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Abstract 

 

p-Sulfonatocalix[4]arene with three of the lower rim hydroxyl groups substituted with 

N'-cyanocarbamimidate groups crystallizes in the 1,3-alternate conformation rather than 

the common cone conformation for the unsubstituted calixarene which also results in 

departure from the common bilayer arrangement of sulfonated calix[4]arenes. 
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Manipulating the conformation and interplay of p-
sulfonated calix[4]arene by lower rim tri-substitution 
with N’-cyanocarbamimidate groups   

Irene Linga*, Brian W. Skeltonb, Alexandre N. Sobolevb,c, Yatimah Aliasa and 
Colin L. Rastond 

p-Sulfonatocalix[4]arene with three of the lower rim hydroxyl groups substituted with N'-
cyanocarbamimidate groups crystallizes in the 1,3-alternate conformation rather than the 
common cone conformation for the unsubstituted calixarene which also results in departure 
from the common bilayer arrangement of sulfonated calix[4]arenes. The new calixarene 
formed via reaction of the phenolic moieties of p-sulfonatocalix[4]arene with the dicyanamide 
anion derived from an ionic liquid with an imidazolium cation. 
 

 

 

Introduction 

  Condensation reaction of formaldehyde and para-substituted 
phenols under basic conditions in the presence of alkali metal 
hydroxide as the templating catalyst yields macrocyclic 
compounds known as calixarenes. One of the most interesting 5 
features of these calixarenes is their structural flexibility and their 
ability to assume a variety of shapes via conformational 
interconversion.1 Cornforth first identified that the smallest of the 
calixarene oligomers, calix[4]arene can exist in four different 
conformations, which were later named by Gutsche as the cone, 10 
partial cone, 1,2-alternate and 1,3-alternate conformers, with the 
structures having C4v, Cs, C2h and D2d symmetry respectively.2,3 
Controlling the conformation of this calixarene can be achieved 
by introducing bulky substituents on either the upper or lower 
rim.  15 
 Calixarenes with upper rim functionalized with sulfonate 
groups have good solubility in water.4,5 The ability of sulfonated 
calixarenes to form various inclusion complexes with different 
guest species in water has opened new applications which are 
reflected by their potential uses in analytical chemistry and 20 
separation science.6,7 For an extensive number of solid state 
studies, the water soluble calix[4]arene derivatives have shown a 
diversity of selective binding properties. In addition, p-
sulfonatocalix[4]arene can assemble into a wide range of 
remarkable structural motifs,8-11 where in most cases the 25 
calixarenes are assembled in an up-down manner with the water-
soluble sulfonate groups aligned at the surfaces of the bilayers, 
separated by a distinct hydrophilic layer containing the guest 
molecules and water molecules.12 

 We have recently developed the self-assembly of p-30 
sulfonatocalix[4]arene incorporating various ionic liquid based 
components (symmetrical and unsymmetrical) in the presence of 
lanthanides and phosphonium cations as a strategy for building 
multi-component nanomaterials.13 Structurally authenticated solid 
state structures based on p-sulfonatocalix[4]arene and a variety of 35 
ionic liquid based cations demonstrate the preferential binding of 
calixarene cone conformer towards these components rather than 
towards selected phosphonium cations while consistently 
retaining the up–down antiparallel bilayer arrangement of the 
calixarenes with the lower rim hydroxyl groups arranged in a 40 
back-to-back fashion at the van der Waals limit involving 
hydrogen bonding of the phenolic OH groups.  
 Herein we report the synthesis involving reaction with an 
imidazolium dicyanamide ionic liquid, and structure elucidation 
in the solid state of the resulting lower rim functionalised p-45 
sulfonatocalix[4]arene bearing three N'-cyanocarbamimidate 
groups, revealing a complex self-assembled array. This structure 
represents a new structural motif involving the 1,3-alternate 
conformation of the water-soluble p-sulfonatocalix[4]arene with 
three of the hydroxyl groups substituted with N'- 50 
cyanocarbamimidate groups; an imidazolium cation is positioned 
away from the calixarene cavity (exo) as established in previous 
systems.13 Importantly, one comparable example of the p-
sulfonatocalix[4]arene in a 1,3-alternate conformation, stabilized 
as its bipyridinium salt was reported by Barbour et al., where the 55 
calixarene is surrounded by eight 4,4'-bipyridinium cations.14 
Four of the 4,4'-bipyridinium cations are situated at the 4-fold 
axis while the remaining four protrude into the small clefts beside 
the sulfonate upper rim head groups which interact strongly via 
hydrogen bonds and aromatic π-π interactions.  60 
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Scheme 1 Synthesis of compound 1. 

