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We describe a four-component one-pot mechanochemical 

reaction which combines the formation of covalent bonds, 

coordination bonds and halogen bonds to obtain an extended 

structure based on halogen-bonded metal-organic units. 10 

Mechanochemistry,1 conducted by milling or grinding, is a 
powerful approach for clean and environmentally-friendly 
synthesis, applicable to a wide range of targets, including 
organic molecules,2 functional organic solids,3 
organometallics,4 metal-organic materials,5 as well as 15 

inorganic materials6 and nanoparticles.7 While the majority of 
reports have focused on adapting mechanochemistry to 
conduct a particular type of transformation, recent work has 
highlighted the possibility to combine multiple orthogonal8 
reactions into a one-pot, “all-at-once”9 synthesis of complex 20 

products.10 The development of multi-component synthetic 
procedures is driven by the attractive prospect to extend the 
benefits of mechanochemistry in solvent-free synthesis with 
the ability to synthesise complex products rapidly and from 
the simplest possible precursors. 25 

 We now demonstrate a one-pot mechanochemical reaction 
that combines the synthesis of covalent bonds, coordination 
bonds and halogen bonds11 to form an extended structure 
consisting of metal-organic complexes connected by halogen 
bonds (Figure 1a,b). The assembly of metal-organic units is an 30 

attractive target for crystal engineering by halogen bonding, 
due to their potential to provide new magnetic, optical or 
electrical properties.12 However, while engineering halogen-
bonded structures has focused largely on organic solids and 
liquid crystals,13 the design of halogen-bonded cocrystals 35 

based on metal-organic building blocks remains of continuing 
interest.14-16 

 Herein, we show a synthetic design addressing this 
challenge, and a mechanochemical methodology that allows a 
material based on this design to be synthesised cleanly, in one 40 

step and from the simplest precursors. Central to this design is 
a metal complex with a terminal electron donor that can link 
to a halogen bond donor such as 1,4-diiodotetrafluorobenzene 
(tfib, Figure 1c). As a candidate for such a metal-organic  
building block we considered the Cu(II) complex of the 45 

chelating Schiff base (Hnaap, Figure 1c) derived from 4–
aminoacetophenone (aap) and 2-hydroxy-1-naphthaldehyde  

 
Figure  1. (a) Mechanosynthesis of a halogen-bonded metal-organic 
structure by combining covalent bond formation, coordination chemistry 50 

and halogen bonding in a single milling process; (b) fragment of the 
crystal structure of the resulting halogen-bonded metal-organic polymer; 
(c) diagrams of tfib, the Schiff base ligand and its copper(II) complex. 

(napht).17 Copper(II) was chosen because of its preference for 
square-planar coordination with chelating Schiff bases,18,19 55 

expected to facilitate the participation of the terminal acetyl 
group of the complex Cu(naap)2 in halogen bonding. 
 While the synthesis and structure of Hnaap were 
previously reported,17 we found that it can be quantitatively 
obtained by 60 min milling of napht and aap with a catalytic 60 

amount of a 5% v/v solution of triethylamine (TEA) in ethanol 
(EtOH).20,21 Milling was conducted in a Retsch MM400 mill 
using a stainless steel miling assembly (see ESI). Formation 
of Hnaap by such liquid-assisted grinding (LAG)21 was 
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confirmed by comparing its powder X-ray diffraction (PXRD) 
pattern to the one calculated for the reported structure (Figure 
2a,b),17 and to the pattern of a sample of Hnaap made by 
solution techniques (75% yield). 

 5 

Figure 2. (a) Sequential synthesis of Cu(naap)2·tfib involving the 
formation of Hnaap followed by metal complexation, thermal 
desolvation and cocrystallisation with tfib; (b) relevant calculated and 
experimental PXRD patterns: (top) reactants; (middle) selected patterns 
for sequential synthesis and (bottom) for one-pot mechanosynthesis. 10 

 Next, we pursued the synthesis of Cu(naap)2 by LAG of a 
1:2 stoichiometric mixture of copper(II) acetate monohydrate 
(Cu(OAc)2·H2O) and Hnaap in the presence of 5% 
TEA/EtOH solution21 as the grinding liquid. After 50 min the 
reaction gave a green powder characterised by PXRD, 15 

Fourier-transform infrared (FTIR) spectroscopy and 
thermogravimetric analysis (TGA). The latter revealed that 
the product is an acetic acid (AcOH) solvate of composition 
Cu(naap)2·2AcOH.22,23 In contrast, a solution-based reaction 
of Hnaap and Cu(OAc)2·H2O provided a brown powder 20 

identified by TGA as Cu(naap)2 (80% yield). Annealing of 
the mechanochemical product at 200 oC for 30 min gave 

