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Mass spectrometry-based methods for prostate cancer 

biomarker discovery are hampered by their low-throughput 

capabilities because of extensive sample preparation. We 

present the parafilm-assisted microdissection technique 

coupled with label-free quantification and bioinformatics 

analysis as a means to evaluate directly protein expression 

changes on benign and tumor regions. 

The early diagnosis of prostate cancer (PC) remains a challenge 

because of the lack of reliable biomarkers that can effectively 

describe this disease independent of sample heterogeneity. Current 

methods for PC detection comprising of digital rectal exam (DRE), 

prostate-specific antigen (PSA) measurement, and transrectal 

ultrasound (TRUS) are being used for routine screening prior to 

undergoing more invasive follow-up procedures such as a biopsy. 

However, their use has been controversial because overdiagnosis of 

insignificant tumors led to unnecessary treatment and known harms 

associated with the tests1. Moreover, although elevated PSA levels 

correlate with PC incidence, PSA alone or in tandem with other 

screening methods cannot be used to provide reliable prognostic 

indicators on which decisions to undergo treatment despite of its 

deleterious effects rely on2. Clearly, there is a need for the 

establishment of biomarkers that can discern PC in its aggressive 

stages, in order to discriminate patients requiring immediate therapy 

from those whose likelihood of benefit from treatment is low. 

To this end, mass spectrometry (MS) can serve as a method of 

choice for protein biomarker discovery. Specifically, MS-based 

shotgun proteomics has been demonstrated to allow the nearly 

complete characterization of large proteomes by taking advantage of 

robust developments in rapid data acquisition, high resolution, 

increased sensitivity and rapid duty cycle. MS-based shotgun 

proteomics is a powerful tool to detect differences in protein 

expression levels at low-attomole detection limits. Its major 

limitation for screening purposes though is that it is low-throughput, 

due to extensive sample clean-up, long chromatographic gradients 

during protein separation, and rigorous interpretation of large 

datasets generated. More importantly, information that can be 

gleaned from MS-based biomarker discovery-driven methods largely 

depends on the method of sampling involved. Conventional methods 

involving fractionation of gross tissues or organs often leads to loss 

of localization information that may be relevant especially if 

comparison between normal and diseased regions in the same tissue 

is desired. Also, less abundant proteins from the diseased region can 

be diluted among those that were obtained from the normal one.  

Direct MS-based sampling methods such as liquid extraction surface 

analysis (LESA3) and desorption electrospray ionization (DESI4) to 

name a few, as well as matrix-assisted laser desorption/ionization 

mass spectrometry (MALDI MS5) in both profiling and imaging 

modes, have been developed to allow direct mapping of protein 

distributions while minimizing sample preparation but these methods 

are restricted at best to tissue profiling studies because of their 

limited sensitivity and/or protein identification capabilities 

considering that they were not aimed at complete proteome 

characterization. 

To be able to analyze more samples directly at a much faster rate 

using the MS-based shotgun proteomics approach, we have recently 

developed the parafilm-assisted microdissection technique (PAM) in 

order to sample regions of interest (ROIs) directly from tissue 

sections6. ROIs were initially identified by subjecting a tissue section 

to MALDI MSI analysis. An adjacent section is then mounted on a 

parafilm-covered glass slide and the ROIs identified previously were 

excised and subjected to enzymatic digestion and liquid 

chromatography tandem MS (LC MS). The PAM approach provided 

a means to obtain millimeter-sized portions that can be easily 

subjected to LC MS without the use of additional rigorous sample 

purification steps such as lipid or abundant protein removal, sodium 

dodecyl sulphate polyacrylamide gel electrophoresis (SDS PAGE) or 

protein precipitation. Obtaining samples of restricted size in such a 

manner, compared to purifying them from entire organ homogenates, 

minimizes the dilution of less abundant proteins, and also allows 

their localization on the tissue where they have been obtained. PAM 

can be extended to the entire tissue section to provide a map of the 

distribution of proteins6. This time we exploit the advantage of using 

the PAM approach in profiling mode to directly analyze tumor 

regions in prostate biopsies as defined by MSI analysis, with the 

objective of finding candidate protein biomarkers that can be further 

validated on a larger cohort of samples. 
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MALDI MS imaging was first used to define ROIs on both the 

benign and tumor regions of prostate sections. Although the spatial 

resolution used was only 100 µm, it was sufficient to provide images 

with discernible localized tumors that coincide very well with those 

identified by HES staining (Figure 1a and b). But more than just 

providing optical images, the data generated are actually molecular 

images. Hierarchical clustering (HC) analysis of the spectra of these 

molecules (Figure 1c and d) results in simplified images where ROIs 

are defined based on statistical inference gained from the similarity 

of the cellular contents of neighbouring cells. This greatly simplifies 

the selection criterion used to identify ROIs, in contrast to looking at 

cell morphologies which can at times be subjective or misleading 

and heavily rely on the experience of the analyst. In the case of 

prostate tissue, the latter task easily becomes complicated because of 

the innate heterogeneity of the tissue. We have previously shown 

that lipid MS images are sufficient alternatives to protein MS images 

for HC as both show similar component localization but with lipid 

imaging being done much faster and at better spatial resolution6. 