 

  Dicyanamide based ionic liquids are low viscosity liquids that 
can dissolve a broad range of hydroxylated compounds and can 
function as active base catalysts for O-acetylation reaction.15 
Different studies have been carried out on the O-acetylation of 
various types of alcohols including naphthol, tertiary butyl alcohol, 
cyclohexanol and several saccharides using dicyanamide ionic 
liquids.15 In the present work, we employed 1-methyl-3-
butylimidazolium dicyanamide as one of the components for 
constructing multi-component nanomaterials with p-
sulfonatocalix[4]arene, along with lanthanides ions, Scheme 1, as an 
extension of previous studies.16 However, in this case, we find that 
the dicyanamide anion condenses selectively with three of the four 
phenolic groups of the calixarene, with a change in its conformation, 
at least in the solid state. The self assembly of the novel compound 
bearing a high degree of functionality is of interest in gaining access 
to new materials, for potential technological advances. 

Results and Discussion 

Compound 1 crystallized in space group C2/m, Z=2, comprising 
two calixarene molecules in asymmetric unit, along with one 
imidazolium molecule, 1.75 gadolinium(III) cations distributed 
between 5 positions and 1.75 sodium ions distributed between 3 
positions and disordered water molecules. The structure has the 
p-sulfonatocalix[4]arene molecule in the 1,3-alternate 
conformation, with three of the lower rim hydroxyl groups 
deprotonated and substituted with dicyanamide via nucleophilic 
addition, as N'- cyanocarbamimidate groups with the O–C bond 
length ranges from 1.33 to 1.34 Å, Fig. 1. Each N'-
cyanocarbimimidate group has a planar conjugated arrangement 
of atoms in the E-conformation with respect to the nitrile group 
and the oxygen atom, with the amino group cis to the nitrile 
moiety. This overall arrangement represents a new structural 
motif for the interplay of p-sulfonatocalix[4]arenes, albeit now 
covalently modified, in the 1,3-alternate conformation. This is 
distinctly different to the usual bilayer structures containing 
unsubstituted p-sulfonatocalix[4]arene in cone conformation. 
We have previously prepared multi-component ionic solids in 
conjunction with p-sulfonatocalix[4]arene and different ionic 
liquid based cations (namely imidazolium, pyrrolidinium and 
pyridinium) along with selected large phosphonium cations and 
aquated lanthanides(III) and established that the ionic liquid 
based cation is consistently and selectively taken up into the 

hydrophobic cavity of p-sulfonatocalix[4]arene in the cone 
conformation. It is also important to note that in structure 1, the 
positively charged butylimidazolium ion is positioned outside 
(exo) the calixarene cavity, unlike in the previously reported 
butylimidazolium complexes of p-sulfonatocalix[4]arene16 and 
reflects a smaller cavity for the new calixarene.  
 The overall packing of 1 consists of linear arrays of multiple 
repeating hydrophobic and hydrophilic layers which are built 
up by calixarene anions and metal cations (Gd3+ and Na+) with 
the upper rims of the calixarenes aligned, essentially creating 
hydrophilic regions interposed with disordered metal ions and 
water molecules, Fig. 2. The composite layers are stabilized in 
part by the electrostatic interaction and hydrogen bonding of 
the coordinated sodium ions and hydrated gadolinium ions 
along with bridging water molecules in the hydrophilic region 
which balances the negative charge on the sulfonate groups of 
the calixarene. The thickness of the hydrophobic layer is ca. 
11.3 Å while the hydrophilic layer is ca. 4.4 Å with the closest 
approach between the adjacent layers of the sulfonate groups 
 

