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Free energy calculations of A2A adenosine receptor 
mutation effects on agonist binding  

Henrik Keränena, Johan Åqvista and Hugo Gutiérrez-de-Terán*a 

 

A general computational scheme to evaluate the effects of 
single point mutations on ligand binding is reported. This 
scheme is applied to characterize agonist binding to the A2A 
adenosine receptor, and is found to accurately explain how 
point mutations of different nature affect the binding 
affinity of a potent agonist.  

One of the major experimental approaches to characterize G-protein 
coupled receptors (GPCRs) is site-directed mutagenesis. In 
combination with experimental or modelled 3D structures, it 
provides an important information resource for understanding 
receptor function and ligand binding properties.1 A good example is 
the A2A adenosine receptor (A2AAR). This is one of the most widely 
characterized GPCRs with several high resolution crystal structures 
for both inactive2-6 and active-like7,8 receptors (denoted A2AAR* 
herein), and extensive mutagenesis data available.9-14 This has 
allowed conformational characterization of the receptor and ligand 
design by computational approaches.15-20 A number of A2AAR 
mutants have been characterized via radioligand binding. Binding 
affinities of different compounds can then be measured by 
competition assays, resulting in ligand affinity ratios between mutant 
and wt receptor (𝑲𝒊

𝒎𝒖𝒕/𝑲𝒊
𝒘𝒕).10-14  

Computation of such ligand affinity ratios is in principle possible 
through free energy perturbation (FEP) simulations, sometimes 
referred to as “computational alchemy”. However, convergence and 
sampling problems associated with the method appear to have 
limited the number of such applications. We have recently 
introduced an efficient calculation scheme to evaluate the effect of 
alanine mutations on ligand binding,21 which allowed us to explain 
both agonist and antagonist binding properties of 18 different 
mutants of A2AAR.22 The given sidechain is mutated to alanine in 
two parallel molecular dynamics (MD) simulations, with and 
without the ligand bound to the receptor site. The binding free 
energy difference between wt and mutant receptor can then be 
calculated via a standard thermodynamic cycle (left cycle of Fig. 1). 
The convergence problem associated with large perturbations, such 
as Trp→Ala, is solved by dividing the given mutation into a series of 
smaller subperturbations, thereby creating a smoother transformation 
between the end-states.21 Each subperturbation is also divided into a 
relatively large number of FEP windows (~50 λ-steps), where every 

window is sampled for 10-40 ps. The subperturbations correspond to 
groups of atoms being successively annihilated, based on their 
topological distance to the protein backbone. During annihilation of 
a residue each atom group will undergo three consecutive 
transformations i) annihilation of partial charges, ii) transformation 
of regular van der Waals (Lennard-Jones) potential to a soft-core 
potential to prevent singularities,23 and iii) annihilation of the soft-
core potential.  

 
Fig.	
  1	
  Thermodynamic	
  cycle	
  for	
  a	
  His	
  →	
  Asn	
  mutation.	
  The	
  two	
  thermodynamic	
  
cycles	
   of	
   His	
   →	
   Ala	
   (left	
   cycle)	
   and	
   Asn	
   →	
   Ala	
   (right	
   cycle)	
   are	
   shown.	
   By	
  
mutating	
   the	
   two	
   (wt	
   and	
   mutant)	
   end-­‐state	
   sidechains	
   to	
   a	
   common	
  
intermediate	
   (bare	
  Cβ)	
  state,	
   the	
  two	
  cycles	
  can	
  be	
  connected	
  and	
  the	
  relative	
  
binding	
  free	
  energy	
  between	
  mutant	
  and	
  wt	
  calculated.	
  

We now generalize the above FEP scheme to be able to deal 
with any amino acid mutation. This is done by joining two 
thermodynamic cycles describing the reduction of a sidechain, for wt 
and mutant, to a common fragment.  For practical purposes, this is 
chosen as a bare Cβ carbon and thus approximates an alanine 
sidechain (Fig. 1). The resulting double thermodynamic cycle yields 
the change in binding free energy due to a mutation as 

