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By pH value controlled synthesis strategy, hydrothermal reactions of Cd(NO3)2·4H2O 

with mixed-ligands of 5-amino-tetrazole (Hatz) and 1,2,4,5-benzenetetracarboxylic 

acid (H4btec) yielded two 3D cadmium(II) coordination polymers (CPs) of 

{K[Cd2(atz)(btec)(H2O)2]}n (1) and [Cd3(OH)(atz)(btec)(H2O)2]n·nH2O (2). Their 

structures were determined by elemental analysis (EA), infrared spectra (IR), 

thermogravimetric analysis (TGA), and single-crystal/powder X-ray diffraction. The 

result reveals that both 1 and 2 are 3D architectures. In 1, the Cd(II) ions are 

connected together by µ2-atz and µ6-btec4-, generating a rare (4,6)-connected anion 

framework. The anti-cations K+ ions locate the micropores and weakly interact with 

the carboxyl oxygen of μ6-btec4- ligands. In 2, six Cd(II) ions are linked together 

through two µ3-OH- and two µ3-atz- to form a [Cd6(µ3-OH)2(µ3-atz)2]
8+ unit, which is 

further connected with other equivalent units by µ9-btec4- spacers, resulting in a rare 

(5,10)-connected porous framework. Photoluminescent investigation illustrates that 1 

and 2 show strong emission at 470 and 457 nm upon excitation at 350 and 370 nm, 

respectively. 
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Introduction 

Over the past two decades, the design and syntheses of coordination polymers (CPs) 

have received remarkable attention due to their intriguing topological structures and potential 

applications in fields of gas separation and storage,1 catalysis,1b,2 photoluminescence,3 

molecular magnet,4 and so on.5 However, rational design and construction of CPs with desired 

structure and geometry is still a great challenge. As many factors such as solvent,6 pH value,7 

ratio of reactants,8 temperature,9 counteranion,10 and so on, can affect the final product of the 

reaction. Among these factors, the pH value has proven significant effect on the product 

formation. A common observation is that at different pH values polycarboxylic acid shows 

different deprotonation and thus exhibits rich coordination modes to coordinate with metal 

ions to form diverse CPs.7c.d In addition, at higher pH value, the excess OH- anions can act as 

bridges to connect metal ions to generate polynuclear clusters, which usually leads to the 

formation of novel CPs with highly-connected topological network.11 Therefore, pH value 

controlled syntheses is an effective approach for the constructions of CPs. 

To date, most reported metal CPs are assembled from aromatic polycarboxylates11a,12,13 

or N-heterocyclic carboxylates.14,15 Because these types of ligands can employ flexible and 

diverse coordination modes during the assembly processes. Recently, 1H-tetrazole (Htz) and 

its derivatives have also been used as ligands to construct functional CPs.16-18 

5-amino-tetrazole (Hatz), as one of the Htz’s derivatives, has currently attracted much interest 

in coordination chemistry. Numerous Hatz-based CPs have been synthesized from in situ or 

ex situ reactions during the past several years.19,20 However, CPs constructed from mixed 

ligands including Hatz and polycarboxylic acid are still limitedly reported so far.20 

The use of mixed ligands has proved to be an effective and useful strategy for 

constructions of CPs with intriguing architectures and topologies.18,20,21 Our recent research 

interest focuses on the use of mixed ligands of Hatz and polycarboxylic acid to construct 
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functional CPs. In this paper, we selected Hatz and 1,2,4,5-benzenetetracarboxylic acid 

(H4btec) as the mixed ligands. By controlling pH values of reactions, we obtained two 

Hatz-H4btec-based 3D cadmium(II) coordination polymers, {K[Cd2(atz)(btec)(H2O)2]}n (1) 

and [Cd3(OH)(atz)(btec)(H2O)2]n·nH2O (2). Their syntheses, crystal structures and 

luminescent properties have been investigated and discussed.  

