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We derive an instantaneous symmetry-preserving mean
field equation relating the long-ranged component of the
intermolecular interaction to an effective single particle
potential. We verify the efficiency and accuracy of the
symmetry-preserving mean field approach to treat com-
plex nonuniform electrostatics and foresee its application
to study self-assembly and diassembly processes at inter-
faces in many computer simulations.

The primary purpose of theoretical and computational stud-
ies of nonuniform fluids is to obtain the dynamical, structural,
and thermodynamical properties of a liquid phase in a general
external field. When the long-ranged part of the intermolec-
ular interaction plays an important role in determining these
properties, there are difficulties in developing either accurate
statistical mechanics theories or efficient molecular dynamics
(MD) simulations and Monte Carlo techniques. Mean field ap-
proaches suggest that certain long-ranged components of the
pair intermolecular interaction can be replaced by an effective
single particle potential or a reconstructed molecular field that
depends self-consistently on the nonuniform density that the
field itself induces1,2. Recent implementation of mean field
ideas in terms of the local molecular field (LMF) theory devel-
oped by Weeks and coworkers has proven successful in pro-
ducing accurate results for equilibrium structure and thermo-
dynamics for Lennard-Jones and molecular fluids2,3, and es-
pecially for complex nonuniform electrostatic systems in gen-
eral4–7. However, a controllable way to achieve the accurate
dynamics using mean field ideas has yet to be developed.

Indeed, is it possible even in principle to construct a dy-
namical effective single particle potential related to the long-
ranged components of the pair interaction such that the sys-
tem evolves in a simple but controllable way to give accurate
dynamics? The existence of such a relation must certainly
depend on the fluctuating instantaneous local environment of
each particle in general and at first glance, it may seem hard
to believe that any mean field approximation at the level of
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instantaneous configurations could be controlled! In this let-
ter, we build on ideas from the equilibrium LMF theory and
introduce an appropriately chosen slowly varying dynamical
variable. We show that in interfacial environments when its
components in directions with different symmetries are ap-
proximated separately, this approximation can be controlled
and is an efficient and practical tool to determine accurate dy-
namics, as well as equilibrium structure and thermodynamics.

For concreteness, we will present our ideas in the context of
a simple but challenging problem of N charges confined be-
tween planar walls under an external electric field (e.g. water
confined between two charged hydrophobic walls). The sin-
gle particle external field is ϕ(r) = ϕ(z) with planar symme-
try. This field breaks the symmetry in the z direction and the
treatment of the nonuniform electrostatics presents a particu-
larly challenging problem because (i) it has long been recog-
nized that the standard setup using 3D Ewald sum (Ewald3D)
or the particle mesh Ewald (PME) treatment8 gives inaccu-
rate results in general6,9,10 and (ii) an accurate treatment us-
ing Ewald type sums with 2D periodicity (Ewald2D)9,11–18 or
Lekner sum methods19–21 is much more complicated and effi-
cient methods are still under development. For this N-charge
electrostatic system, the pair intermolecular interaction is a
combination of a short-ranged potential us(r) and the long-
ranged Coulomb potential. The instantaneous total potential
energy felt by a test charge q at the position r for a given con-
figuration of the system (R̄) is thus written as

U(r, R̄) = ϕ(r)+∑
j

us(|R j − r|)+∑
j

q jq
|R j − r|

. (1)

Accurate evaluation of U(r, R̄) at each particle’s position (the
self term at 0 distance is set to 0) is crucial to the dynam-
ics. It is straightforward to determine the first two terms of
U(r, R̄) but the last term usually requires the use of the Ewald
type sums. When the Coulomb interaction 1/r ≡ v0(r)+v1(r)
is separated into short- and long-ranged components with v1
arising from a normalized Gaussian charge distribution with
width σ6,7:

v1(r) =
1

π3/2σ3

∫
dr′ e−r′2/σ2 1

|r− r′|
=

erf(r/σ)
r

, (2)
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we can exactly rewrite U(r, R̄) as

U(r, R̄) = ϕR(r, R̄)+∑
j

us(|R j − r|)+∑
j

q jqv0(|R j − r|),

(3)
where the reconstructed configurational field is defined as
ϕR(r, R̄) = ϕ(r) + VR(r, R̄)q with the effective electrostatic
potential VR(r, R̄) formed by the convolution of the instan-
taneous charge density ρq(r, R̄) = ∑ j q jδ(r−R j) with v1(r)

VR(r, R̄) =
∫

dr′ ρq(r′, R̄)v1(|r− r′|)≡
∫

dr′
ρqσ(r′, R̄)

|r− r′|
.