Lipids, in contrast to proteins, do not need to be incorporated into the 

matrix crystals to be desorbed in MALDI; small matrix crystals thus 

do not compromise the efficiency of the ionization/desorption 

process. 

After determining the ROIs, they were excised and subjected to 

protein extraction, overnight trypsin digestion and shotgun LC-MS. 

Initial results on four prostate tissue samples subjected to the PAM 

technique and using an Orbitrap Elite instrument yielded 1221 

protein identifications, 374 of which have Fisher’s Test p-values ≤ 

0.05 when the tumor dataset was compared against the benign set. A 

 

Figure 1. Hierarchical clustering of prostate tumor MS images to 

define ROIs. A) Tumor regions in HES-stained section. B) 

Composite image of selected peaks taken from the MS image of an 

adjacent section. C) Dendrogram of the clustering analysis. D) 

Clustered spectra plotted back to the optical image. E) Sampled 

regions on the adjacent section. F) Detail of a single PAM piece. 

total of 122 proteins were identified to have differential expression 

after filtering using fold change and detectability across samples 

criteria, 79 of which were classifed as upregulated and 43 as 

downregulated. In this experiment, single PAM pieces were taken 

from the benign and tumor regions. In succeeding experiments using 

the Q-exactive, two PAM pieces from each region were taken from 8 

prostate tissue samples and one from a sample of limited size. This 

yielded 1251 protein IDs, 485 of which fit the Fisher’s test criterion. 

Applying the filtering parameters yielded 208 differentially 

expressed proteins of which, 135 were upregulated and 73 

downregulated. Thus, a total of 273 differentially expressed proteins 

are reported in this work (Tables 1 and S1).  

Examination of the upregulated proteins with 8-16 fold change 

identified previously reported proteins implicated in PC processes. 

This includes growth differentiation factor 15 (GDF15), hypoxia 

upregulated protein 1 (HYOU1), periostin (POSTN) and poly(ADP-

ribose) polymerase 1 (PARP1). Proteins implicated in other cancers 

were also identified, such as hydroxyacyl-coenzyme A (CoA) 

dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase 

(trifunctional protein), alpha subunit (HADHA)7 and tripartite motif 

containing 28 (TRIM28)8. Highly downregulated proteins are also 

noted in the list, including PC risk-modulating factor glutathione S-

transferase mu 3 (GSTM3)9, and -microseminoprotein (MSMB)10.  

The differentially expressed proteins were examined further by 

establishing the predicted protein-protein interactions (PPI) using 

STRING, plotting the PPIs using Cytoscape, analyzing the network 

parameters using NetworkAnalyzer, and performing MCL clustering 

and Gene Ontology (GO) analysis using clusterMaker and ClueGO, 

respectively. These were performed in order to determine which 

pathways were significantly perturbed in the tumor regions. The 

advantage of this approach is that the results are less prone to 

individual genetic heterogeneity that greatly decreases the 

discriminative power of individual markers11. Also, proteins and 

their genes rarely act alone, thus, for their cellular functions to be 

understood, they have to be examined in the context of the pathways 

where their roles interplay with those of other proteins12. The other 

Table 1. Over- and underexpressed proteins with 8-16 fold change 

observed when the spectral counts of PAM pieces from tumor 

regions are compared with those from benign regions. Negative 

values denote underexpression. (For complete list, see Table S1.) 

 

Protein Name Log2 Fold Change 

GOLM1 4 

PRKDC 4 

POSTN 4 

RPL23 4 

GDF15 4 

HYOU1 4 

CTNNA1 4 

PSME2 3 

PARP1 3 

HADHA 3 

DAK 3 

TRIM28 3 

GSTM3 -3 

OLFML1 -3 

A2M -3 

NID2 -3 

MAP1B -5 

MSMB -5 
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Figure 2. Regulatory network plotted using Betweenness Centrality (node size) and log2Fold Change (color) using the differentially 

expressed protein dataset. Color scale: green = downregulation, red = upregulation. Color intensity denotes extent of down- or upregulation 

in the tumor region, with the most intense colors (red or green) corresponding to 16-fold change in spectral count value.

advantage is that, with network analysis, we can perform MCL 

clustering to identify core modules and locate hubs. Hubs are large 

nodes in the network that have many connections with the smaller 

nodes; their centrality denotes that they have more functional 

relevance compared to other proteins/genes13. Hubs are essential for 

keeping the integrity of networks because they are involved in the 

relay of information, thus, proteins occupying these positions 

become more promising biomarker candidates for more precise 

disease classification14. To determine which pathways were enriched 

in the benign and tumor regions of the prostate samples, the 

differentially expressed protein list was analyzed using ClueGO. 