Experimental Section 

Materials and physical measurements 

All the reagents were commercially obtained and used without further purification. Elemental 

analyses (EA) were determined using an Elementar Vario EL elemental analyzer. The infrared 

spectra (IR) were recorded in the 4000-400 cm-1 region using KBr pellets with a Bruker 

EQUINOX 55 spectrometer. Thermogravimetric analysis (TGA) data were carried out on a 

Netzsch TG-209 thermogravimetry analyzer under N2 atmosphere in the temperature range of 

20-800 °C with a heating rate of 10 °C/min. The powder X-ray diffraction (PXRD) 

measurements were recorded on Bruker D8 ADVANCE powder X-ray diffractometer (Cu Kα, 

λ = 1.5418 Å). Photoluminescent measurements were conducted on a Shimadzu RF-5301PC 

fluorescence spectrophotometer for the solid polycrystalline samples under ambient 

temperature. 

Synthesis of {K[Cd2(atz)(btec)(H2O)2]}n (1). A mixture of Cd(NO3)2·4H2O (0.308 g, 1.0 

mmol), Hatz (0.086 g, 1.0 mmol), H4btec (0.127 g, 0.5 mmol), KOH (0.168 g, 3.0 mmol), and 

distilled water (10 mL) was stirred for 30 minutes, and then sealed in a 25 mL Teflon-lined 

stainless steel container under autogenous pressure and heated at 170 °C for 72 hours. After 

the oven was cooled to the room temperature at a rate of 5 °C·h-1, colorless block-shaped 

crystals were collected, washed with distilled water and dried in air. The pH values of the 

mixture before and after reaction were ~6. Yield: 76% (based on Cd(NO3)2·4H2O). Elemental 

analyses calcd (%) for C11H8N5O10Cd2K (1): C, 20.83; H, 1.27; N, 11.04. Found: C, 20.90; H, 
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1.32; N, 11.12. IR (KBr, cm-1; Fig. S1): 3438 (m), 3346 (m), 3244 (b), 1646 (m), 1556 (s), 

1484 (s), 1438 (s), 1382 (s), 1324 (m), 1144 (m), 1098 (w), 922 (w), 876 (m), 828 (m), 812 

(m), 766 (m), 752 (w), 672 (w), 590 (m), 514 (m), 466 (m), 450 (w). 

Synthesis of [Cd3(OH)(atz) (btec)(H2O)2]n·nH2O (2). These colorless crystals were 

obtained by a similar procedure to that for 1 except using 4.0 mmol (0.224 g) KOH instead of 

3.0 mmol (0.168 g) KOH. The pH values of the mixture before and after reaction were ~9. 

Yield: 64% (based on Cd(NO3)2·4H2O). Elemental analyses calcd (%) for C11H11N5O12Cd3 

(2): C, 17.79; H, 1.49; N, 9.43. Found: C, 17.90; H, 1.52; N, 9.62. IR (KBr, cm-1; Fig. S1): 

3562 (m), 3427 (vs), 3315 (vs) 3248 (s), 1649 (s), 1570 (s), 1531 (s), 1433 (s), 1385 (s), 1327 

(m), 1142 (m), 1095 (w), 877 (m), 833 (m), 756 (w), 729 (m), 677 (m), 575 (m), 534 (m), 500 

(w). 

Determination of Crystal Structures 

Single-crystal data for 1 and 2 were collected on an Agilent Xcalubur Nova CCD 

diffractometer with graphite monochromatic Mo Kα radiation (λ = 0.71073 Å). Cell 

refinement and data reduction were applied using the program of CrysAlis PRO. The 

structures were solved using the direct method, which yielded the positions of all 

non-hydrogen atoms. These were refined first isotropically and then anisotropically. All the 

hydrogen atoms of the betc4- and atz- ligands were placed in calculated positions with fixed 

isotropic thermal parameters and included in structure factor calculations in the final stage of 

full-matrix least-squares refinement. The hydrogen atoms of coordinated water molecules in 1 

and 2, and hydroxy in 2 were located in the difference Fourier maps and refined isotropically. 

The hydrogen atoms of the disordered lattice water molecules in 2 were not assigned. All 

calculations were performed using the SHELXTL-97 system of computer programs.22 The 

crystallographic data and structural refinements were summarized in Table 1, and the selected 

bond lengths and angles were listed in Table S1. 

