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N-arylimine-functionalised protic NHC (pNHC) Ir(I) and 
Ir(III) complexes are obtained directly from neutral or 
cationic Ir(I) imidazole complexes using excess [Ir(cod)(µ-
Cl)]2 or TlPF6, respectively. N-arylimine-functionalised 
imidazolium salts lead to imidazole or pNHC complexes by 
competing N-H or C-H bond activation depending on the type 
of the imidazolium counterion. 

The landmark isolation of stable NHCs of the imidazole type made 
use of bulky N-substituents for the successful kinetic and 
thermodynamic stabilisation of the reactive carbene species.1 Since 
then, bulky alkyl and aryl substituents have been used routinely in 
the NHC coordination chemistry, exerting also subtle electronic and 
steric tuning of the CNHC-metal interactions. In contrast, 1H-
imidazol-2-ylidene, the simplest parent (R = H) imidazol-type protic 
NHC (pNHC) has only recently been stabilised by coordination to 
transition metals (I),2 and the resulting carbene complex may be 
transformed to its imidazole tautomer (II).3 

	
  

Scheme 1 Tautomerism/metallotropism involving protic NHC 
(pNHC) and imidazole ligands (M = metal, R = H, alkyl, aryl, 
functional group). 

 
pNHCs constitute versatile spectator ligands, which, in addition 

to their strong σ-donor character, provide the option of secondary 
interactions, (i.e. H-bonding), that could be of importance in the 
design of bifunctional catalysts,4 substrate recognition5 and of 
relevance to biological systems.6 

The coordination chemistry of pNHCs is a topical area of 
interest, thanks to the successful development of versatile synthetic 
methodologies based on building the C-bound heterocycle at the 
metal coordination sphere,7 or using suitable N-protecting groups 
that are removed after coordination,8 or by facilitating kinetic 
formation of the M-CNHC bond by C-X bond (X = halide) oxidative-

addition of halo-imidazoles.2a,9 Conceptually simpler is the direct 
pNHC formation. 

It has been established computationally that 1H-imidazole is 
more stable than the tautomeric 1H-imidazol-2-ylidene by ca. 30 
kcal/mol.3a However, this energy difference can be suppressed and 
reversed on metal coordination of the 1H-imidazol-2-ylidene. 
Analogous comments apply to 1R-imidazole (III) and tautomeric 
pNHCs 1R-imidazol-2-ylidenes (IV). 

	
  
The conversion of coordinated R-imidazole to pNHC (II → I) 

was firstly demonstrated experimentally by the acid-catalyzed 
rearrangement of Ru-imidazol to Ru-pNHC10 and, more recently, by 
the deprotonation with an external base of imidazoles coordinated to 
mononuclear, inert 6-coordinate d6 Re(I) and Mn(I) carbonyls11 and 
Fe(NO)2(CO),6a followed by quenching of the resultant imidazolide 
with a suitable acid. Conversely, transformation of Ru-coordinated 
NHC following N-C bond activation to a mixture of coordinated 
imidazole and pNHC tautomers was studied by experimental and 
computational means.3b,3c Similar rearrangements involving related 
benzimidazole12 or pyridine13 heterocycles have been observed, and 
associated with catalytic transformations. 

From these limited available examples, it appears that the 
elementary steps involved in C-H and N-H bond cleavage/formation, 
which may be responsible for tautomerism, may be mechanistically 
diverse. Furthermore, the presence of functionalities capable of 
stabilising and directing C vs. N metalation has not been thoroughly 
examined, except in the context of the formation of heteroatom-
functionalised NHC spectator ligands.14 

Herein, we report preliminary studies aiming at the synthesis of 
N-arylimine-functionalised imidazole and pNHC complexes of 
iridium (type I, R = arylimino, M = Ir), and at gaining insight into 
the elementary steps that may operate during imidazole to pNHC 
tautomerism (from II to I in Scheme 1). The arylimine functional 
group was selected by virtue of its comparable donor characteristics 
with the κ1-N-imidazole ligand and the possible reversible formation 
of chelates. 
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Scheme 2 Synthesis of complexes 1, 2 and 3+[PF6]-. Reagents and 
conditions: (i) 0.5 equiv. of [Ir(cod)(µ-Cl)]2, THF, RT, 97% yield; (ii) 
1.0 equiv. of [Ir(cod)(µ-Cl)]2, THF, RT, 86% yield; (iii) 0.5 equiv. of 
[Ir(cod)(µ-Cl)]2, THF, RT, 86% yield; (iv) 1.0 equiv. of TlPF6, 
CH2Cl2 or MeCN, RT, 85% yield; (v) 1.0 equiv. of TlPF6, -0.5 equiv. 
[Ir(cod)(µ-Cl)]2, CD2Cl2, RT. 
 