∆∆𝐺!"#$!"#!!" =    ∆𝐺!!"!!" − Δ𝐺!"#!" − ∆𝐺!!"!!"# − Δ𝐺!"#!"#          

Here, one performs a total of four independent simulations to 
account for each mutation: wt → Cβ and mutant → Cβ, each in both 
holo and apo states. When performing several mutations for the 
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same position, the wt “legs” of the cycle only need to be calculated 
once and can be reused for any mutation at that position. This way, 
by combining 19 MD simulations accounting for each possible R → 
Cβ annihilation (R = any sidechain), one could estimate the effect of 
all possible 20x19/2=190 mutations. This FEP/MD scheme is used 
herein to analyse the effects on A2AAR*-NECA binding of 17 
mutations, at eight different positions, which have been reviewed by 
Martinelli and Tuccinardi24 (Fig. 2, Table S1, ESI†). 

	
  
Fig.	
   2	
   Structure	
   of	
   (A)	
   the	
   agonist	
   NECA	
   and	
   (B)	
   the	
  wt-­‐A2AAR*-­‐NECA	
   complex	
  
used	
  for	
  the	
  simulations.	
  Transmembrane	
  helices	
  are	
  rainbow-­‐coloured	
  from	
  the	
  
N	
   terminal	
   (TM1-­‐blue)	
   to	
  C	
   terminal	
   (TM7-­‐red).	
  Mutated	
   residues	
  mutated	
  are	
  
shown	
  as	
  sticks	
  and	
  hydrogen	
  bonds	
  as	
  dashed	
   lines.	
   (C)	
  Calculated	
  (dark	
  grey)	
  
and	
   experimental	
   (light	
   grey)	
   NECA	
   binding	
   free	
   energy	
   differences	
   between	
  
each	
  A2AAR*	
  mutant	
   and	
   the	
  wt	
   receptor.	
   The	
   star	
   symbol	
   in	
   the	
  plot	
  denotes	
  
that	
   an	
   experimental	
   value	
   could	
   not	
   be	
   determined	
   and	
   represents	
   the	
  
detection	
  threshold	
  in	
  the	
  experiment.	
  

The initial A2AAR*-NECA complex was obtained by combining 
structural information from A2AAR crystal structures (see ESI† and 
Ref. 25 for details). The receptor complex was embedded in a lipid 
bilayer, solvated, and equilibrated using GROMACS4.0.526 with the 
protocol implemented in the GPCR-ModSim web-server.27 For 
subsequent simulations of the binding site region, a 25 Å radius 
sphere centred on NECA was extracted from the equilibrated system. 
The spherical system was used for MD simulations with the program 
Q28 and the OPLS all-atom (OPLS-AA) force field29,30 (see ESI† for 
details of the MD simulation and FEP analysis). The use of reduced 
spherical models restricts the sampling to the area of interest and 
therefore accelerates convergence, as compared to the commonly 
used periodic boundary models. Initial models of mutant receptors 
were created by modelling the structurally most probable rotamer of 
the mutated residue. If more than one rotamer could be modelled, all 
were subjected to MD simulation. In the few cases were these 
rotamers did not converge to the same structure, each of them were 
subjected to mutation calculations (see ESI†).  

Our predicted binding free energies show good agreement with 
experimental data, demonstrating the capacity of the FEP scheme to 
discriminate mutations that cause large effects from those with 
negligible (or even favourable) contributions to ligand binding (Fig. 
2 and Table S1, ESI†). This is particularly remarkable considering 

the wide spectrum of mutations evaluated. The precision of the 
results is evaluated from the set of independent replicate simulations, 
yielding an overall average standard error of mean (s.e.m.) of 1.2 
kcal/mol. Naturally, the statistical errors in the calculations are 
expected to increase by a factor of √2 as compared to alanine 
mutations, since two independent sets of transformations (wt → Cβ 
and mutant → Cβ) have to be carried out in the present case for both 
the holo and apo states (see ESI†). This is precisely what we 
observe, as the average precision for the corresponding alanine 
mutations was 0.7 kcal/mol.22 The convergence of the simulations is 
assessed by calculating the hysteresis, i.e. the difference of applying 
the FEP formula in forward and reverse direction for each individual 
simulation. Here, the average hysteresis is 0.3 kcal/mol, which is 
equally low as for the alanine mutations performed on the same 
system.22 

