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A Cp*CoI2-dimer as a precursor for cationic Co(III)-

catalysis: application to C-H phosphoramidation of 

indoles 
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C2-Selective indole C-H phosphoramidation was achieved 

under improved Cp*Co(III) catalysis. A cationic Co(III) 

species generated in situ from a Cp*CoI2-dimer showed the 

best catalytic activity, giving phosphoramidated indoles in 

60-86% yield. 

Transition metal-catalyzed C-H bond functionalization reactions are 

powerful and potentially superior to traditional organic reactions 

using stoichiometric activating reagents. Among the various 

transition metal catalysts developed for C-H bond functionalization 

reactions, cationic Cp*Rh(III) and Cp*Ir(III) complexes are widely 

applied for various C-C, C-N, and many other C-X bond-forming 

reactions.1 Despite their high catalytic activity and broad reaction 

scope, however, the use of expensive and precious rhodium and 

iridium metal sources is somewhat disadvantageous. Thus, the 

development of an alternative catalyst with readily available base 

metal sources is highly desirable.2 Since our first report on the utility 

of a cationic Cp*Co(III)-arene complex 1a in 2013 (Fig. 1),3 we and 

others have expended tremendous effort to broaden the scope of 

Co(III)-catalysis.4,5 The development of a readily available, stable, 

and easy-to-handle catalyst is in high demand to further enhance the 

application of cationic Cp*Co(III) catalysis. Toward this aim, we 

previously reported the synthesis and application of a Cp*Co(CO)I2 

complex.6 The Cp*Co(CO)I2 complex 1b was useful for generating 

an active cationic Co(III) species in situ. Safety issues, however, 

remained problematic; toxic carbon monoxide was inevitably 

released during the reaction process, and all reaction vessels had to 

be handled carefully. Thus, further studies are needed to avoid the 

safety issues in future industrial applications of the Co(III) catalysis. 

Herein, we describe the utility of an air-stable dimeric [Cp*CoI2]2 

complex 1c, which is readily available in multi-gram quantity. The 

dimeric  [Cp*CoI2]2 1c showed superior performance in comparison 

with previously reported Co(III) complexes. 

   Phosphoramidates are important structural units found in many 

biologically active compounds,7 such as agrocin 84,8a microcin C7,8b 

and phosmidosine antibiotics,8c and pro-nucleotides as prodrugs of 

antiviral and antitumor agents.8d In addition, phosphoramidates are 

useful synthetic intermediates for synthesizing various nitrogen-

containing heterocycles.9 Conventional methods for 

phosphoramidates rely on P-N bond formation, while the C-H bond  

 
Fig. 1  Structures of Cp*Co(III) complexes 1a-1d. 

phosphoramidation strategy is less studied. Recently, a couple of C-

H phosphoramidation reactions with phosphoryl azides were 

disclosed under transition metal catalysis.10-13 Among them, the 

Cp*Ir(III)-based strategy pioneered by Chang and coworkers 

provides a highly efficient approach for the synthesis of various 

phosphoramidates from arenes.12 Because indoles were not used in 

recent reports of Cp*Ir(III)-catalysis, we selected C-H 

phosphoramidation reaction of indoles 2 with phosphoryl azides 3 as 

a target reaction to broaden the scope of C-H phosphoramidation 

reactions.14  

    Initial optimization studies using indole 2a and azide 3a15 are 

summarized in Table 1. The original cationic Cp*Co-arene complex 

1a did not afford any product (entry 1). In situ generation of an 

active cationic Cp*Co(III) species was effective, and the 

combination of Cp*Co(CO)I2 1b and AgSbF6 gave the desired 

product 4aa, albeit in moderate yield (entry 2, 34%). The yield was 

improved by changing the catalyst precursor to a dimeric iodide 

complex [Cp*CoI2]2 1c (50%, entry 3), while [Cp*CoCl2]2 1d3 

resulted in poor yield (4%, entry 4).16 Because dimeric [Cp*CoI2]2 

1c was synthesized by thermal decarbonylation of 1b in a gram 

scale,17 it was necessary to carefully perform the decarbonylation 

process. Once dimeric [Cp*CoI2]2 1c was obtained, however, 1c 

itself was air-stable and easy-to-handle. Other silver salts (entries 5-

6) as well as other solvents did not improve the yield. In contrast to 

our previous studies on indole functionalization,4a,6 the addition of 

KOAc was not effective (entry 7). While higher temperature 

decreased the yield, probably due to the thermal instability of 3a 

(entries 8-9), a higher concentration improved the yield (entries 10- 
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Table 1 Optimization of reaction conditionsa 

 

a Reactions were run using 2 equiv of 2a. b Yield of 4aa was determined by 
1H NMR analysis of crude reaction mixture with an internal standard. c KOAc 

(20 mol %) was added. d Isolated yield of 4aa was determined after 

purification by silica gel column chromatography. 

