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Solid Interface:  The view through an STM. 
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hipps@wsu.edu 

ABSTRACT:  A focused review is presented on the evolution of our understanding of the kinetic 

and thermodynamic factors that play a critical role in the formation of well ordered organic 

adlayers at the solution-solid interface.  While the current state of knowledge is in the very early 

stages, it is now clear that assumptions of kinetic or thermodynamic control are dangerous and 

require careful confirmation.  Equilibrium processes at the solution-solid interface are being 

described by evolving thermodynamic models that utilize concepts from the thermodynamics of 

micelles.  A surface adsorption version of the Born-Haber cycle is helping to extract the 

thermodynamic functions of state associated with equilibrium structures, but only a very few 

systems have been so analyzed.  The kinetics of surface phase transformation, especially for 

polymorphic phases is in an early qualitative stage.  Adsorption and desorption kinetics are just 

starting to be measured.  The study of kinetics and thermodynamics for organic self-assembly at 

the solution-solid interface is experiencing very exciting and rapid growth. 

 

Introduction 

Understanding and predicting the chemistry that occurs at the solution-solid interface is of 

critical importance for a wide range of modern scientific and technological problems.  Molecular 

self-assembly from solution onto surfaces is widely embraced as a strategy for creating adlayers 

with desirable electronic, photonic, and chemical properties.  Catalysis and battery development 

also are intimately dependent on the chemistry that occurs at the solution solid interface.  If we 

are to develop a rational method for predicting the surface structures that yield optimal 

processes, we must understand the fundamentals about how adlayers are formed and react at the 

solution-solid interface.  This great importance is counter balanced by a very limited selection of 

tools for studying this interface at the molecular – or even sub molecular – level.  Scanning probe 

microscopy, and especially scanning tunneling microscopy (STM) offers the ability to perform 

these studies in various solution environments, at varying temperature and pressure, and with 

changing solute composition.  Thus, STM has become the primary tool for analyzing structure, 
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 3

and thereby determine all the rate constants and thermodynamic variables associated with each 

step in the process.  To achieve this, we need detailed knowledge of the solvation of the solute, 

the solvation of the surface, the solute-solute interactions (both in solution and on the surface), 

solute-surface interaction, solvent-surface (with both the substrate and the newly formed 

adlayer), and the role of any inhomogeneities on the surface such as defects, step edges, or 

reconstructions. An approximate graphical presentation of the thermodynamic relationships (for 

the case of the enthalpy) was given by Lackinger 11 and is reproduced with his permission as 

Figure 1.  Of course, this diagram works equally well for any function of state. 

In order to specify kinetics, we need the rates of adsorption, the nucleation rate, the growth 

rate, the diffusion rate on the surface, the desorption rates (from different sites), the diffusion rate 

from solution to the surface, and the desorption rate for the solvent (both from the substrate and 

the adlayer).  For no system do we currently have all of these parameters.  In fact, for very few 

systems do we even know if the structure observed is in dynamic equilibrium with the solvent. 

The temperature dependence of rate constants is generally treated in one of two ways.12  The 

Arrhenius equation, RT

E

ekk



 0 , assumes an activation energy E that must be thermally 

surmounted and k0 is interpreted as an attempt frequency, generally of the order of 1012 Hz to 

1014 Hz.  Alternatively, the rate constant can be expressed in terms of the Eyring transition state 

theory to be RT

H

R

S
B ee
h

Tk
k

 




  where H+ and S+ are enthalpy and entropy associated with 

formation of the activated complex. The first of three terms is 6.6x1012 Hz at 293 K, making the 

two different formulations numerically similar when the entropy of activation is small, but quite 

different when there is a large difference in entropy (as in desorption from the surface).   

