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Hydrogen Bonding Effects in Anion Binding 
Calixarenes 

Naseem Qureshi,a Dimitri S. Yufit,b Kirsty M. Anderson,b Judith A. K. Howardb 
and Jonathan W. Steed*b  

A series of disubstituted urea, thiourea and dansyl amide calix[4]arene based anion receptors 
have been prepared and characterised by X-ray crystallography. The structures show a fine 
balance of intramolecular urea -tape, and urea…calixarene phenolic oxygen atom hydrogen 
bonding patterns. Both motifs are in competition with the anion binding behaviour of the 
compounds in solution. 
 

 

Introduction 

Calixarenes have been used extensively as scaffolds for enzyme 
mimics,1 HCl co-transporters,2 and receptors for cationic, 
anionic and neutral guests.3-9 As part of their work on 
calixarene-based membrane transporters and chemically 
modified field effect transistors (CHEMFETs) the Reinhoudt 
group developed a range of lipophilic di- and tetra(urea) 
calix[4]arene receptors of type 1 and 210 displaying significant 
selectivity for the biologically important11, 12 chloride anion. 
Analogous tris(urea) calix[6]arenes are selective for 
tricarboxylates.13 Monte Carlo modelling by Jorgensen and co-
workers on the 1,3-difunctionalised bis(urea) calix[4]arene 1 (R 
= Ph) in which the urea groups are linked to the calixarene 
phenolic oxygen atoms by relatively long, flexible butylene 
spacers, suggests that the compound adopts a conformation 
involving an intramolecular urea-urea six-membered-ring 
hydrogen bond;14 ܴଶ

ଵሺ6ሻ in graph set nomenclature15 (Fig. 1a). 
Chloride binding then disrupts this interaction and the anion is 
bound in a cleft between the pair of urea functional groups (Fig. 
1d). Subsequent X-ray crystallographic analysis on the related 
bis(thiourea) derivative 3a which possesses shorter ethylene 
linkers and no alkyl substituents on the calixarene 2- and 4-
position phenolic rings, reveals intramolecular OHO 
interactions at the narrow (‘lower’) rim, intramolecular NHO 
interactions from thiourea to phenolic oxygen (Fig. 1c) and 
intermolecular thiourea hydrogen bonding of the ܴଶ

ଶሺ8ሻ type 
(Fig. 1b).16 A range of other more conformationally constrained 
cyclic calix[4]- and calix[6]arene derivatives has also been 
produced based in the pendant urea or thiourea template.17-21 
The presence of OHO hydrogen bonding at the lower rim in 
calixarenes is known to rigidify the cone conformation22 and 
hence potentially preorganise the anion binding pocket 
provided by the urea pendant groups. Additional 
preorganisation may also be offered by the shorter, less flexible 
ethylene spacer groups in 3a as opposed to the longer butylene 
groups in compounds such as 1. However, a shorter linker may 
also favour the hydrogen bonding involving intramolecular 
interactions between one of the thiourea or urea NH groups (in 

an cis conformation23 with respect to the urea carbonyl) and the 
calixarene oxygen atoms, as shown in Fig. 1c. In order to probe 
the occurrence of these various hydrogen bonding modes and 
examine their influence on anion, and specifically chloride, 
affinity in these systems we have prepared the disubstituted 
pendant bis(urea) calix[4]arenes 3b and 4a–c. We now report 
their structural and anion binding characteristics, along with 
their dansyl analogues 5 and 6, which are designed as act as 
fluorescent chloride anion sensors. 
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Figure  1:  Hydrogen  bonding modes  in  bis(urea)  calixarenes  (a)  intramolecular 

urea ܴ2
1ሺ6ሻ,  (b)  intermolecular ܴ2

2ሺ8ሻ,  (c)  amide  or  urea‐calixarene ܴ2
2ሺ7ሻ,  (d) 

urea‐chloride double ܴ2
1ሺ6ሻ. 
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moiety is known to be highly dependent on the medium in ways 
that are not fully understood.40 Recent work has also shown that 
aggregation-induced emission can result in enhancement of 
dansyl fluorescence, however this is accompanied by a 
significant shift in emission wavelength.41 Analogous titration 
with bromide, nitrate and acetate resulted in similar 
enhancement, with a shoulder appearing to lower wavelength in 
the case of acetate. 