A few mutations are worth examining in more detail, since they 
illustrate the power of the simulations for predicting the structural 
origins of changes in ligand binding affinity. Among these, Q893.37D 
is particularly intriguing since the buried location of this position in 
a hydrophobic environment is suggestive of a protonated (neutral) 
aspartic acid. Consequently, calculations were performed for both 
protonation states of the mutant, yielding ∆∆𝑮𝒃𝒊𝒏𝒅 =  9.6±1.5 
kcal/mol for unprotonated and ∆∆𝑮𝒃𝒊𝒏𝒅 =  −3.5±1.6 kcal/mol for 
protonated state of the residue. The latter value is in agreement with 
the experimental data and shows that the protonated aspartic acid 
favours binding of NECA. This is further supported by the pKa 
predicted for this sidechain using Propka,31 which indicates a pKa 
value above physiological pH. This criterion, together with a close 
examination of the H-bond network, should be used to decide the 
most probable protonation state. Similarly, both the T883.36D and 
T883.36E mutants are predicted to be in their neutral form (Table S1, 
ESI†).  Thus, while an important feature of the present simulation 
scheme is to be able to perform mutations in an automated manner, 
changes in protonation states represent another level of complexity 
that needs careful consideration.  

The above problem also pertains to E1695.30 in EL2, which 
makes a salt bridge with H264ECL3 and also a direct hydrogen bond 
to the exocyclic amine group of NECA. The large effect observed 
for alanine mutation at this position9 was captured in our earlier 
work,22 where the histidine was maintained in its charged state. 
However, a solvent-exposed histidine has a pKa of ~6.5, indicating 
that it would be deprotonated in absence of any counter-ion. Hence, 
to describe the E1695.30A mutant properly, it is likely that H264ECL3 
should become deprotonated when E1695.30 is mutated to alanine. 
Likewise, for the E1695.30Q mutation the optimal starting point for 
the Q1695.30 state may also be an unprotonated H264ECL3. To 
examine this possibility, we performed two sets of additional 
calculations. These show that the E1695.30A mutant is not sensitive 
to the protonation state of the histidine (Table S2, ESI†). The 
E1695.30Q mutation, however, shows distinctly better agreement with 
experiment with neutral histidine (Table S1, ESI†), confirming the 
hypothesis that H264ECL3 becomes deprotonated upon E1695.30Q/A 
mutations. Another interesting case is H2506.52, responsible for 
stabilization of the carboxamide moiety in NECA through a 
hydrogen bond. Mutation to a non-polar and aromatic residue 
(H2506.52F) has a negative impact on NECA affinity. Recovery of 
polarity restores wt ligand binding affinity, as demonstrated by 
H2506.52N, which is predicted to maintain the hydrogen bond 
network (Fig. 3) and even has a slightly higher binding affinity than 
wt (Fig. 2). Further, the H2506.52Y mutant essentially behaves as 
H2506.52F, indicating that the aromatic hydroxyl group has a 
negligible contribution. Encouragingly, all these effects are 
accurately reproduced and explained by the simulations (Fig. 2 and 
Table S1, ESI†).   
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As mentioned earlier, mutations corresponding to the left side of 
the thermodynamic cycle (Fig. 1) can be correlated to alanine-
scanning data for the given position. Indeed, a near perfect 
correlation (r2 = 0.99, Table S2, ESI†) is obtained between bare Cβ 
(∆∆𝑮𝑪𝜷𝑭𝑬𝑷) and alanine (∆∆𝑮𝑨𝒍𝒂𝑭𝑬𝑷) mutations for five out of the six 
positions considered both here and in our earlier work.22 The 
S2777.42A mutation, however, stands out with ∆∆𝑮𝑨𝒍𝒂𝑭𝑬𝑷 − ∆∆𝑮𝑪𝜷𝑭𝑬𝑷 = 
1.7 kcal/mol. In this case, the present simulations, which do not end 
up with a true alanine sidechain methyl group, consistently allow a 
water molecule to enter and replace the interaction of the wt serine. 
As this did not occur for the earlier S2777.42A mutation,22 it appears 
that the missing hydrogen repulsive Lennard-Jones potentials in 
pseudo-alanine state are, in fact, important for defining the cavity 
volume accessible to water. The only mutant in this position where a 
water molecule was not let in was the Cys→Cβ transformation. This 
led to a somewhat different intermediate state as compared to the wt 
mutation, which could explain the discrepancy between calculated 
and experimental values (Fig. 2).  