Thermal Annealing 

The simplest type of experiment that can produce qualitative information about the roles of 

thermodynamics and kinetics at the solution-solid interface is thermal annealing, where a sample 

is heated for a fixed period and then allowed to cool to room temperature for measurement.  We 

used this method to investigate the adsorption of coronene on Au(111) from an alkanoic acid 

solution.13  We were able to show that the neither the dense packed nor more open polymorphs 

seen at room temperature were stable above about 100ºC but that the rate of desorption was such 

that it required several minutes to significantly remove coronene from the surface.  These 

annealing experiments also demonstrated that solvent co-adsorption was an important factor in 
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 4

the thermal stability.  In addition, the high temperature desorption was initiated at defects and 

grain boundaries and then grew from there in a manner similar to a grass fire.  Thus, kinetics 

played a significant role in the desorption process.  

Marie and co workers studied the role of annealing (up to 50ºC) on hexakis(n-dodecyl)-peri-

hexabenzocoronene (HBC-C12) adsorption on Au(111) from an n-tetradecane solution.14  They 

demonstrated that the packing density of the HBC-C12 could be tuned with annealing 

temperature as the adlayer underwent three different phase transitions over that temperature 

range.  STM images revealed that the packing density increase is the result of stepwise 

desorption of n-dodecyl chains allowing the HBC cores to occupy more of the surface.  The three 

transitions were all irreversible leaving an open question as to whether they were entirely 

kinetically controlled, or if the last one was the equilibrium (thermodynamic) state.  De Feyter 

and coworkers observed similar phenomena (tuning packing density by annealing) in the case of 

lead pyrenocyanine at the phenyloctane/HOPG interface. 15  Annealing at 60C resulted in a 

transition to a new phase that remained stable upon cooling.  Thus, it is likely that the room 

temperature structure is kinetically controlled.  

A very recent example of the use of thermal annealing to interrogate the role of kinetics and 

thermodynamics in the development of a particular surface structure was presented by Hu and 

coworkers.16  They investigated the self assembly of phthalocyanine arrays using triphenylene-

2,6,10-tricarboxylic acid as a nanotemplate.  The solvent used was 1-heptanoic acid and the 

substrate was HOPG.  By a combination of concentration and temperature tuning, they were able 

to observe five different arrays, including one thermodynamically stable form.  The 

thermodynamically stable structure achieved by annealing at 323 K for 10 minutes had very 

large grains and few defects. 

While none of these studies give quantitative insights into the rates of critical processes or 

values for enthalpies or entropies associated with the thermodynamically stable forms, they do 

clearly show that kinetics is often more important than thermodynamics for adlayers formed near 

room temperature at the solution solid interface.  We next turn our attention to actual 

measurement or calculations of critical thermodynamic properties. 

Measurement or Calculation of Thermodynamic Functions for Monolayer 

Formation 

Purely thermodynamic measurements (not microscopic) have been used to determine 

parameters relevant to Figure 1.  The literature is full of measurements of enthalpy and entropy 
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for common processes such as sublimation and boiling, and one can find heats of desorption 

(into vacuum) for a number of organic species.  Heats of solution and desorption into organic 

solvents are less common, but some do exist.  Examples of these are the work of Gamboa et.al 17 

and of Matzger. 18   Gamboa reported heats of solution (-Hsol-crystal in Figure 1) and solvation 

(Hvacuum-sol) for several transition metal tetraphenylporphyrins in chloroform.  Heats of solution 

ranged from 55.6 kJ/mole to 14.5 kJ/mole, depending on the central metal. Barnard and Matzger 

used flow microcalorimetery to measure heats of adsorption (Hsol-mono) of 1-octadecanol, 1-

octadecanethiol, stearic acid, octadecane, and 1-bromooctadecane from chloroform onto 

graphite.  Their results ranged from -29.7 kJ/mole (for 1-bromooctane) to -70.3 kJ/mole (for 1-

octadecanol).   