Conclusions 

Intramolecular hydrogen bonding effects of both urea-to-urea 
and urea- or amide to calixarene types are in competition with  

 anion binding in this series of disubstituted calixarenes. As a 
result the compounds exhibit unusual conformational 
characteristics which offer potential opportunities in anion 
sensing by conformational switching processes.42 
Structural characterisation of a range of simple calix[4]arene 
anion receptors has revealed a finely balanced interplay 
between intramolecular and intermolecular hydrogen bonding, 
with intermolecular interactions to the calixarene phenolic 
oxygen atoms significantly interfering with anion affinity. 
Increasing the tether length offers a way to decouple the anion 
binding functionality from the calixarene scaffold, although the 
consequent increased flexibility must reduce receptor 
preorganisation. 

Experimental 

X-ray Crystallography  

Suitable single crystals were grown by slow evaporation and 
mounted using silicon grease on a thin glass fibre. 
Crystallographic measurements were carried out on a Bruker 
SMART CCD 6000 and Rigaku R-AXIS Spider IP 
diffractometer using graphite monochromated Mo-Kα radiation 

 = 0.71073 Å). The standard data collection temperature was 
120 K, maintained using an open flow N2 Cryostream 
(OxfordCryosystems) device. Integration was carried out using 
the Bruker SAINT and Rigaku FS Process packages. Data sets 
were corrected for Lorentz and polarisation effects and for the 
effects of absorption.  Structures were solved using direct 
methods and refined by full-matrix least squares on F2 for all 
data using SHELXTL software.43 All non-hydrogen atoms were 
refined with anisotropic displacement parameters. Hydrogen 
atoms were located on the difference Fourier map and refined 
isotropically. Molecular graphics were produced using the 
programs X-Seed and POV-Ray.44, 45 Crystal data are listed in 
Table 1.  

Titrations  
1H-NMR titrations were carried out at room temperature using 
a Varian Inova-500 spectrometer operating at 500 MHz 
(Durham University). All chemical shifts are reported in ppm 
relative to TMS as an internal reference. A solution of the host 
species of known concentration typically 0.5 – 1.5 mM, was 
made up in an NMR tube using the appropriate deuterated 
solvent (0.5 ml). Solution of the anions, as TBA salts, were 
made up in volumetric flasks (2.0 ml) with a concentration five 
times greater than that of the host. The guest solution was 
typically added in 10 l aliquots, representing 0.1 equivalents 
of the guest with respect to the host. Larger aliquots were used 
in some cases where no inflection of the trace was evident. 
Spectra were recorded after each addition and the trace was 
followed simultaneously. Results were analysed using the curve 
fitting programme HypNMR.31, 32 

Fluorescence spectroscopic titrations were carried out in acetonitrile 
solution using a PE LS55 Spectrometer at the concentrations stated. 
See supplementary information. 

Table 1. Crystallographic data for new compounds. 

Compound                3b 4b 4c 5 
Formula C64H80N4O4S2CHCl3 

3C2H5OH 
C70H80N4O62CH3CN 

1.5CHCl3 
C64H80N4S2O6 0.5 
CH3OH1.5C3H6O 

C72H88N4O8S2·4CH3CN 

Formula weight 1228.30 1334.54 1168.58 1365.80 

Crystal system Monoclinic Monoclinic Monoclinic Triclinic 
Space group C2/c P21/c P21/c P-1         

a, Å 28.3148(6) 12.6122(5) 19.5803(5) 12.1816(3) 
b, Å 15.8506(3) 30.9836(12) 20.1679(5) 24.5969(7 
c, Å 18.2260(4) 18.6901(7) 18.2981(5) 26.7522(7) 
α, ° 90.00 90.00 90.00 102.923(10) 
β, ° 118.09(1) 92.349(10) 111.82(3) 95.542(10) 
γ, ° 90.00 90.00 90.00 98.546(10) 