 
Fig.	
  3	
  Conserved	
  interactions	
  for	
  the	
  H2506.52N	
  mutation	
  in	
  agonist	
  binding.	
  The	
  
average	
   MD	
   conformation	
   of	
   the	
   A2AAR*-­‐NECA	
   H250

6.52N	
   mutant	
   complex	
  
(green)	
  with	
   interacting	
   sidechains	
   and	
  water	
  molecules	
   is	
   shown,	
   overlaid	
   on	
  
the	
  wt	
  average	
  MD	
  conformation	
  (grey).	
  The	
  H/N2506.52	
  sidechains	
  are	
  shown	
  as	
  
sticks,	
   conserved	
   interaction	
   networks	
   in	
   dashed	
   lines,	
   the	
   ligand	
   in	
   ball-­‐and-­‐
stick,	
  and	
  helices	
  as	
  cartoons	
  (TM1	
  -­‐	
  blue	
  →	
  TM7	
  -­‐	
  red).	
  

Computational methods for accurate predictions of structural and 
energetic effects of point mutations on ligand binding are of 
considerable interest in biochemistry and pharmacology. This is 
particularly true for GPCRs and motivated our development of an 
accurate and efficient method to computationally predict and analyse 
experimental alanine-scanning data.21,22 In the present work, the 
computational alanine-scanning method is extended to be able to 
accurately obtain relative ligand binding free energies for arbitrary 
mutations of a receptor protein. Even though this method involves 
the evaluation of a double thermodynamic cycle, good precision is 
retained (~1 kcal/mol) with total MD simulation times on the order 
of 60-120 ns (see ESI†). 

It should be noted that alternative approaches could in principle 
be considered for computational mutagenesis, but may be subject to 
limitations. For example, with the standard single-topology FEP 
technique32,33 a seemingly simple mutation from tyrosine to histidine 
(6-membered to 5-membered ring) is actually rather complicated to 
carry out. This is because the covalent bonding of the sidechain 
changes substantially and is difficult to treat efficiently with the 
usual dummy atom approach.34 An alternative here is to use the so-
called dual-topology method35,36 which has a mixture of both 
sidechains present simultaneously during simulations, the weights of 

the two states (sidechains) being successively varied along the 
transformation path. In that case the entire sidechain of one state is 
usually annihilated in a single calculation, while the target sidechain 
is concomitantly created. However, treating only annihilation of 
sidechains has clear advantages compared to the alternative of 
“growing” a larger sidechain out of a smaller one in the calculations. 
This is because the conformation of the mutant residue can be 
optimized and, e.g., different rotamers can be systematically tested 
and selected based on structural and energetic criteria. In the case 
where larger sidechains are created (or grown) out of smaller ones 
there is essentially no control over the final conformation. In 
addition, convergence is usually better when the number of degrees 
of freedom of the system is reduced (atom annihilation) rather than 
increased (atom creation).  

The point above can be illustrated here with the H2506.52N 
mutant, which retains similar polar interactions in wt and mutant 
receptors. When instead growing both the wt and mutant sidechains 
from the common Cβ starting point, the resulting NECA binding free 
energy difference is in stark disagreement with experiment and the 
precision of the calculations is also completely lost (Table 1). The 
reason for this is that there is no control of the final sidechain 
conformations, which essentially become randomized among the 
different simulation replicas. In this example, the hydrogen bond 
network (Fig. 3) is not attained in either of the wt or mutant states, as 
opposed to the double annihilation scheme where the initial 
structures of both wt and mutant receptors can be confidently 
modelled.  
Table	
   1.	
   Comparison	
   between	
   alternative	
   mutagenesis	
   protocols	
   for	
   selected	
  
mutations	
   and	
   experimental	
   NECA	
   relative	
   binding	
   free	
   energies	
   for	
   A2AAR	
  
mutants	
  (kcal/mol).a	
  	
  	
  