Lackinger's group has contributed significantly to filling out the diagram in Figure 1 in the 

case of materials of interest in self-assembly studies.  They identify their process as a "Born-

Haber Cycle for Monolayers." 19-23  In general, they use temperature programmed desorption 

data to determine the heat of sublimation for a monolayer (-Hvac-mono),  and the effusion rate 

from a Knudsen cell as a function of temperature to determine the enthalpy of sublimation 

(Hcrys-vac).  The temperature dependence of the absorbance of a saturated solution in the UV-

visible region was used to determine the heat of solution (-Hsol-crystal).  The estimation of the 

"dewetting" term is the most difficult.  Lackinger defines dewetting as the process of removing 

the solvent from the substrate (a true dewetting) and then wetting adlayer of interest with solvent.  

Thus, the heats of wetting for the solvent on the substrate are overestimates of the net result of 

the multistep step "dewetting".  Lackinger argues that for systems where the solvent does not 

order on the adlayer, one can estimate the dewetting term as the difference between the 

desorption enthalpy and the evaporation enthalpy.22  If the solvent is weakly bound to both the 

bare substrate and the adlayer, this enthalpy will be very small.  On the other hand, if the solvent 

forms a well defined structured monolayer on the substrate and weakly interacts with the solute 

adlayer, the dewetting term may be large, of the order of 10 kJ/mole.  It should be noted that 

Lackinger often uses molecular dynamic and Monte Carlo calculations to estimate some of the 

more difficult thermal quantities, such as the solvent desorption energy.  He says, "The Achilles’ 

heel of this approach is the semi-theoretical evaluation of the dewetting enthalpy which at this 

point necessarily relies on plausible assumptions". 22  

The use of statistical mechanics to estimate adsorption entropies is another interesting 

feature of Lackinger's work.  He uses the approach originally proposed by Whitesides and 
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 7

Solute Concentration and Phase Formation at Equilibrium 

Before beginning this section, we should note that the use of equilibrium thermodynamic 

methods require that the system be in a state of dynamic equilibrium.  There are many time 

stable systems that appear to be in equilibrium but that are not.  For the studies reported in this 

section, dynamic equilibrium was either demonstrated or assumed. 

The study of equilibrated surface structures as a function of concentration is a rich area for 

the application of thermodynamic principles.  When two phases are in equilibrium on the surface 

and the adsorbate is also in equilibrium with the solution, equalities in chemical potential can be 

applied and extremely useful relations can be derived.  An early example of such a study was the 

work of Matzger’s group on competitive adsorption of alkyl dicarbamates on HOPG from 

phenyloctane solution.28  They modeled the adsorption of each component with a Langmuir 

isotherm and used that model to determine the difference between the standard free energies of 

adsorption for pairs of adsorbates.  They took Xi to be the mole fraction of the adsorbent i in 

solution, and i to be the fraction of the surface covered by that component when in equilibrium 

with a solution having concentration Xi.   By adjusting the solution concentrations (Xi(=0.5)) 

such that there was equal coverage of each adsorbate, they were able to write: 

 

(1) 

 

Values of G ranged from a high of 1.7 kJ/mole to near zero.  Using the size of G for 

various pairs of alkyl dicarbamates, one can determine the relative strength of adsorption for 

those pairs.  Unlike the case of a mixture of n-alkanes, the alkyl dicarbamates studied by Matzger 

did not show a strong preference for longer molecules adsorbing more strongly than shorter 

ones.28  Matzger attributes this to the hydrogen bonding between dicarbamates and the increased 

number of such bonds per unit area for the shorter chains.  

