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'H NMR spectroscopic and X-ray crystallographic
investigations of a 1,3-bis(4-ethynyl-3-
iodopyridinium)benzene scaffold with perrhenate reveal
strong halogen bonding in solution, and bidentate association
in the solid state. A nearly isostructural host molecule
demonstrates significant C-H hydrogen bonding to
perrhenate in the same phases.

With similar structural and electronic characteristics,’ perrhenate
(ReQ,) is a tractable surrogate? for the medically ubiquitous and
environmentally pernicious® oxoanion, pertechnetate (TcO,).* The
metastable form of technetium® and its long half-life® decay product
%Tc are standards for radiolabeling” and in situ radiotherapy.
Considering the high mobility of *TcO,, its stability,® and
increasing production,” the need for synthetic receptors to function
as strong and selective chelating agents, liquid-liquid extractants,?
and ion-exchange stationary phases'® is pressing.

ReO, and TcO, are challenging targets due to their low
hydration energies and diffuse charge densities. To combat these
difficulties, a number of hydrogen bonding (HB) scaffolds and hosts
have been developed.” 2 Elegant HB examples include aza-
cryptands with pH-tunable cavities,"®* and charge neutral pyrrole-
based macrocycles.??*® In contrast, bidentate halogen bonding (XB)
and unconventional C-H*® HB receptors for ReO,~ or TcO, have
not been reported. XB in particular offers an exciting
competitive™®/cooperative® alternative with the benefit of soft-soft
HSAB complementarity.’” Herein, we report the first two receptors
that exhibit strong XB and C—H HB with ReO, in solution, and the
first bidentate and tridentate structures of each in the solid state.

We have developed two bidentate receptor molecules based on a
diethynyl benzene core (1 and 2, Scheme 1). 1 is designed to direct
two XB donors towards one anionic guest in a planar conjugated
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Scheme 1. a) 3-Bromo-4-iodopyridine, Cul, Pd(PPhs).Cl,, DMF,
DIPEA, rt, 24 h, 88%; b) n-BuLi, THF, -78°C, l,, 24 h, 41%; c) prepared
according to literature procedure,® 22% d) octyl triflate or methyl
triflate, DCM, rt, 24 h, 98%; e) vapor diffusion of ether into
DCM solution of TBA'CI, 55-75%; Na'[BAr",]", DCM, rt, 30 min, 59-
75%.

conformation.’® Molecule 2—which lacks XB donors—was
prepared to quantify C-H HB to ReO,, and serve as a comparison.
Both receptor scaffolds were synthesized by Sonogashira®® cross-
coupling of 1,3-diethynyl benzene with either 3-bromo-4-
iodopyridine or 4-bromopyridine hydrochloride. The XB donor
iodines of 1 were installed by lithium halogen exchange followed by
quenching with I,. Alkylation of the pyridines with octyl triflate
activated the XB and HB donors of 1 and 2, respectively, and
enhanced solubility in organic solvents. To minimize competitive
intramolecular interactions, triflate counteranions were exchanged
by metathesis for non-coordinating [BAr ]~ anions.?> Methyl
derivatives 1b and 2b were synthesized in a similar manner for X-
ray diffraction studies.
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The crystal structure of 1b?*+2ReQ, represents the first bidentate
XB? to ReO, in the solid state. Yellow single crystals of
1b**«2ReQ;,  suitable for X-ray diffraction were grown by diffusing
DCM into a DMF/MeOH solution of receptor 1b and tetra-n-
butylammonium  perrhenate  (TBA'Re0,).2  1b?*+2ReQ,
crystallized in space group P2,/c, forming bidentate XB to separate
oxygens of a ReO, anion (Figure 1, top). The C-I--O" distances
2.97 and 3.06 A correspond to Ro values of 0.84 and 0.86,% and
corroborate strong XB interactions. To accommodate the size of
ReO,, both pyridinium rings rotate 11° from coplanarity. As a
result, the observed C-I--O" bond angles of 175 and 168° also
confirm strong XB interactions. Examination of the crystal packing
reveals C-H HB and electrostatic contacts between ReO, and five
additional molecules of 1b (see ESI). The second ReO, participates
in seven C-H HB interactions, and two weak o contacts with
electron-deficient pyridinium rings.”® A head-to-tail n-stacking
dimer (3.4 A) is also observed.?® This arrangement produces
columns of 1b with each ReO,4 on alternating sides of the receptor.

1b>*:2Re0,”

2b*+2Re0,

Figure 1. X-ray crystal structures of 1b%*«2ReO4 (top) highlighting
bidentate XB to ReO, in the solid state (red). Crystal structure of
2b***2Re0, (bottom) illustrating tridentate C—H HB to ReO,4” (black).