Volume/Å3 7216.3(3) 7297.4(5) 6708.2(3) 7655.6(4) 

Z  4 4 4 4 

ρ (calc.),  mg/mm3 1.131 1.215 1.157 1.185 

, mm-1 0.181 0.235 0.134 0.129 

F(000) 2640 2828 2516 2928 
Reflections collected 43374 54294 55928 85996 
Independent  refl., Rint 8708, 0.0464  14329, 0.0926 14623, 0.1568 35131, 0.0544 

No. of parameters 420 861 782 1822 
Final R1 [I>2σ(I)] 0.0962 0.0852 0.0936 0.0600 

wR2 (all data) 0.2708 0.2330 0.2441 0.1502 

GOF on F2 1.071 1.004 1.056 1.031 
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5,11,17,23-Tetra-t-butyl-25,27-bis[[N-m-tolyl-
thioureido]oxy]-26,28-dihydroxycalix[4]arene (3b).  
5,11,17,23-tetra-t-butyl-25,27-bis[(aminoethyl)oxy]-26,28-
dihydroxycalix[4]arene24 (0.500 g, 6.80 x 10-4 mol) was reacted 
with m-tolyl isothiocyanate (0.203 g, 1.36 x 10-3 mol) in 25 ml 
of chloroform. The mixture was stirred for 20 h resulting in the 
formation of a crude product which was washed 5 ml of 
hexane, diethyl ether, petroleum ether and propanol to get a 
pure product.  
1H-NMR (CDCl3, 700 MHz): 1.10 (18H, s, But), 1.20 (18H, s, 
But), 1.96 (6H, s, CH3), 3.22 (4H, d, J = 14 Hz, ArCH2Ar), 3.75 
(4H, d, J = 14 Hz, ArCH2Ar), 4.08 (4H, m, CH2), 4.17 (4H, t, J 
= 7 Hz, OCH2), 6.79 (2H, d, J = 7 Hz, Ar), 6.86 (2H, br, NH), 
6.90 (4H, s, Ar), 6.92 (4H, s, Ar), 7.03 (2H, t, J = 7 Hz, Ar), 
7.07 (2H, d, J = 7 Hz, Ar), 7.77 (2H, br, NH), 7.93 (2H, t, Ar) 
and 8.00 (2H, s, OH); 13C{1H}-NMR (CDCl3, 700 MHz): 21.00 
(s, CH3), 31.09 (s, But), 31.53 (s, But), 32.24 (s, ArCH2Ar), 
33.78 (s, ArCH2Ar), 34.16 (s, CH2), 46.21 (s, CCH3), 74.91 (s, 
OCH2), 122.91 (s, Ar), 125.47 (s, Ar), 125.96 (s, Ar), 126.38 (s, 
Ar), 127.75 (s, Ar), 129.00 (s, Ar), 133.11 (s, Ar), 136.31 (s, 
Ar), 140.02 (s, Ar), 142.57 (s, Ar), 148.03 (s, Ar), 148.29 (s, 
Ar), 149.29 (s, Ar) and 182.26 (s, CS); Anal. for 
C64H80N4O4S2·H2O  calc. C 73.10, H 7.67, N 5.32, found C 
72.76, H 7.67, N 4.85 %; IR (cm-1) 3283, 2985, 1657, 1484, 
1199 and 1034; ESI-MS 1055.5 (C64H80N4O4S2+Na). 
 