Position ∆∆𝑮𝒃𝒊𝒏𝒅𝒂𝒍𝒕𝒆𝒓𝒏𝒂𝒕𝒊𝒗𝒆 ∆∆𝑮𝒃𝒊𝒏𝒅
𝒅𝒆𝒇𝒂𝒖𝒍𝒕d ∆∆𝑮𝒃𝒊𝒏𝒅

𝒆𝒙𝒑    
H2506.52N 3.5 ± 4.3b -0.9 ± 1.6 -0.8 ± 0.9 
V843.32L -0.2 ± 0.9c 1.1 ± 0.9 0.0 ± 0.3 
F1825.42Y 0.3 ± 0.2c 0.8 ± 0.7 1.3 ± 0.3 

a Experimental relative binding free energies (∆∆𝐺!"#$
!"# ) calculated from Ki 

values as ∆∆𝐺!"#$
!"# = 𝑅𝑇𝑙𝑛(𝐾!!"#/𝐾!!"). 

b Growth of sidechains instead of 
annihilation. c Annihilation of sidechains until the first common intermediate 
state. d The protocol described in this work. 

Another interesting, but slightly more complex, alternative for 
increasing the precision of the calculations would be to devise a 
specific optimal common intermediate for each possible pair of wt 
and mutant amino acids. At a first glance, it may seem that this 
would involve 20×19/2=190 different recipes for all possible amino 
acid mutations. This is, however, not the case if we adhere to the 
main principle of our method,21,22 which is to not touch any bonded 
terms in the transformations involved in the free energy calculations. 
That is, the good convergence of the method is largely due to the 
choice of smoothly annealing atoms rather than to change, e.g., bond 
lengths and angles, which can cause large fluctuations of the energy 
gap between the states involved in the free energy calculation. 
Hence, if one would carry out a mutation from aspartic acid to 
leucine or asparagine, where all three sidechains have the same basic 
topology, the choice would still be to go to alanine in order not to 
have to change any bonded terms. Based on this principle one can 
estimate that there will be fewer than ten distinct recipes involved in 
order to cover all possible mutations. On the other hand, for a Leu to 
Ile mutation the largest common fragment that does not involve 
changing bonded terms would correspond to retaining Cγ and thus 
not going all the way to alanine. Likewise, mutations involving 
flexible sidechains such as transformations between Lys, Met, Arg, 
Glu, Gln, Leu or Ile, could in principle retain Cδ in the common 
fragment. However, the flexibility of these sidechains might cause 
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the common fragment to end up in different stable conformations. If 
so, the intermediate state joining the two thermodynamic cycles (Fig 
1) would not be unique, and proceeding further to Cβ could solve the 
problem. Whether such alternative FEP “shortcuts” would offer an 
improvement is thus not guaranteed and it is difficult to generalize 
the effects on robustness and precision. 

 Among the mutations evaluated here, two mutants are suitable 
for evaluating this alternative approach, namely V843.32L and 
F1825.42Y. In the first case the common fragment retains the Cγ 
atom, which gives a slightly better prediction of the experimental 
result but with the same calculation precision as the default protocol 
(Table 1) For the phenylalanine to tyrosine mutation the largest 
common fragment retains the bare Cζ carbon. The calculations for 
F1825.42Y with this approach, as expected, yield a better precision 
due to fewer subperturbations but the prediction is not improved 
(Table 1). Hence, while optimization of this type of alternative 
approach may deserve further study, an advantage with our main 
scheme is that the calculation for the wt mutation to alanine can be 
reused for any mutation at the given position.  

The prospect of being able to routinely carry out reliable 
computational predictions of effects of mutations on ligand binding 
is very attractive. It would be useful not only for characterization of 
ligand selectivities in complex signalling systems such as GPCRs, 
but perhaps most importantly for addressing problems of drug 
resistance in pathogens as well as individual responses to drug 
treatment due to genetic variation. In this respect, it is somewhat 
surprising that the free energy perturbation type of methodology, 
which has been around for almost 30 years, has not yet really 
become common practice in addressing these problems. This is most 
likely due to the fact that the method is well-known to converge 
better the smaller the perturbations involved are, which has arguably 
led to a focus on calculations of smaller chemical substitutions on 
ligand molecules. However, as shown here, the step towards treating 
mutations between arbitrary amino acids is not that great in view of 
the fact that their chemical repertoire is limited and that efficient 
protocols can indeed be developed. 

Support from the Swedish Research Council (VR grant 521-
2014-2118), the eSSENCE e-science initiative and the Swedish 
National Infrastructure for Computing (SNIC) are gratefully 
acknowledged.  
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