Miyake and co-workers studied the coadsorption of various tetraphenyl porphyrins with long 

alkyl side chains on HOPG in phenyloctane solution.29,30  Some of these were double decker 

complexes.  Utilizing the contrast in STM images between the free base and the other 

compounds studied, they measured the ratio of metallated porphyrins and free base porphyrin 

both on the HOPG surface (free, other) and the concentration of these species in solution at room 

temperature.  They found a non-linear relationship between the solution and surface 

concentrations.  They assumed equilibrium between the surface and solution and used the 
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 8

concentration variation to derive the difference in free energies of adsorption of the metallated 

and free porphyrins.  They also identified the resulting value as G.29,30  In 2008, they 

performed a similar experiment with a Zn porphyrins complex and free base, and also found a 

non linear relationship between fraction in solution and fraction on the surface of HOPG. 31  In 

this paper, however, they realized that the assumption of equilibrium was not justified by their 

experiments and they refrained from associating the preferential adsorption with a G value.  

Another early example of the use of chemical potentials comes from the work of 

Lackinger’s group.32  They studied the complex coadsorption of benzenetribenzoic acid and 

trimesic acid at the liquid-HOPG interface in two different solvents (heptanoic and nonanoic 

acid).  By varying the relative concentrations of the two acids in solution, they were able to 

observe six distinct phases.  They used a simple model for the chemical potential of each 

component to help rationalize the complex phase diagram for this system. 

A study of greater impact on understanding thermodynamics at the solution solid interface is 

the case of alkoxylated dehydrobenzo[12]annulenes (DBA-OCn) in trichlorobenzene (TCB) 

adsorbed on highly oriented pyrolytic graphite (HOPG).33  At 21ºC in TCB, DBA adsorbs on 

HOPG in two different polymorphs depending upon the solution concentration.  These structures 

are identified as a honeycomb phase with surface coverage Yh, and a linear phase with coverage 

Yl.  Lei and coworkers 33 assumed that DBA behaved ideally on the surface such that the 

chemical potential of each phase would be given by )ln(0
iii YRT  .  Similarly, the 

chemical potential of DBA in solution was written as ])ln([0 DBARTss   , where [DBA] is 

the molar concentration of DBA in solution.  They then took into account the differing surface 

densities of the two phases by making the condition for equilibrium: 

shl hlhl  )(    (2) 

The coefficients l and h are needed to take into account the differing number of molecules 

per unit area for the two phases. Defining l and h as the number of molecules/nm2 in the linear 

and honeycomb phases, respectively, the transfer of molecules to/from solution required by the 

phase change is recognized.  Using eqn 2, the preceding assumptions, only considering complete 

surface coverage (so Yh+Yl=1), and defining m=l/h, they were able to derive an expression for 

the relative surface coverage as a function of solution concentration: 

K
DBA

Y
m

DBA

Y hh ln
][

1
ln

][
ln 







 









                  (3) 
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Where N is the number of molecules in a particular island of phase i.  With this one change, they 

were able to derive an equilibrium expression for islands containing N molecules in equilibrium 

with solution: 

Nk
h

kN
l

Y

cY
K

/

1/1 


   (5) 

Where k is defined as the area per molecule of the low density (porous) phase divided by the area 

per molecule of the high density phase.  Bellec and coworkers then assume that so long as N is 

sufficiently large for most islands, the behavior of the assembly of islands will be reflected in 

equation 5 with a single value of N.34  Figure 4 shows the evolution of the predicted coverage of 

the porous structure (Yl) with solution concentration and N.  The triangular symbols represent 

the experimental data.  Once N is greater than about 20, a well defined phase transition develops 

in the theoretical expression and accurately reflects the experimental data.  Thus, it is possible to 

accurately model discrete changes in surface structure with concentration. 

 

 

 

10-6 10-5 10-4 10-3

0,0

0,2

0,4

0,6

0,8

1,0
 N=1
 N=2
 N=5
 N=10
 N=20
 N=100
 data

F
ra

ct
io

n 
of

 th
e 

su
rf

ac
e 

co
ve

re
d

by
 th

e 
ho

ne
yc

om
b 

st
ru

ct
ur

e 
(Y

po
ro

us
)

Concentration (mol.L-1)

Figure 4.  Fit of experimental data for adsorption of TSB to equation 5.  Taken 
with permission from reference 34.    Copyright 2011 AIP Publishing LLC. 
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De Feyter explained the discrepancy between experimental and modeling results as due to 

residual motion of TCB molecules in the DBA pores of the low density phase.  They also believe 

that the rotational entropy of both DBA and TCB were overestimated by the method used.  