(4)
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Fig. 1 The large-scale fluctuations of the instantaneous charge
densities ρq(x/z, R̄) (a) for a given configuration in a confined water
system in the x or y direction (red, top, using label x) and in the z
direction at 0 time (black, bottom, using label z) and the small-scale
fluctuations of the corresponding Gaussian-smoothed charge
densities ρq,σ(x/z, R̄) (b) from the x direction random configuration
(circle) and from the z direction configuration at 0 (solid line) and
later times (cross and plus). ϕ(r) = ϕ(z) arises from the wall fixed at
z =−2.0nm and an applied electric field introducing an
instantaneous charge density indistinguishable from the bulk
fluctuation. Note the 4 orders of magnitude difference in the vertical
scale of (a) and the inset of (b). σ = 0.45nm7. ρq(z, R̄) (the black
curve in(a)) has been shifted downward by 100 units.

Before making any approximation, let’s examine the prop-
erties of VR(r, R̄) in general. In particular, what’s the mag-
nitude of VR(r, R̄) relative to the total electrostatic potential
∑ j q j/|R j −r| in a typical configuration? Noting the convolu-
tion defining v1, we see that VR(r, R̄) exactly satisfies the Pois-
son’s equation but with an instantaneous Gaussian-smoothed
charge density ρqσ(r, R̄), given by the convolution of ρq(r, R̄)
with the Gaussian in eq. (2). Thus, we should be able to
address this question by comparing the unsmoothed charge
density ρq(r, R̄) and the Gaussian-smoothed charge density
ρqσ(r, R̄). We assume that the accurate dynamics can be de-
termined (e.g. by Ewald2D type sums) for the nonuniform
electrostatic system and therefore we can examine the instan-
taneous charge density in either the x or z direction shown in
Fig. 1. Clearly, the Gaussian-smoothed instantaneous charge
density with σ = 0.45nm is slowly varying and several orders

of magnitude smaller than the rapidly varying unsmoothed
charge density. A similar observation for the magnitude of
the equilibrium and Gaussian-smoothed charge densities was
made in LMF theory. The remaining variations in the di-
rection with preserved symmetry along the wall are random
and would average out to 0 exactly in the ensemble averaged
charge density used in LMF theory. But the z component with
broken symmetry has nontrivial variations that reflect the ef-
fect of ϕR in LMF theory6,7 and we note that they are still
there in each configuration as well. This suggests we may be
able to capture many of the advantages and simplifications of
the equilibrium LMF theory while still preserving an accurate
treatment of the configurational dynamics.

To that end, let us consider how accurately the Coulomb in-
teractions in the Hamiltonian (and hence the associated forces)
have to be determined to achieve the realistic dynamics. MD
simulation studies using different number of particles and dif-
ferent initial conditions clearly have different energies and
forces for each instantaneous configuration but still yield at
least consistent results for equilibrium properties. This sug-
gests that the dynamics in molecular simulation or arguably in
reality as well should be insensitive to the tiny random forces
remaining even after Gaussian-smoothing in the x direction
(more generally in the directions with no broken symmetry).

The above discussion thus suggests a simple and physically
suggestive approximation where the small-scale fluctuations
of VR(r, R̄) in the x and y direction with preserved symmetries
are integrated out

VR(r, R̄)≃
⟨
VR(r, R̄)

⟩
sp ≡∫

dX1 · · ·dXNdY1 · · ·dYN VR(r, R̄)∫
dX1 · · ·dXNdY1 · · ·dYN

= VR(z, Z̄), (5)

where ⟨⟩sp is the symmetry-preserving operator defined as the
normalized integration over the degrees of freedom in the di-
rections with no broken symmetry. The effective field VR(z, Z̄)
does not depend on the small-scale degrees of freedom (x or
y) any more and is exactly given by

VR(z, Z̄) =
∫

dr′ ρq
s (z

′, Z̄)v1(|r− r′|), (6)

with the instantaneous singlet charge density in the z direction
defined as ρq

s (z, Z̄)≡ 1
A ∑N

j=1 δ(z−Z j), where A is the unit area
of the N charges and we have simply ignored or more formally
averaged out the fluctuating contribution in x and y direction.

