe qubit is varied to obtain the spectrum of a
physical system.
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In this algorithm, one ancilla qubit is added to the
register of the system to construct a quantum register
R, and R is coupled to a probe qubit. Here R can be
considered as an “artificial system” which plays the same
role as “the system” in the previous work [4].
The Hamiltonian of the register R given in Eq. (2)

can be written as: H̃ = α|0⟩⟨0| ⊗ IN +
∑N

j=1 Ej |1⟩⟨1| ⊗
|λj⟩⟨λj | = α|0⟩⟨0| ⊗ IN +

∑N
j=1 Ej |Ψj⟩⟨Ψj | (Ej are the

eigenenergies of the system). Its ground state is N -fold
degenerate and in the form of |0⟩|j−1⟩ (j = 1, 2, . . . , N),

which are the eigenstates of the first term of H̃. And its
excited states are |Ψj⟩ = |1⟩|λj⟩ (|λj⟩ are the eigenstates
of the physical system), which are the eigenstates of the

second term of H̃. The register R is prepared in the
reference state |Ψ0⟩ which is the eigenstate of the first
term with eigenvalue α. We introduced an excitation op-
erator A as defined in Eq. (3) acting on the register R.
From the expansion of A, one can see that A contains N
terms which provide all possible excitations between the
subspace of |0⟩⟨0| ⊗ IN and the subspace of |1⟩⟨1| ⊗HS .
The probe qubit is coupled to R with interaction opera-
tor cσx ⊗ A, which transfers the probe from the excited
state to its ground state and R from the reference state
to a state in the subspace of |1⟩⟨1| ⊗HS . The overlap of
this state with the excited state |Ψj⟩ is ⟨Ψj |A|Ψ0⟩ and
has been derived in Eq. (7). By employing the operator
A, R can be evolved to any of its excited states starting
from the initial state |Ψ0⟩. The probe qubit exhibits a

dynamical response only when it is resonant with a tran-
sition between the reference state |Ψ0⟩ and a state |Ψj⟩
of R. Therefore, when Ej − α = ω (ω is the frequency
of the probe qubit), the probe qubit decays to its ground

state with decay probability Pdecay = sin2
(

Q0jτ
2

)
while

the register R is transferred to state |Ψj⟩. Therefore for
a finite system, as long as the term Q0j is not exponen-
tially small, the algorithm can be run efficiently. Another
advantage of employing operator A is that in the Trotter
expansion, the unitary operator related to the interaction
operator can be implemented efficiently.

In this algorithm, we introduced a reference state |Ψ0⟩
and an excitation operator A, both do not depend on sys-
tems. They are general and can be applied for any arbi-
trary physical system. This algorithm provides a general
approach for obtaining the energy spectrum and energy
eigenstates of a physical system without having any in-
formation about the eigenstates of the system.
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