Further, they caution that there can be large errors in the conformational entropy. 

A very different equilibrium system that has been analyzed both in terms of concentration 

(pressure in this case) and temperature is the oxygen binding of cobalt octaethylporphyrin 

(CoOEP) monolayers.5  In solution at room temperature, CoOEP cannot bind O2.  A monolayer 

of CoOEP on Au(111) does not bind O2 down to -25. 38  A monolayer of CoOEP on HOPG, 

however, does bind O2.  Friesen and co-workers have not only imaged the binding, but have also 

established that it is in fact a dynamic equilibrium process.  Figure 6 shows two sequential STM 

images acquired a few minutes apart from a sample consisting of CoOEP supported on HOPG 

and covered by phenyl octane in an atmosphere of 176 Torr O2 and held at 25ºC.  The very 

bright object in each image is an impurity used as a spatial reference.  O2 binding by CoOEP 

reduces the resonant tunneling through the Co(II) ion and makes the bound molecules appear 

dark.  Each O2-CoOEP in a given scan is identified by its "loss of height" and is circled in Figure 

6.  The ones with white circles are the same molecules in both scans.  Those marked with purple 

circles are different molecules in the later scan than in the first.  As time evolves further images 

were taken and the dynamic variation of O2 binding sites was observed. 

Defining  as the ratio of O2-CoOEP to the total number of molecules in a given image, one 

can plot the variation of observed coverage with time as is done in the bottom half of Figure 6.  

As is required by the small sampling size (a few hundred molecules in each image), the value of 

 fluctuates, but the average value is quite stable.  Thus, there is a dynamic exchange of O2 

between the gas (and solution) phases and the bound state.   This is a clear proof of a dynamic 

equilibrium process.  Extending arguments derived from solution phase studies such as those of 

Collman 39,40 and Stynes,41 it appears that the HOPG surface is donating electrons to the cobalt 

center thereby stabilizing the polarized Co-O2 complex. 

 

Page 12 of 28ChemComm

C
he

m
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t



 

 

If on

follows a

where K(

Figure
equilib
from a
these c
equilib
from r

ne increases 

a Langmuir i

(T) is the equ

O2(g

e 6.  Sequent
brium with o
an STM imag
change with 
bration. N is
reference 5.  

the partial p

isotherm.  Th

)(TK 

uilibrium co

g) + CoOEP/

tial images o
oxygen.  Eac
ge.  Circled 
time but tha
 the number
Copyright 2

pressure of O

hat is: 

 )(1

)(

PT

T






onstant for th

HOPG = O2

of the CoOEP
ch point in th
molecules a

at the averag
r of molecule
2012 Americ

O2 at fixed t

0/

)

PP
      

he process: 

2-CoOEP/HO

P/HOPG sur
he surface co
are those whi
ge is stationa
es in each im
can Chemica

temperature,

                   

OPG             

rface in phen
overage vers
ich are boun

ary – this dem
mage.  Reprin
al Society. 

 the value o

          (7) 

                   

nyloctane an
sus time grap
nd to oxygen
monstrates d
nted with pe

of  increase

  (8) 

nd in 
ph is derived
n.  Note that 
dynamic 
ermission 

13

s and 

d 

Page 13 of 28 ChemComm

C
he

m
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t



 

Figure 7
constant
shown.  
2012 Am

and G0 

Torr. 

By 

pressures

linear va

curve is 

more ne

kJ/mol), 

To o

functions

demonstr

of S0 a

measurem

surface s

G0. 