Page 5 of 22 CrystEngComm

C
ry

st
E

ng
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t



 
6 

Results and Discussion 

Syntheses 

Although the formation of CPs are very sensitive to the pH values of the reaction systems, 

reports on constructions of CPs by delicately tuning the pH value are limited.7,11 With the 

same reactants and synthetic conditions, we, by tuning the pH values of the reaction systems, 

have constructed two Hatz-H4btec-based cadmium(II) CPs with completely different 

structures. At pH ~6 (adjusted with KOH), the ligands Hatz and H4btec deprotonate and 

coordinate to the central metal Cd(II) ion to form 1. At a higher pH value of ~9, the ligands 

Hatz and H4btec also deprotonate and bond with the central metal Cd(II) ions. Additionally, 

the excess OH- anion, acting as a μ3-brigde, participates in the assembly process of the 

framework, which leads to the formation of a new coordination polymer (2). This observation 

reveals that pH value controlled syntheses is really a powerful strategy for fabrication of 

functional coordination polymers with diverse structures, which is consistent with the 

conclusion demonstrated in literatures.7,11 Additionally, we have found that the hydrothermal 

reactions of CdCl2/Cd(Ac)2 with Hatz and H4btec can also produce 1 and 2 under the same 

condition (Fig. S3), which indicates that the influence of the metal precursor to the formation 

of 1 or 2 is negligible, and further reveals that in this reaction system the pH value is the most 

important factor that determines the final product of the reaction. Considering Zn(II) ion has 

similar coordination modes to Cd(II), we tried to use Zn(II) instead of Cd(II) to assemble 

coordination polymers. However, we can not get the Hatz-H4btec-based Zn(II) CPs under the 

same condition, which may be attributed to the smaller ion radii of Zn(II) ion. 

Crystal structures 

The result of single-crystal X-ray diffraction analysis reveals that 1 crystallizes in the 

monoclinic system with the space group of C2/c. The asymmetrical unit of 1 contains one 

[Cd2(atz)(btec)(H2O)2]
- coordinated unit and one anti-cation K+. As shown in Fig. 1a, the 
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central metal Cd(1) ion is six-coordinated with four oxygen atoms (O(1), O(2), O(3B) and 

O(4A)) from three carboxylate groups of three individual μ6-btec4- ligands (Scheme 1a), one 

nitrogen atom (N(2)) from one μ2-atz- ligand (Scheme 1c), and one coordinated water 

molecule (O(1W)), resulting in a slightly distorted octahedral geometry (Fig. S2a). O(1), O(2), 

O(4A) and N(2) locate the equatorial quasi-plane. O(1W) and O(3B) occupy the axial 

positions. The four carboxylate groups of H4btec and the imine group of Hatz deprotonate. 

The resulted btec4- and atz- anions employing μ6- and μ2- bridging coordination modes 

respectively (Scheme 1a and 1c), bond with six and two Cd(II) ions. The bond lengths of 

Cd-O (2.243(3)-2.429(3) Å) and Cd-N (2.210(4) Å) (Table S1) are comparable with those 

reported in other Cd(II) compounds.8,12c,15b,e,16,19c Through the bridging of μ6-btec4- and μ2-atz- 

anions, the Cd(II) ions are connected together to generate a 3D anionic microporous 

framework along the c axis (Fig. 1b). The K+ ions, as anti-cations to balance the charge of the 

framework, locate the micropores and weakly interact with the carboxyl oxygen atoms of 

μ6-btec4- ligands (Fig. 1b). 

To well understand the structure of 1, the topological approach was applied to simplify 

and analyze the framework of 1. Obviously, the μ2-atz- anion, connecting two Cd(II) ions, 

should be considered as a linker. The Cd(II) ions, connecting three μ6-btec4- and one μ2-atz- 

anions, can be regarded as a 4-connected node (Fig. 1c). The μ6-btec4- anion, bonded with six 

Cd(II) ions, can be viewed as a 6-connected node (Fig. 1d). Therefore, a (4,6)-connected 

network with the Schläfli symbol of {42·5·63}{44·54·63·74} is formed (Fig. 1e), which has not 

been reported in literature before this work.23  

Raising the pH value to ~9, we obtained a new coordination polymer (2). Single-crystal 

X-ray diffraction analysis reveals that 2 crystallizes in the triclinic system with space group of 

Pī. The structure contains three crystallographically independent Cd(II) ions. As illustrated in 

Fig. 2a, all Cd(II) ions are six-coordinated and show similar distorted {CdNO5} octahedral 
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geometry. The nitrogen atom coordinating with Cd(1)/Cd(2)/Cd(3) is from μ3-atz- ligand 