Reaction of 1-(2,6-diisopropylphenylimino)ethylimidazole 
(L)15 with 0.5 equiv. of [Ir(cod)(µ-Cl)]2 in THF led to the isolation of 
1 (Scheme 2). Both analytical and spectroscopic (1H- 13C{1H}-NMR 
and IR) data point to the presence of a N-bound Ir(cod)Cl fragment 
(see ESI for synthetic details and full characterisation). Particularly 
diagnostic is a broad peak at δ 8.88 assignable to the C2-H (cf δ 8.11 
in L). N-coordination was further corroborated crystallographically 
(Figure S1 in ESI).‡ Importantly, the arylimino functional group (in 
E configuration in 1) is dangling. 

Further reaction of 1 with [Ir(cod)(µ-Cl)]2 (0.5 equiv.) or 
reaction of L with 1.0 equiv. of [Ir(cod)(µ-Cl)]2 (THF, RT) gave 2 
(Scheme 2). Its 1H NMR spectrum (THF-d8), contains a hydride 
signal at δ -14.74 and in the 13C NMR spectrum, signals at δ 166.6 
and 158.7 are assignable to C(imine) and C-2(NHC), respectively. The IR 
ν(Ir-H) band is observed at 2200 cm-1. The structure of 2 (Fig. 1) 
revealed a binuclear complex comprising one N-bound Ir(I) centre 
(cf. 1), and one C2-bound Ir(III) center, formally originating from 
the second equivalent of [Ir(cod)(µ-Cl)]2; crucially, the N-arylimino 
group is also coordinated to Ir(III) as part of a 5-membered chelate. 
One can thus consider the N-bound Ir(cod)Cl moiety as a N(imidazole) 
‘metalla protecting and activating group’, which in cooperation with 
the directing effect of the N-arylimine, facilitates C2 metalation. The 
latter may involve C-H oxidative addition,16 in line with the 
observed cis Ir-C and Ir-H bond disposition. 

With the hope to access a pNHC Ir complex by tautomerism of 
a more reactive species (e.g. [1-Cl-]+), 1 was treated with the 
chloride abstracting TlPF6 (in CH2Cl2 or MeCN, RT) and, 
gratifyingly, this led to the isolation of the salt 3+[PF6]-. Its 1H NMR 
spectrum contains a characteristic new broad singlet at δ 10.36, and 
the signal of the C2-H of the starting material has disappeared, while 
in the 13C NMR spectrum the NCN and C=N signals have shifted 
considerably downfield (from δ 138.3 and 148.9 to 173.6 and 168.0, 
respectively). The IR absorptions at 3359 and 1613 cm-1 are 
assignable to N-H8a and coordinated C=N, respectively. 

The structure of 3+[PF6]- was elucidated crystallographically 
(see Fig. 2 for the cation and ESI for details).‡ The Ir adopts a 
distorted square-planar coordination geometry defined by a κ2(N,C)-
bound novel imino-functionalised pNHC and a cod ligand. 

 
Fig. 1 Molecular structure of 2. H atoms are omitted for clarity. 
Thermal ellipsoids are at the 30% level. 
 
The Ir−CpNHC bond distance (1.984(3) Å) is shorter than the average 
found in other Ir(I)-NHC complexes17 (2.038 Å, range 1.895 
Å−2.194 Å, with shorter bond lengths associated with chelating 
NHC ligands), probably due to the chelate formation and the small 
hydrogen substituent at N1 atom. The closest N−H···F(PF5) 
distances of 2.37(5) and 2.49(5) Å are consistent with hydrogen 
bonding interactions. 

	
  

Fig. 2 Molecular structure of the cation in 3+[PF6]-. H atoms are 
omitted for clarity, except H1(N1). Thermal ellipsoids are at the 30% 
level. 
 

The tautomerism (II → I in Scheme 1) of the transient  [1-Cl-]+ 
to 3+, which provides an alternative to the recently reported 
metalation of 2-chloro-benzimidazole heterocycles and the formation 
of anionic and pNHC ligands,9b may involve concerted, dyotropic-
type metalation/H transfer and be driven by the thermodynamic 
stability of 3+ due to Ir-C bond or/and chelate ring formation.† It has 
been reported that the increased electrophilicity (going from Ir(I) to 
Ir(III) and Ir-Cl to Ir+) favours the formation of the pNHC over 
imidazole complexes.3a Interestingly, abstraction with 1.0 equiv. of 
TlPF6 of a chloride ligand in 2, most likely from the Ir(III) centre, 
also gave 3+[PF6]-, together with [Ir(cod)(µ-Cl)2] which originates 
from the N-bound Ir(cod)Cl moiety, in quantitative NMR yield 
(Scheme 2). 

In attempts to establish experimentally whether discrete 
deprotonation/protonation steps may model the reverse reaction, i.e. 
the transformation from pNHC to N-imidazole, the pNHC in 3+ was 
deprotonated with 1.0 equiv. of NaOt-Bu (Scheme 3). 
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Scheme 3 Synthesis of 4 and 5. Reagents and conditions: (i) 1.0 
equiv. of NaOt-Bu, CH2Cl2, 0 ºC, 70% yield. 
 