It is 

of dynam

dependen

.  Graph of 
ts at various te
Taken with p

merican Chem

= -RTln(K(

repeating th

s, a graph of

ariation in G

equated to 

gative than 

but is consi

our knowled

s for a chem

rate the pote

and 0 dep

ments over l

ites at precis

important to

mic equilibriu

nt imaging c

GP
0 derived f

emperatures. 
permission fro
mical Society.

T)) for the p

his sequenc

f G0 versus

G0 as a func

S0 and H

the larger 

stent with th

dge, this was

mical proces

ential power 

pend on the

large temper

sely known 

o note that m

um, rather th

can be used 

from Langmu
 Fit of  G =

om reference 
 

process descr

ce of time 

 T can be ge

ction of tem

H0 can then 

values repo

he unusually

s the first ex

ss at the sol

of the techn

e temperatur

rature region

temperature

molecular tim

han having t

very effecti

uir equilibrium
H – TS is
5.   Copyrigh

ribed in equ

elapse exp

enerated as i

mperature.  S

be determin

orted for co

y large bindi

ample of ex

lution-solid 

nique and po

re dependenc

ns or the me

s in order to

me dependen

to assume it

ively in iden

m 
s 
ht 

uation 8.  It i

periments at

in Figure 7.5

Since G0 = 

ned.  The va

obalt comple

ing and long

O2 on 

of S0

negativ

solutio

cobalt 

J/(mol

than th

entrop

Torr a

statisti

K).  H

the err

S0 = 

kJ/mol

xtracting all t

interface by

oint out a w

ce of G0, 

easurement 

o reduce the 

nt images al

t.  As we sh

ntifying kine

is convention

t various te

  One observ

H0 -TS0,

alue of H0 

exes in solu

g residence t

CoOEP/HO
0 [-297 J/(m

ve than prev

on phase s

complexe

l K)], and al

he negative

py for the O

and 298 K 

ical mechan

However, wh

ror bars in Fi

-268 J/mol 

le are accept

the principa

y STM.  Th

eakness.  Be

accurate va

of hundreds

uncertaintie

llow one to 

hall see in lat

etically cont

nal to take P

emperatures

ves an essen

, the slope o

(-68 kJ/mo

ution (abou

time observe

OPG.  The v

mol K)] is 

vious report

tate binding

es [about 

lso slightly l

e of the abs

O2 molecule 

calculated 

nics (-268 J

hen one cons

igure 7, valu

K and H0 =

table.   

al thermodyn

hese results 

ecause the v

alues will re

s of thousan

es in the valu

guarantee a

ter sections,

trolled proce

14

P0 = 1 

s and 

ntially 

of the 

ole) is 

ut -60 

ed for 

value 

more 

ts for 

g by 

-230 

larger 

solute 

 at 1 

from 

J/mol 

siders 

ues of 

= -60 

namic 

both 

values 

equire 

nds of 

ues of 

a state 

, time 

esses.   

Page 14 of 28ChemComm

C
he

m
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t



 15

Time elapsed imaging also was used to study the reaction processes between O2 and a 

manganese porphyrin (MnP) supported on HOPG in a solution-surface experiment utilizing 

octanoic acid as solvent. 42  While they did not extract thermodynamic data from the images, 

they did use them to help elucidate the complex chemistry that occurs on the manganese ion site. 

 

Recognition of Competition Between Kinetics and Thermodynamics 

While quantitative measurement of kinetic parameters associated with processes at the 

solution-solid interface are just becoming available, it has been recognized by several authors 

that a competition between kinetic and thermodynamic driving forces was occurring.  An early 

example of this realization was the study of Piot et al.43   They present a systematic investigation 

of the structural evolution of hexakis(n-dodecyl)-peri-hexabenzocoronene (HBC-C12) on an n-

C50H102 monolayer on HOPG from n-tetradecane as solvent, with the alkane acting as a template.  