In contrast, the crystal structure of 2b?*«2ReOQ, illustrates unique
C-H HB to ReO,". Colorless single crystals of 2b%*+2ReO, were
obtained by diffusing ether into a MeOH solution of receptor 2b and
TBA'ReO, %" 2b*+2ReQ, crystallized in space group P2/n.
Notably, tridentate C-H HB to ReO, is formed using two Hc
hydrogens and Hd (Figure 1, bottom), with C-H---O™ distances of
2.64, 2.71 and 2.31 A. In addition, four intermolecular C-H?® and
two weak o contacts with ReO, are present. The second ReO, is
involved in nine C-H HB and two weak o interactions. To enable
tridentate binding to ReO,, both pyridinium rings adjust 9° from
coplanarity, and one ethynyl spacer deviates 8° from linearity. An
off-centered head-to-tail n-stacking dimer (3.1 A) is also noted (see
ESI).”® Together, the crystal structures of 1b?+<2ReO, and
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2b**«2ReQ;  illustrate the importance of bidentate/tridentate XB and
HB coordination to ReO, in the solid state.

'H NMR spectroscopic titrations involving 1la and 2a were
conducted to probe their corresponding XB and C—H HB capabilities
in solution. Both 1a, 2a and TBA*ReO, were independently soluble
in CDCl;; however, precipitation of host-guest complexes
necessitated a CDCI3/(CD3),CO (3:2 v/v) mixed solvent. Titrating
TBA'ReO, produced noteworthy shifts for the pyridinium (Ha, Hb,
and Hc) and phenyl (Hd) hydrogens for both 1a and 2a (Figure 2).*°
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Figure 2. Partial '"H NMR spectra of 1a (top, 0-4.78 equiv) and 2a
(bottom, 0-4.62 equiv) upon titrating TBA'ReO, (equivalents from
bottom to top).

The significant upfield shifting of Ha and Hb (A8 = -0.099 and -
0.082 ppm, respectively) on 1a is indicative of strong XB in
solution.> The dominant XB conformation as suggested by the
crystal structure of 1b?*«2ReQ, is distinctly bidentate (Figure 1,
top). Further evidence of XB in solution can be seen in the
downfield **C NMR shifting of 1a’s C—X carbons (A& = 0.150 ppm)
upon titrating ReO, (see ESI). Additionally, facile rotation of
alkynyl-aromatic C-C bonds enables a second XB mode.
Constructive bidentate XB-HB involving a single halogen and
Hc/Hd is consistent with the downfield shifting of these hydrogens
(A8 = 0.038 and 0.154 ppm).** Taken together, the greater upfield
(Ha and Hb) and greater downfield (Hc and Hd) shifting of 1a is
explained by strong bidentate XB in solution as well as XB-HB
synergy.

For 2a, C-H HB and electrostatic contacts are the prevailing
interactions in solution. Specifically, a tridentate binding site

This journal is © The Royal Society of Chemistry 2014

Page 2 of 4



Page 3 of 4

involving two Hc hydrogens and Hd proves the most active as
evidenced by the crystal structure of 2b?*«2Re0, and the downfield
progression of these hydrogens (A8 = 0.019 and 0.139 ppm,
respectively). Upfield shifting of 2a’s Ha/b (A8 = -0.071 ppm) is
indicative of anion-HB augmentation of ring electron density.*®

HypNMR 2008%* was used to fit changes in shift to a stepwise
association model:

N _ _HG]
H+ G=HGK; = HIG] 1)
N _ _[HG,]
HG + G & HG,, K, = HGI[G] 2)

Iterative and simultaneous refinement of multiple isotherms
provided stability constants (K,) for both 1a and 2a with ReO,.®
For receptor 1a, the K; of 8990 M represents the first quantification
of XB to ReO, in solution, highlighting XB’s effectiveness at
targeting this challenging oxoanion.®® Alternatively, 2a exhibits C—H
HB and electrostatic interactions with ReOQ,, which result in a K; of
7390 ML, Both 1a and 2a display modest K, values of 172 and 145
M, respectively, that likely result from a combination of weak
mono- and bidentate HB, and weak o bonding.

The earliest quantification of XB and C-H HB to ReO, in
solution, and their corresponding bidentate/tridentate complexation
in the solid state have been reported. The enhanced association of 1a
to ReO, when compared directly to a nearly isostructural and potent
C-H HB molecule validates XB’s place alongside HB in an ongoing
effort to design rational and selective receptors for ReO4 and TcO, .
Future work with 1a and 2a will include liquid-liquid extraction of
ReO, from aqueous phase, and exploration of XB and C-H HB
with other anionic guests.

This work was funded by the Center of Biomolecular Structure
and Dynamics CoBRE (Grant NIGMS P20GM103546), National
Science Foundation (NSF)-MRI (CHE - 1337908) and the
University of Montana (UM). We would like to thank Dr. Peter Gans
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