(Scheme 1d). The five oxygen atoms (O(1), O(2), O(8A), O(5B) and O(7B)) bonding with 

Cd(1) come from three individual μ9-btec4- ligands (Scheme 1b) (Fig. S2b), while those (O(1), 

O(6D), O(3E), O(9), and O(1W)) around Cd(2) are from three individual μ9-btec4- ligands 

(Scheme 1b), one coordinated water molecule and one μ3-OH- bridge (Fig. S2c), and those 

(O(3G), O(4B), O(9B), O(9F) and O(2W)) binding with Cd(3) come from two individual 

μ9-btec4- ligands, two μ3-OH- bridges and one coordinated water molecule (Fig. S2d). In 

contrast to 1, the ligands of btec4- and atz- anions in 2 employ more complicated coordination 

modes (Scheme 1b and 1d). The btec4- anion acts as a μ9- bridge connecting nine Cd(II) ions, 

which is rarely observed in H4btec-based coordination polymers.18e,f,24 The atz- anion serves 

as a μ3- bridge linking three Cd(II) ions. The bond lengths of Cd-N (2.250(4)-2.392(5) Å) and 

Cd-O bond (2.218(4)-2.490(3) Å) are in good agreement with literature values (Table 

S1).8,12c,15b,e,16,19c It should be noted that the OH- anion, adopting a μ3- bridging coordination 

mode, takes part in the construction of the framework. Two μ3-OH- anions connect two Cd(2) 

and two Cd(3) to form a tetra-nuclear [Cd4(μ3-OH)2] cluster, which is further linked with two 

Cd1 by the bridges of two μ3- atz- anions, generating a [Cd6(μ3-OH)2(μ3-atz)2]
8+ structural unit 

(Fig. 2b). The [Cd6(μ3-OH)2(μ3-atz)2]
8+ structural units are further connected together by 

μ9-btec4- ligands, resulting in a 3D porous structure (Fig. 2e), in which each 

[Cd6(μ3-atz)2(μ3-OH)2]
8+ structural unit connects ten μ9-btec4- ligands (Fig. 2c), and each 

μ9-btec4- ligand links five hexanuclear Cd(II) clusters (Fig. 2d). Consequently, a rare 

(5,10)-connected 3D topological network with the Schläfli symbol of {410}2{428·616·8} is 

generated (Fig. 2f). To the best of our knowledge, 2 represents the first (5,10)-connected 

network among reported CPs.23 

X-ray powder diffraction, thermal stability analysis and luminescent properties 

The phase purity of the bulk sample of 1 and 2 were identified by powder X-ray diffraction 
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(PXRD). As shown in Fig. S3, all the peaks displayed in the measured patterns at room 

temperature closely match to those in the simulated patterns generated from single-crystal 

diffraction data, indicating that single phases of 1 and 2 have been formed. The 

thermogravimetric analyses (TGA) for 1 and 2 were estimated under N2 atmosphere from 20 

to 800 °C at a heating rate of 10 °C·min-1 (Fig. 3). The TGA curve of 1 shows a weight loss of 

5.9% in the temperature range of 150-227 °C, corresponding to the loss of the coordinated 

water molecules (calcd. 5.7%). The desolvated 3D framework is stable up to 280 C, followed 

by another two continuous weight losses after that temperature. 2 loses its lattice and 

coordinated water in the 50-380 °C temperature range. The weight loss of 9.6% is consistent 

with that calculated (9.5%). Upon further heating, the desolvated framework began to 

decompose by another two step of continuous weight losses. 

Constructed from a metal center with d10 electronic configuration and two mixed-ligands 

with conjugated systems, 1 and 2 may exhibit excellent photoluminescent behaviors. Hence, 

we measured their photoluminescent properties in the solid state at room temperature. As 

shown in Fig. 4, 1 and 2 show blue photoluminescence emission at 470 and 457 nm upon 

excitation at 350 and 370 nm, respectively. According to the literature,18f,g,19c,20a the free 