11). In entry 11, 4aa was obtained in 86% yield (80% isolated yield) 

at 2.0 M in 1,4-dioxane at 60 °C. The reaction was completely C2-

selective, and no regioisomeric product was detected under the 

optimized reaction conditions. Negative control experiments in 

entries 12-13 indicated that both complex 1c and AgSbF6 are 

essential to promote the reaction. Neither other Co(III)-salts nor in 

situ-generated cationic Co(II)-species promoted the reaction (entries 

14-16), suggesting that the use of cationic Co(III) species was 

essential to promote the reaction. 

   The substrate scope of the phosphoramidation of indoles under the 

optimized conditions is summarized in Table 2.18 Various indoles 

bearing electron-donating (Me, MeO, and BnO) and electron-

withdrawing groups (halogen and CO2Me) at either the C4-, C5-, or 

C6-position afforded products 4aa–4na in 60–86% yield. These 

results clearly indicated good chemoselectivity of the present 

Cp*Co(III) catalysis. The C2-selectivity should arise from the inner 

sphere mechanism involving directing group-assisted C-H bond 

metalation. Thus, our reaction conditions are complementary to the 

intra- and intermolecular alkane amidation reaction via an 

outersphere mechanism under Co- and Ru-porphyrin catalysis.11b 

With regard to the scope of the phosphoryl azide, an electron-

donating MeO-substituent and an electron-withdrawing Cl-

substituent were compatible (4ab, 77%; 4ac, 74%). On the other 

hand, diethyl phosphoryl azide did not afford desired 

phosphoramidation product. 

    A plausible reaction mechanism is depicted in Scheme 1, based on 

the previously reported Cp*Co(III)-catalyzed C-H bond 

functionalization reaction of indoles4 and the mechanistic studies by 

Chang and coworkers on the Cp*Rh(III)-catalyzed19 C-H bond 

amidation reactions.  Initial halide abstraction from [Cp*CoI2]2 1c by 

AgSbF6 in the presence of the pyrimidyl-protected indole 2 would 

form cationic complex I. A C-H bond activation step to afford 

metalacycle II would proceed via either electrophilic aromatic 

substitution mechanism or concerted metalation-deprotonation 

Table 2 Substrate scope of phosphoramidation of indoles 2 with phosphoryl 

azides 3a 

 

aReactions were run using 2 (0.80 mmol), 3 (0.40 mmol), 1c (5 mol %), and 
AgSbF6 (20 mol %) in 1,4-dioxane (2.0 M) at 60 °C for 36 h. Isolated yield 

of 4 was determined after purification by silica gel column chromatography. 

 
Scheme 1 Plausible catalytic cycle. 

(CMD)20 assisted by some basic functional groups. Coordination of 

phosphoryl azide 3 (III) followed by C-N bond formation with 

release of N2 gave IV. Although stepwise C-N bond formation 
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through a Rh(V)-nitrenoid species rather than concerted C-N bond 

formation was supported in the Cp*RhIII-catalyzed amidation 

reaction,18 we cannot yet conclude which mechanism is plausible, 

either nitrenoid formation or concerted substitution, for the 

Cp*Co(III) catalysis. Because there is no evidence for the formation 

of a high valent, possibly unstable, Co(V) intermediate under the 

present reaction conditions, further studies are required to clarify the 

reaction pathway. Protonation by the acidic proton released in the C-

H bond metalation step (path A) or direct deprotonation from a C-H 

bond of another substrate 2 (path B) would dissociate the product 4. 

   In conclusion, an improved cationic Cp*Co(III) catalyst generated 

from [Cp*CoI2]2 1c and AgSbF6 exhibited higher catalytic activity 

than those from other Cp*Co(III)-complexes. Directing group-

assisted C-H bond metalation realized high regio- and 

chemoselectivity under mild conditions, and the C2-selective C-H 

bond phosphoramidation reaction of 2-pyrimidyl-protected indoles 

proceeded in 60–86% yield. Studies of the reaction mechanism as 

well as further applications of Cp*Co(III)-catalysis are actively 

ongoing in our group. 
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graphical abstracts: C2-selective indole C-H 

phosphoramidation under Cp*Co(III) catalysis was achieved. 
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