5,11,17,23–Tetra-t-butyl-25,27-bis[[(N-p-tolylureido)-
ethyl]oxy]-26,28-dihydroxycalix[4]arene (4a).  
5,11,17,23-tetra-t-butyl-25,27-bis[(aminoethyl)oxy]-26,28-
dihydroxycalix[4]arene24 (0.700 g, 9.49x10-4 mol) was mixed 
with p-tolyl isocyanate (0.51 g, 3.80x10-3 mol) in 50 ml of 
chloroform solvent. The reaction mixture was refluxed for more 
than 12h resulting in a formation of crude product, which was 
washed with slight amount of diethyl ether and hexane solvent 
to get a pure product.  
1H-NMR (CDCl3, 400 MHz): 1.15 (18H, s, But), 1.27 (18H, s, 
But), 2.25 (6H, s, CH3), 3.41 (4H, d, J = 12 Hz, ArCH2Ar), 3.86 
(4H, m, CH2), 4.12 (4H, t, J = 8 Hz, OCH2), 4.19 (4H, d, J = 12 
Hz, ArCH2Ar), 6.66 (2H, br, NH), 6.99 (4H, s, Ar), 7.01 (4H, s, 
Ar), 7.04 (2H, s, Ar), 7.08 (2H, s, Ar), 7.12 (2H, s, Ar), 7.14 
(2H, s, Ar), 7.16 (2H, br, NH) and 7.28 (2H, s, OH). 
 
5,11,17,23–Tetra–t-butyl-25,27-bis[[(N-napthylureido)-
ethyl]oxy]-26, 28- dihydroxycalix[4]arene (4b).  
5,11,17,23-tetra-t-butyl-25,27-bis[(aminoethyl)oxy]-26,28-
dihydroxycalix[4]arene24 (0.200g, 2.72 x 10-4 mol) was mixed 
with naphthyl isocyanate (0.092 g, 5.44 x 10-3 mol) in 10 ml 
chloroform solvent at 0 0C. The reaction mixture was stirred for 
1h resulting in a formation of crude product and washed with 
slight amount of diethyl ether, hexane and petroleum ether to 
get a pure product.  
 1H-NMR (Acetone, 700 MHz): 1.03 (18H, s, But), 1.27 (18H, 
s, But), 2.43 (4H, d, J = 14 Hz, ArCH2Ar), 3.87 (4H, m, CH2), 
4.05 (4H, t, OCH2), 4.25 (4H, d, J = 14 Hz, ArCH2Ar), 7.14 
(4H, s, Ar), 7.17 (2H, d, J = 7 Hz, Naph), 7.22 (4H, s, Ar), 7.26 

(2H, d, J = 7 Hz,  Naph), 7.30 (2H, br, NH), 7.37 (2H, t, J = 7 
Hz, Naph), 7.47 (2H, d, J = 7 Hz, Naph), 7.75 (2H, d, J = 7 Hz, 
14 Hz, Naph), 7.84 (2H, m, Naph), 7.93 (2H, brm,  Naph), 8.16 
(2H, br, NH), and 8.67 (2H, s, OH); 13C{1H}-NMR (Acetone, 
700 MHz): 28.70 (s, CH2), 28.81 (s, But), 28.92 (s, But), 29.03 
(s, ArCH2Ar), 29.14 (s, ArCH2Ar), 76.10 (s, OCH2), 121.75 (s, 
Naph), 121.85 (s, Naph), 123.45 (s, Naph), 125.19 (s, Naph), 
125.30 (s, Naph ), 125.40 (s, Naph), 125.58 (s, Ar), 125.95 (s, 
Ar), 127.45 (s, Ar), 127.60 (s, Naph), 128 (s, Naph), 142.32 (s, 
Ar), 147.67 (s, Ar), 149.31 (s, Ar), 150.03 (s, Ar), 150.14 (s, 
Ar), 156.35 (s, Naph), 156.45 (s, Naph) and 156.54 (s, Naph); 
Anal. for C70H80O6N4·0.2 CHCl3 calc. C 76.84, H 7.37, N 5.11, 
found C 77.14, H 7.67, N 4.80; IR (cm-1) 3357, 2960, 1645, 
1548, 1483 and 1047; ESI-MS 1072.38 (C70H80O6N4-H), 
1095.7 (C70H80O6N4–H+Na). 
 