A complex with coordinated ‘anionic’ imidazolide9b,14a was not 
obtained, but rather a mixture of two different iridium species (in a 
ratio of ca. 25:75 by 1H NMR in CD2Cl2 at RT). The 13C NMR 
spectrum of the mixture showed signals due to NCN and C=N at δ 
174.8 and 156.2, δ 179.3 and 166.3, respectively. Attempts to 
separate the mixture by crystallisation led to the isolation of 4 (the 
1H NMR spectrum of which is assignable to the minor component of 
the mixture) in the form of dark red crystals (Fig. 3). Its structure 
features a diiridium core with two bridging monoanionic 
imidazolides in a symmetrical ‘boat-like’ conformation and no direct 
Ir-Ir interaction (d(Ir-Ir) = 3.1844(3) Å).‡  

 

 
Fig. 3 Molecular structure of 4. H atoms are omitted for clarity. 
Thermal ellipsoids are at the 30% level. 
 

Both Ir centres adopt a square planar coordination geometry, 
defined by the olefinic bonds of the cod ligand, one carbon atom and 
one nitrogen atom of the imidazolide. Interestingly, the N-arylimine 
functionality has become dangling. In the supernatant solution after 
isolation of 4 the same ratio of species was observed (by NMR), and 
dissolution of crystals of 4 resulted again in the same mixture. This 
points to the presence of a chemical equilibrium with another (major) 
partner, the nature of which can be inferred by NMR spectroscopy: 
on the basis on the general appearance of the spectrum and since the 
chemical shift of C=N of the major partner is similar to the 
corresponding value for 3+, we suggest that this partner is the neutral, 
mononuclear complex 5 depicted in Scheme 3.Attempts to protonate 
the mixture 4 and 5 or deprotonate 1 led to intractable product 
mixtures.    

The role of the ‘[Ir(cod)]+’ fragment in [1-Cl-]+ as ‘metalla-
protecting and -directing group’ for the direct metallation of the C2-
H imidazole, raised the question whether non-metal electrophiles, 
such as a proton, could undertake similar roles. In preliminary 
experiments, the simple imidazolium salts LH+X- (6+Cl- and 6+[BF4]-) 

(see ESI for synthetic details and full characterisation data) were 
reacted with [Ir(cod)(µ-Cl)]2 (Scheme 4). 

 

 
Scheme 4 Reactions of (LH+)X- with [Ir(cod)(µ-Cl)]2. Reagents and 
conditions: (i) 1.0 equiv. of HCl (a solution in Et2O), Et2O, RT, 85% 
yield; (ii) 0.5 equiv. of [Ir(cod)(µ-Cl)]2, THF, RT, 85% yield; (iii) 
1.0 equiv. of HBF4·Et2O, Et2O, RT, 73% yield; (iv) 0.5 equiv. of 
[Ir(cod)(µ-Cl)]2, THF, RT, 82% yield. 
 

 
Fig. 4 Molecular structure of 8+ in 8+[BF4]-. H atoms are omitted for 
clarity, except H1(N1). Thermal ellipsoids are at the 30% level. 
 

Unexpectedly, the selectivity of the reactions is dependent on 
the nature of X-. The reaction of 6+Cl- with 0.5 equiv. of [Ir(cod)(µ-
Cl)]2 in THF at room temperature gave the Ir hydride complex 7, 
formally a product from the oxidative addition of the N-H bond to 
Ir(cod)Cl (Ir-H at δ -12.10 in CD2Cl2, ν(Ir-H) at 2206 cm-1). In 
contrast, the reaction of 6+[BF4]- with 0.5 equiv. of [Ir(cod)(µ-Cl)]2 
under the same conditions, yielded the Ir hydride complex salt 
8+[BF4]- (Ir-H at δ -14.50 in CD2Cl2, ν(Ir-H) at 2211 cm-1, ν(N-H) at 
3241 cm-1). The cation 8+ (Fig. 4)‡ formally arises from the 
oxidative-addition of the C2-H bond to Ir(I). Similarly to the Ir(III) 
centre in 2, the Ir in 8+ is in a distorted octahedral coordination 
geometry defined by a κ2(C,N) pNHC–imino chelate, one cod ligand 
and trans hydride and chloride ligands. The presence of a 
N−H···F(BF3) hydrogen bond can also be deduced from the metrical 
data (N−H···F distance 2.721(3) Å). The underlying reason behind 
the anion-dependent selectivity is under investigation but it is clear 
that the presence of a coordinating anion (Cl- vs. BF4

-) favors a 
monodentate behaviour of ligand L. 

In conclusion, we have isolated and characterised novel Ir(I) 
and Ir(III) intermediates involved in the formation of N-arylimine-
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functionalised pNHC complexes of Ir by the direct C-H activation of 
the corresponding imidazoles and imidazolium salts. These results 
highlight the importance of the imidazole pre-coordination or the use 
of the imidazolium salts for successful pNHC isolation. In the 
former case, binuclear or cationic Ir species are implicated in the C2-
H metalation, in the latter, counterion effects influence the 
selectivity for N-H vs. C-H activation. The insight provided may be 
useful in understanding subtle mechanistic details and developing 
simpler synthetic methodologies relevant to pNHC complex 
formation. These targets are being further pursued in our laboratory. 
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