The growth of the HBC monolayer is slow enough that it can be followed over several hours.  A 

time dependent progression through an initial phase, into an intermediate phase, and then finally 

a third stable phase was observed.  They interpreted these observations as due to phases 

separated by kinetic barriers where the activation energies were comparable to kT.  The initial 

phase is the least densely packed and the final phase has the highest density.  Because the initial 

(kinetically controlled) phase is the only phase seen on HOPG, they suggest that room T 

adsorption of HBC-C12 is entirely kinetically controlled on HOPG and that the barrier to 

conversion is >> kT.   In the Bellec study mentioned earlier, TSB3,5-Cn in phenyoctane on 

HOPG was studied on HOPG in the temperature range from 273 K to 338 K.34   By controlling 

the thermal history, they were able to create non-equilibrium distributions of the high and low 

density phases.  They state that the coexistence of domains of individual phases results from a 

kinetic blockade rather than equilibrium.  They further observe that the number of initially 

formed grains reflects nucleation rate and the size of the domains reflects growth rate.  The size 

and phase of these grains is extremely important because the strongly H-bonded networks 

undergo phase change much more quickly at the domain boundaries rather than internally. 

In a study of a mixed monolayer of cobalt tetraphenylporphyrin (CoTPP) and ZnTPP from 

low concentration benzene solutions onto Au(111), phase separation of the two complexes was 

observed. 44  In understanding this study, it is important to note that the Au(111) surface shows a 

22x3 reconstruction with a long range herring bone patters created by both FCC and HCP 

regions.45  Thus, the observed phase separation was attributed to CoTPP binding preferentially to 
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more than one local minimum.  The same group later demonstrated that additives could be used 

to dramatically affect the phase transformation rates (see Figure 8).47  For example, the 

transformation rate from phase III to phase II was found to decrease 10 fold with the addition of 

12-amide to the 18-amide in phenyloctane solution. 

While the study of Haxton and coworkers is a UHV rather than solution phase effort, it does 

demonstrate that the competition between kinetic and thermodynamic processes can play a 

significant role on adsorption.  Using a combination of STM and theoretical (ab initio and 

statistical mechanical modeling) methods, Haxton and coworkers studied the adsorption of 1,4-

benzenediamine (BDA) on Au(111) in UHV.48  Of the many possible hydrogen bonded BDA 

nanostructures, the interplay of intermolecular forces, assembly dynamics, and surface 

modulation select for thermodynamically stable linear chains and kinetically preferred branched 

chains. 

 

Strong Kinetic Control 

A particularly interesting observation concerning the stabilization of a metastable 

polymorph comes from the De Feyter group. 49  They used directional solvent flow to force a 

metastable phase (not normally stable at the temperature studied) into supersized domains 

formed on a nearly dry sample.  The metastable polymorph could be rapidly converted to the 

stable form by the simple act of addition of a drop of solvent to the surface.  Clearly this allowed 

the adsorption/desorption processes to reestablish equilibrium.  The very large size of the 

metastable domains likely plays a role as well.  Since structural changes often occur most rapidly 

at domain boundaries, the absence of such boundaries and defects is expected to result in a very 

high barrier for phase transformation in the dry film.  An interesting counterpoint to this issue of 

phase transformation in dried films is the conversion of CuPcOC8 (Figure 9) films on HOPG 

initially deposited from toluene solution but dried and heated before imaging.50  The 

thermodynamically stable state (the hexagonal structure) is not the only phase formed at room 

temperature.  Rather, one observes a mixture of grains of a kinetically favored quartic phase with 

grains of the hexagonal phase.  At room temperature the quartic phase is favored (3:1).  With 

time and with heating, however, the dry film will convert to the thermodynamically favored 

hexagonal phase.  Because the film is dry, it must result from in situ reconstruction rather than 

the more normal process of Ostwald ripening51-53 (Desorption from small grains favored over 
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very slow equilibration process.  Cobalt porphyrins and phthalocyanines are well know to appear 

to have very bright centers in STM images at moderate voltages, while copper and nickel 

porphyrins and phthalocyanines appear dark.6,55-58  If there is exchange between the surface and 

solution, the bright cobalt porphyrins should replace the dim copper complexes at the rate of the 

exchange.  Moreover, since the (TUP)Co concentration was high, at least some of the bright 

structures should be the high density phase.  What is observed is a very slow build up of 

(TUP)Co and the high density phase only in the vicinity of certain defects in the low density 

phase.  Insertion into regions that are defect free only occurs in 2-3% of the total cobalt insertion 

sites.   