 

Fig. 1. (a) Stick representation of compound 1 showing the 1,3-alternate 
conformation of p-sulfonatocalix[4]arene with three of the phenolic 
groups substituted with N'-cyanocarbimimidate group, and (b-d) as 
equivalent space-filling representation viewed from side, top and 
bottom respectively. 
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imidazolium head group, as would otherwise be expected on 
electrostatic grounds, and is also presumably a size effect. 

Experimental 

Synthesis of 1: The sodium salt of p-sulfonatocalix[4]arene was 
synthesized according to literature procedures.23 1-Methyl-3-
butylimidazolium dicyanamide and gadolinium(III) chloride were 
purchased from Sigma Aldrich and were used without purification. 
Compound 1 was crystallized from a hot solution of p-
sulfonatocalix[4]arene sodium salt (0.020 M) with excess of 1-methyl-
3-butylimidazolium dicyanamide (0.030 M) and gadolinium(III) 
chloride in de-ionized water (0.060 M), followed by concentration by 
slow evaporation from water at room temperature. Crystals formed over 
several days and the homogeneity of the materials was checked from 
the X-ray diffraction determination of cell dimensions. Hirshfeld 
surface analysis and corresponding fingerprint plot was generated from 
the CrystalExplorer.22 All calculations were performed with 
GAUSSIAN 09W Version 9.0 software package. 
 
§ X-Ray Crystallography: 
 
Data were measured at T = 100(2)K from a single crystal using an Oxford 
Diffraction Xcalibur-S diffractometer equipped with CCD detector using 
monochromatic MoKα radiation (λ = 0.71073 Å). The images were 
interpreted and integrated with the program CrysAlisPRO, Oxford 
Diffraction Ltd. The structure was solved by direct methods and refined by 
full-matrix least-squares on F2 using the SHELXL-9724 and X-seed25 interface 
crystallographic package. Lp and absorption corrections applied.   

 
Compound 1: 8(C34H23N9O16S4

4-), 4(C8H15N2
+), 7(Gd3+), 7(Na+), 

126(H2O), C304H496N80Na7O254S32Gd7, M = 11623.41, colourless needle, 0.18 
x 0.09 x 0.08 mm3, monoclinic, space group C2/m (No. 12), a = 39.799(2), b 
= 31.5266(9), c = 22.9740(11) Å, β = 117.023(6) V = 25679(2) Å3, Z = 2, Dc 
= 1.503 g/cm3, m = 1.13 mm-1. F000 = 11898, 2qmax = 57.2º, 100592 
reflections collected, 31123 unique (Rint = 0.1131).  Final GooF = 1.177, R1 
= 0.1418, wR2 = 0.2832, R indices based on 16365 reflections with I >2s(I) 
(refinement on F2), |Drmax| = 3.4(2) e Å-3, 1798 parameters, 692 restraints. 
CCDC number = 952812. 

Most of the calixarene sulfonate groups were modelled as being 
disordered over two sets of sites at fixed occupancies parameters and 
their complements, obtained after trial refinement.  Geometries of the 
disordered components were restrained to ideal values. The aquatic 
metal cations are distributed inside of the hydrophilic dynamic area of 
the crystal structure. Some of them, but not all, were interpreted as 
partially occupied and disordered with impossibility to identify their 
proper coordination environment (see discussion above). The hydrogen 
ions (presumably as hydronium ions), required for charge balance could 
not be located. Electron density that could not be reasonably modelled 
as such was effectively removed by use of the program Squeeze.26 
Water molecule hydrogen atoms were not located.  All remaining H-
atoms were added at calculated positions and refined by use of a riding 
model with isotropic displacement parameters based on those of the 
parent atom. Anisotropic displacement parameters were employed for 
the non-hydrogen ordered atoms. 
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