Cu(naap)2, as indicated by comparing its FTIR spectrum and 
PXRD pattern to a solution-made sample (Figures 2a,b). As 
the final step, we conducted21 LAG of Cu(naap)2 with tfib. 25 

After 50 min milling, PXRD analysis of the brown reaction 
mixture revealed the complete disappearance of reactants and 
formation of a new crystalline solid (see ESI). 
Recrystallisation of the product from a mixture of EtOH and 
tetrahydrofuran led to partial decomposition into Cu(naap)2 30 

but also gave single crystals suitable for X-ray diffraction.¶ 
Structure determination revealed that the crystals are the 
hoped for halogen-bonded chain Cu(naap)2·tfib, consisting of 
alternating units of Cu(naap)2 and tfib (Figure 1b).  
 Each molecule of the Cu(II) complex is associated with two 35 

tfib molecules via almost linear I···O contacts (I···O distance 
3.08 Å, C–I···O angle 168°),11 forming halogen-bonded 
metal-organic chains. Geometry of Cu(naap)2 in the chains is 
consistent with that normally observed for Cu(II) complexes 
of chelating Schiff bases with an O,N-donor set:18 Cu(II) ion 40 

adopts a square planar geometry with a trans-distribution of O 
and N donor atoms. The Cu–N and Cu-O bond lengths are 
1.980(3) Å and 1.881(2) Å, respectively, and the O–Cu–N 
angle 90.66(1)°. Notable detail of the Cu(naap)2·tfib structure 
is the C=O···I angle of 105o, instead of 120o ideally expected 45 

for a halogen bonding to an sp2-hybridised oxygen atom. The 
deviation is comparable to that previously observed for 
halogen bonding to ketones.24 
 Crystal structure of Cu(naap)2·tfib can be described by 
juxtaposition of halogen-bonded chains to form layers in the 50 

(-11-2) plane, assisted by C–H···F contacts25 between 
naphthalene and tfib moieties from adjacent chains (C···F 
distance: 3.50 Å, Figure 3). The overall structure results from 
the stacking of such layers, involving C–H···O (C···O 
distance: 3.52 Å) and C–H···C contacts (C···C distance: 3.57 55 

Å)26 between molecules in neighboring layers. The calculated 
PXRD pattern for the structure of Cu(naap)2·tfib is in full 
agreement with that measured for the final product of LAG 
(see ESI), confirming the success of the reaction sequence 
involving one thermal and three mechanochemical steps. 60 

 
Figure 3. Assembly of halogen-bonded chains of Cu(naap)2·tfib into 
layers. For clarity, adjacent chains are colour-coded orange or green. 

 Next, we attempted to simplify the mechanochemical 
procedure by milling the mechanochemically prepared Hnaap 65 

with Cu(OAc)2·H2O and tfib. As evidenced by PXRD, this 
one-pot two-step approach quantitatively gave Cu(naap)2·tfib 

after 50 min LAG.  
 Finally, we attempted a one-pot, “all at once” approach in 
which a single milling process would lead to the synthesis of 70 
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Hnaap, its reaction with Cu(OAc)2·H2O to form Cu(naap)2 
and halogen bond-driven self assembly to form 
Cu(naap)2·tfib (Figure 1a). Indeed, the 4-component grinding 
of napht, aap, Cu(OAc)2·H2O and tfib in the required 2:2:1:1 
stoichiometric ratios and with a small quantity21 of the 5 

TEA/EtOH solution, yielded Cu(naap)2·tfib (Figure 2b). 
PXRD pattern of the product was identical to that calculated 
from single crystal data. This one-pot “all-at-once” 
experiment provided the final product within 60 min grinding, 
which is ca. three times shorter than the initially explored 10 

three-step sequence, and without thermal annealing. 
 In summary, we have demonstrated the synthesis of a one-
dimensional halogen-bonded metal-organic architecture using 
a one-pot milling process that couples covalent bond 
formation to coordination synthesis and cocrystallisation by 15 

halogen bonds. The one-pot four-component reaction exhibits 
notable advantages over the corresponding sequential process, 
not only by reducing the reaction time and allowing the use of 
simpler reactants, but also by circumventing the need for a 
thermal annealing step. The presented design for a halogen-20 

bonded metal-organic structure is also an advance in halogen 
bond-driven crystal engineering by demonstrating the 
assemby of metal-organic units without using kinetically inert 
building blocks of late transition metals.14 
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