ClueGO can integrate GO terms, KEGG/BioCarta pathways, 

Reactome and WikiPathways terms and can create a functionally 

grouped GO/pathway network using kappa statistics for term 

linkage15, in contrast to other GO analysis software that generate 

hierarchical trees based on assessment of overrepresented GO terms.  

Results of the network and GO analysis are summarized in Figure 2 

and Table S2. After constructing the regulatory network using the 

PPIs and mapping using network parameters such as degree and 

betweenness centrality, the proteins were grouped according to their 

GO term association. The node colors were then changed to 

log2Fold Change to show the distinctly perturbed pathways based 

not only on protein member overrepresentation, but also expression. 

As expected, distinct pathways were perturbed. Majority of the 

upregulated proteins in the tumor region are involved in cytoplasmic 

ribosomal protein synthesis and function, including 22 ribosomal 

proteins. The overexpression of cytoplasmic ribosomal proteins is 

concomitant with the increased metabolic activity necessary to drive 

the proliferation of neoplastic cells16. Ribosomal proteins have also 

been proposed to actively mediate certain aspects of tumorigenesis 

due to the extra-ribosomal cellular functions that they possess 

independent of protein biosynthesis17. Likewise, the enrichment of 

metabolism-related terms in the  

tumor region, such as valine, leucine and isoleucine degradation and 

glucose metabolism, is correlated with increased cell proliferation. 

Such processes can be utilized by the tumor cells to drive energy 

production and provide metabolites needed for cellular processes and 

protection against oxidative stress18. Meanwhile, ClueGO analysis of 

the downregulated terms showed enrichment of proteins involved in 

complement and coagulation pathways, essential components of the 

immune system used in the eradication of pathogens and clot 

formation; such diminished immune system activity is essential for 

continued survival of tumor cells. Laminin interactions and 

cytoplasmic membrane-bounded vesicle lumen were also 

downregulated, in accord with the alterations in the extracellular 

matrix to compromise the basement membrane that acts as a barrier 

for cancer cell invasion during epithelial-mesenchymal transition 

(EMT)19. 

To identify hubs in the network, MCL clustering was performed 

(Figure S2). Five modules were identified from the clusters and the 

hubs were pulled together and placed at the center of the regulatory 

network (Figure 2).  Exploring further, the cancer gene indices (CGI) 

of the modules were loaded using Reactome. CGI contains data on 

6,955 human genes, nearly 12,000 NCI Thesaurus cancer disease 

terms, and 2,180 unique pharmacological compounds from the NCI 

Thesaurus20. As shown in Figure S3, the highlighted nodes (yellow) 

indicate proteins annotated with the term “neoplasm”. Neoplasms 

are abnormal growths of tissue that may or may not necessarily 

produce a mass21. Expectedly, majority of these hubs have well 

established roles in the regulation of cancer processes, as supported 

by their CGI annotations. For example, fibronectin 1 (FN1) is known 

for its role in suppressing PC cell migration via fibronectin matrix-

mediated cohesion22. Of the five hubs identified, only glutamate 

oxaloacetate transferase 2 (GOT2) did not possess CGI annotations, 

suggesting that this protein is probably involved in non-neoplastic 

processes. GOT2 encodes for the mitochondrial isozyme of aspartate 

aminotransferase (AAT), and catalyzes the conversion of 
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oxaloacetate to aspartate. GOT2, together with mitochondrial malate 

dehydrogenase 2 (MDH2), comprises the malate-aspartate shuttle of 

the glycolysis pathway. The malate-aspartate shuttle is known to be 

active in neoplastic cells of several tumor types and believed to 

account for about 20% of the total respiratory rate23. 

Conclusions 

The current work provided a simple means to evaluate protein 

expression data by making use of a combination of MS 

imaging, PAM and LC-MS methods to sample and analyze 

regions directly from tissue specimens without extensive 

sample preparation or purification. A combination of rigid 

protein identification and spectral counting parameters followed 

by robust statistical methods were then applied to obtain high 

quality differential protein expression data. Examination of the 

differentially expressed proteins showed established biomarkers 

for PC diagnosis, as well as potential candidates for further 

verification. Apart from individual protein expression analysis, 

we also used network and GO analyses to identify FN1, GOT2, 

NCL, PPP2R1A and C1QBP as key regulators of PC among the 

hundreds of proteins that we identified to have differential 

expression in the tumor region. This network-based approach 

supports existing evidence on the active roles of these proteins 

in carcinogenesis, and allowed us to visualize the relative 

importance of the protein interactions based on well-defined 

topological parameters that may aid in the better understanding 

of the underlying mechanisms of the disease and provide 

avenues for specific protein therapeutic targets. Results of this 

work need to be further validated to realize their potential in the 

clinical setting. These experiments highlight the advantage of 

localized microproteomic analysis offered by the PAM 

strategy; we thus expect to find more applications of this 

strategy in our future proteomics studies. 
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