Ferreira and coworkers report an interesting case of delayed then rapid conversion between a 

kinetically controlled and a thermodynamically stable phase. 59  The adsorption of ZnOEP onto 

HOPG from n-tetradecane first yields a metastable -phase.  Then, about 2 hours later there is a 

rapid conversion to the stable -phase.  They fit the relative coverage of -phase ( ) as a 

function of time with the expression: 

 )(
max0 1 cttke                  (9) 

 

Where 0=10-5, max = 1, tc = 121 min, and k = 0.0023/s.  They attribute the long delay, tc, to a 

nucleation time for the -phase in the -phase. 

The most extreme version of kinetic control is when there is no desorption at all.  In these 

cases, only the initial structure formed during adsorption, nucleation, and grain growth is 

observed.  If adsorption follows first order kinetics, for a single solute species: 

)1( 


 Mk
dt

d a
    (10) 

where M is the molarity of the solute, ka is the adsorption rate constant, and  is the fractional 

surface coverage.  For two components, C and N, where adsorption is fast and desorption is slow 

to extremely slow: 

)1( 
 MXk

dt

d
N

a
N

N
                         (11) 

)1( 


 MXk
dt

d
C

a
C

C        (12) 
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CC

NN

C

N

Xk

Xk
0

0





Where M is the total solute molarity, Xi is the number of moles of i divided by the total number 

of moles of solute in solution, and i is the fraction of surface covered by species i.  Combining 

these, yields the equation for the overall surface coverage: 

)1( Mtke                           (13) 

where   )1( N
a
CN

a
NC

a
CN

a
N XkXkXkXkk  .  Substituting this back into the rate 

equations for the individual components, we find that at steady state: 

NN
N

a
N

N XK
k

Xk









              (14) 

CC
N

a
C

C XK
k

Xk









            (15) 

 

Or that                                                                     (16) 

 

which has exactly the same form as that for a two component system at thermodynamic 

equilibrium (eq 1).  Thus, simply comparing steady state surface coverage and solution 

concentration cannot be used to determine if a particular structure is kinetically or 

thermodynamically driven.  

An excellent example of this is given by the 2 component system of cobalt octaethylporphyrin 

(CoOEP) and NiOEP (Figure 9) in phenyloctane at the solution-Au(111) interface.6  Figure 10 

shows STM images taken at three different relative solution concentrations.  As mentioned 

above, the CoOEP are easily distinguished from the NiOEP by their high apparent height.  The 

ratio of bright to dark molecules in each image equals the ratio of CoOEP and NiOEP in the 

covering solution.  Thus, either G =0 (from eqn 1), or the rates of adsorption are the same for 

each species, or maybe the system is evolving between those two limits.   
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formation.  At the current time, too few of these important quantities are known – so few that no 

convincing test of theoretical models can be offered.  The good news is that this condition is 

rapidly changing.  Several groups around the world have turned their attention to the very 

physical chemistry of adlayer formation at the molecular level and are beginning to provide clear 

evidence of the relative importance of kinetic and thermodynamic factors.  More than that, 

quantitative rate constants and functions of state are being measured for select systems and those 

efforts are accelerating.  The roles played of solvent, substrate, temperature, and pressure are 

slowly being unraveled for selected model adsorbates.  The next few years should see a dramatic 

increase in our fundamental knowledge about non-covalent adlayer formation at the solution-

solid interface. 
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