5,11,17,23–Tetra–t-butyl-25,27-bis[[(N-3-
methylsulfanylphenylureido)ethyl]oxy]-26,28-
dihydroxycalix[4]arene (4c).   
5,11,17,23-tetra-t-butyl-25,27-bis[(aminobutyl)oxy]-26,28-
dihydroxycalix[4]arene24 (0.500g, 6.80 x 10-4 mol) was mixed 
with 3-methylsulfanylphenyl isocyanate (0.225g, 1.36x10-3 
mol) in 30 ml of chloroform. The reaction mixture was 
monitored by TLC while stirring for 4 h. The crude product was 
washed through slight amount of diethyl ether and hexane 
solvent to get pure product.  
1H-NMR (Acetone, 700 MHz): 1.05 (18H, s, But), 1.27 (18H, s, 
But), 2.34 (6H, s, SCH3), 3.49 (4H, d, J = 14 Hz, ArCH2Ar), 
3.93 (4H, m, J = 7, 14 Hz, CH2), 4.07 (4H, t, J = 7 Hz, OCH2), 
4.24 (4H, d, J = 14 Hz, ArCH2Ar), 6.80 (2H, d, J = 7 Hz, Ar), 
6.84 (2H, br, NH), 7.06 (2H, t, J = 7, 14 Hz, Ar), 7.11 (2H, d, J 
= 7 Hz, Ar), 7.19 (4H, s, Ar), 7.23 (4H, s, Ar), 7.43 (2H, s, Ar), 
8.30 (2H, br, NH) and 8.66 (2H, s, ArOH). 13C{1H}-NMR 
(Acetone, 700 MHz): 15.28 (s, SCH3), 30.75 (s, But), 31.37 (s, 
But), 31.85 (s, ArCH2Ar), 31.70 (s, ArCH2Ar), 39.85 (s, CH2), 
76.53 (s, OCH2), 115.4 (s, Ar), 115.6 (s, Ar), 116.6 (s, Ar), 
119.2 (s, Ar), 125.4 (s, Ar), 125.8 (s, Ar), 127 (s, ArOH) and 
150 (s, CO); Anal. calc. for C64H80N4O6S2·0.25CHCl3 C 70.45, 
H 7.38, N 5.12, found C 70.47, H 7.39, N 5.0 %; IR (cm-1) 
3339 (vbr, OH & NH), 2958 (w, CH, str.), 1657 (w, CO), 1537 
(s, NH), 1480, 1193; Mass Spectrum ESI 1087.5 
(C64H80N4O6S2–H+Na), 1064.3 (C64H80N4O6S2–H). 
 
5,11,17,23-Tetra-t-butyl-25,27-bis[[(N-dansylureido)-
ethyl]oxy]-26,28-dihydroxycalix[4]arene (5).  
5,11,17,23-tetra-t-butyl-25,27-bis[(aminoethyl)oxy]-26,28-
dihydroxycalix[4]arene24 (0.200 g, 2.72 x 10-4 mol) was mixed 
with dansyl chloride in water and sodium hydrogen carbonate 
solution (1:1 v/v: 8 ml). The reaction mixture was stirred at 
room temperature for 2 h resulting in a formation of crude 
product which was washed with small amount of diethyl ether 
and hexane to get a pure product.  
1H-NMR (CDCl3, 700 MHz): 1.12 (18H, s, But), 1.21 (18H, s, 
But), 2.89 (12H, s, NCH3), 3.01 (4H, m, CH2), 3.27 (4H, d, J = 
14 Hz, ArCH2Ar), 3.81 (4H, t, J = 7, OCH2), 6.98 (4H, s, Ar), 
6.99 (4H, s, Ar), 7.11 (2H, m, Naph), 7.29 (4H, m, Naph), 7.49 
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(2H, d, Naph), 7.50 (2H, br, NH), 7.83 (2H, t, J = 7 Hz, Naph), 
8.10 (2H, d, J = 7 Hz, Naph), 8.39 (2H, d, J = 7 Hz, Naph), 
8.55 (2H, d, J = 7 Hz, Naph) and 8.60 (2H, s, OH); 13C{1H}-
NMR (CDCl3, 700 MHz): 30.97 (s, But), 31.10 (s, But), 31.45 
(s, CH2), 32.45 (s, CH2), 42.20 (s, NCH3), 45.80 (s, CH2), 76.11 
(s, OCH2), 114.6 (s, Naph), 124 (s, Naph), 125.80 (s, Ar), 126 
(s, Ar), 127.8 (s, Naph), 128.5 (s, Naph), 129.80 (s, Naph), 
133.50 (s, Ar), 136.31 (s, Naph), 143.04 (s, Ar), 148.18 (s, 
Naph), 148.50 (s, Ar) and 149 (s, Ar); Anal. for C72H88O8S2N4 
calc. C 71.97, H 7.38, N 4.66, found C 71.77, H 7.37, N 4.69 
%; IR (cm-1) 3258, 2954, 2870, 1708, 1462 and 1442; ESI-MS 
1224.4 (C72H88O8S2N4+Na). 
 