H4btec and Hatz ligands exhibit weaker luminescent emission bands at 397 and 325 nm, 

respectively. Compared with the emission spectra of the free H4btec and Hatz ligands, the 

emission peaks of 1 and 2 significantly red shift, which may be attributed to the deprotonated 

effects of H4btec and Hatz ligands, the cooperative effects of intraligand emission, and the 

coordination interactions between ligands and Cd(II) ions. As the Cd(II) ion is difficult to be 

oxidized or reduced, the photoluminescence emissions of 1 and 2 may be assigned to 

intraligand (n-π* or π-π*) fluorescent emission.3a,13e,18f,25 

Conclusions 

In summary, by pH value controlled strategy, we have successfully synthesized two 3D Cd(II) 
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CPs with mixed-ligands of H4btec and Hatz under the same reaction condition. 1 is a 3D 

coordination polymer with rare (4,6)-connected topological network, and 2 is a 3D porous 

framework with rare (5,10)-connected topological network. Photoluminescent investigations 

indicate that 1 and 2 may be potential blue materials. 
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Table 1. Crystal Data and Structure Refinements for 1 and 2 

 1 2 

Formula C11H8Cd2KN5O10 C11H11Cd3N5O12 

Fw. 634.12 742.45 

Temperature (K) 150(2) 150(2) 

Crystal system Monoclinic Triclinic 

Space group C2/c 1P  

a (Å) 10.9578(3) 6.5950(4) 

b (Å) 16.3093(5) 9.1653(5) 

c (Å) 9.2414(3) 14.1958(10) 

α (˚) 90.00 85.873(5) 

 (˚) 97.956(3) 82.166(5) 

γ (˚) 90.00 74.734(4) 

V (Å3)  1635.67(9) 819.48(9) 

Z 4 2 

Dc (g·cm-3) 2.575 3.009 

F(000) 1216 704 

θ range(˚) 2.50 to 27.00 2.68 to 27.00 

Reflections collected/Unique R(int) 

Data/restraints/parameters 

3486/1778(0.0380) 

1778/4/142 

6240/3555(0.0296) 

3555/0/295 

GOF on F2 1.044 1.060 

R1[I≥2σ(I)] 0.0341 0.0364 

wR2[I≥2σ(I)] 0.0560 0.0593 
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(a) μ6-btec4-            (b) μ9-btec4-             (c) μ2-atz-         (d) μ3-atz- 

Scheme 1 Coordination modes of btec4- and atz- ligands observed in 1 and 2. 
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Fig. 1 (a) Coordination environment of Cd(II) ion in 1 (thermal ellipsoids are drawn at a 30% 

probability level. Symmetry codes: A -x, -y+1, -z; B -x, y, -z+1/2; D -x+1, y, -z+1/2; E -x-1/2, 

-y+1/2, -z). (b) 3D framework of 1 (K+ ions are shown in space-filling model). (c) 

4-Connected Cd(II) node. (d) 6-Connected μ6-betc4- node. (e) Binodal (4,6)-connected 

topological network in 1. 

(a) (b) 

(c) (d) 

(e) 
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Fig. 2 (a) Coordination environments of Cd(II) ions in 2 (thermal ellipsoids are drawn at a 

30% probability level. Symmetry codes: A -x+1, -y, -z; B x, y+1, z; C x, y-1, z; D x-1, y+1, z; 

E x-1, y, z; F -x, -y+1, -z+1; G -x+1, -y+1, -z+1; H -x, 2-y, 1-z). (b) [Cd6(μ3-OH)2(μ3-atz)2]
8+ 

unit in 2. (c) 10-Connected node of [Cd6(μ3-atz)2(μ3-OH)2]
8+. (d) 5-Connected node of 

μ9-betc4-. (e) 3D framework of 2. (f) Binodal (5,10)-Connected topological network of 2. 

(a) (b) 

(c) (d) 

(e) (f) 
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Fig. 3 TGA curves for 1 and 2. 
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Fig. 4 Solid-state luminescent emission spectra of 1 and 2 at room temperature (λex = 350 and 

370 nm, respectively). 
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TOC graphic for 

 

Two three-dimensional cadmium(II) coordination polymers 

based on 5-amino-tetrazolate and 

1,2,4,5-benzenetetracarboxylate: pH value controlled 

syntheses, crystal structures, and luminescent properties 

 

 

Di-Chang Zhonga,*, Wen-Guan Lu,b,* Ji-Hua Denga 

 

Two 3D cadmium(II) coordination polymers based on mixed-ligands of 5-amino-tetrazole 

(Hatz) and 1,2,4,5-benzenetetracarboxylic acid (H4btec) have been prepared by controlling the 

pH values of the reaction mixture. 
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