5,11,17,23-tetra-t-butyl-25,27-bis[[(N-
dansylureido)butyl]oxy]-26,28-dihydroxycalix[4]arene (6).  
5,11,17,23-tetra-t-butyl-25,27-bis[(aminobutyl)oxy]-26,28-
dihydroxycalix[4]arene24 (0.724 g, 9.16 x 10-4 mol) was mixed 
with dansyl chloride in water and sodium hydrogen carbonate 
solution (1:1 v/v: 8 ml). The reaction mixture was stirred at 
room temperature for 2.5 h resulting in a formation of crude 
product which was washed with 3 ml of diethyl ether and 
hexane to give a pure product.  
1H-NMR (CDCl3, 700 MHz): 0.827 (18H, s, But), 1.24 (18H, s, 
But), 1.63 (4H, pt, J = 6.4, 13.2 Hz, CH2), 1.77 (4H, pt, J = 6.4, 
14, 20 Hz, CH2), 2.84 (12H, s, NCH3), 3.180 (4H, m, CH2), 
3.21 (4H, d, J = 13.2 Hz, ArCH2Ar), 3.75 (4H, t, J = 6.3, 12.4 
Hz, OCH2), 4.11 (4H, d, J = 12.8 Hz, ArCH2Ar), 6.04 (2H, br, 
NH), 6.70 (4H, s, Ar), 7.00 (4H, s, Ar), 7.20 ( 4H, t, J = 7.6, 14 
Hz, Naph), 7.42 (2H, t, J = 8, 16 Hz, Naph), 7.47 (2H, s, OH), 
8.22 (2H, d, J = 7.2 Hz, Naph), 8.29 (2H, d,  J = 7.2 Hz, Naph) 
and 8.46 (2H, d, J = 8 Hz, Naph); 13C{1H}-NMR (CDCl3, 700 
MHz): 25.70 (s, CH2), 25.85 (s, CH2), 30.65 (s, But), 31.25 (s, 
But), 31.60 (s, ArCH2Ar), 31.80 (s, ArCH2Ar), 42.28 (s, CH2), 
45.80 (s, NCH3), 76 (s, OCH2), 124.59 (s, Ar), 125 (s, Ar), 
125.40 (d, Ar), 126 (s, Naph), 126.75 (s, Ar), 128.01 (s, Naph), 
128.12 (s, Naph), 129.20 (s, Naph), 129.85 ( s, Naph), 131.80 
(s, Ar), 148.20 (s, Ar), 148.20 (s, Ar) and 148.90 (s, Ar); Anal. 
for C76H96O8S2N4 calc. C 72.58, H 7.69, N 4.45, found C 71.57, 
H 7.52, N 4.10; IR (cm-1) 3673, 3311, 2953, 1575, 1484, 1311, 
1073; ESI-MS 1279.6 (C76H98O8S2N4-H+Na). 
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