Using v1 = erf(r/σ)/r as in eq. (2), VR(z, Z̄) can be written
explicitly as

VR(z, Z̄) =
−σ
A

N

∑
j=1

q j

[
πν jerf(

ν j

2
)+2

√
πe−ν2

j/4
]
, (7)

where ν j = 2|z−Z j|/σ. However, even with this simplifica-
tion the evaluation of VR(z, Z̄) in eq. (7) for all charges still
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requires the calculation of all relative vectors in the z direc-
tion which is time costly (∼ O(N2)). To make the approxi-
mation useful in practice, we now show that VR(z, Z̄) can be
accurately rewritten as a rapidly convergent expansion whose
evaluation is as efficient as that of a single particle potential
(∼ O(N)). This important simplification is possible because
the smoothness of VR(z, Z̄) allows one to obtain a rapidly
convergent expansion using an orthogonal basis where only
a small number of terms are needed to achieve high accuracy:

VR(z, Z̄) = ∑
m

Cm(z)Tm(Z̄). (8)

In practise, a few terms of eq. (8) related to each coordinate
(not the distance between two) of the instantaneous configu-
ration Z̄ are computed once for all charges. The expansion
formula then yields the potentials and forces after the coef-
ficients Cm(z) at each specific particle are determined. This
expansion decouples z and Z j to make an efficient calculation
of VR(z, Z̄) practical (∼ O(N)) and shares the same advantage
as doing LMF theory with the exact ϕR(z) as a static external
potential6,7.

Indeed, an analytical expansion of VR(z, Z̄) by a Fourier se-
ries using a dimensionless parameter ζ exists18

Cm(z) =
σζ
A

e−(mζ)2

(mζ)2 exp
[

i
2mζ

σ
z
]
, (9)

and

Tm(Z̄) =
N

∑
j=1

q j exp
[

i
2mζ

σ
Z j

]
. (10)

The choice of the parameter ζ has to be related to the ratio be-
tween σ and Lz, the z direction length that the system spans.
Further, it has been proved that the rigorous error bound of the
above expression scales as e−(π/ζ−Lz/σ)2 18. For a given value
of ζ, because the coefficients of eq. (9) again decrease as the
Gaussian function, contributions from terms with a large m
is obviously negligible. Indeed, the most important term is
the m = 0 term linearly proportional to the z direction total
dipole moment C0(z)T0(Z̄) = z 4ζ

Aσ ∑N
j=1 q jZ j − 2ζ

Aσ ∑N
j=1 q jZ2

j .
This simple first term states that when the system has a per-
manent dipole, VR(z, Z̄) persists and the proper treatment of
the long-ranged component becomes more important which is
consistent with the previous observations6,9,10.

This completes the presentation of the essential ideas in this
mean field approach at the instantaneous level for electrostat-
ics. The present approach using the dynamical effective field
VR(z, Z̄) instead of its ensemble average VR(z) ≡

⟨
VR(z, Z̄)

⟩
(see e.g. eq. 7 of ref.7) used in LMF theory thus makes fewer
approximations and is more general than LMF approach be-
cause the self-consistent process to determine VR(z) in LMF
theory is now done instantaneously. Moreover, it is closely re-
lated to the various Ewald2D algorithms9,17. The dynamical

effective field in eq. (7) is exactly equivelent to the singular
term of the Ewald2D sum (e.g.18). Furthermore, Lindbo and
Tornberg17 and Pan and Hu18 have recently shown that the
singular term of the Ewald2D sum can be either numerically
or analytically expanded to the form of eq. (8) which enables
an efficient calculation. On the other hand, LMF theory sug-
gests that when σ is appropriately chosen (e.g. σ ⩾ 0.45nm
for water confined between walls), the long-ranged compo-
nent can be replaced by the effective single-particle poten-
tial. Therefore, the present approach is a combination of the
previous excellent developments toward efficient simulations
of electrostatics from both the Ewald2D sum9,11,17,18 and the
mean field approach7. Because the symmetry-preserving ap-
proximation of eq. (5) reveals the essential physical mean-
ing of neglecting the component of the Fourier space term of
the Ewald2D sum9,11, we call the present method symmetry-
preserving mean field approach (SPMF).
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Fig. 2 The internal electric fields Etot and the survival probabilities
S(∆t) for E0 = 20V/nm (solid line, filled circle and cross) and
E0 = 2V/nm (dash line, open square and plus) from SPMF (solid or
dash line), the Ewald2D method (filled circle or open square) and
the Ewald3D method (cross or plus) respectively. Inset blows up the
values of Etot at E0 = 2V/nm in the middle region. LMF method 7

works as efficient as SPMF for Etot but it might be challenging to
obtain S(∆t) using current versions of LMF.

We now numerically demonstrate the efficiency and accu-
racy of SPMF for extended simple point charge (SPC/E)22

water confined between two hydrophobic Lennard-Jones (LJ)
walls23 under a strong (E0 = 20V/nm) or a weak electric field
(E0 = 2V/nm). The systems are equilibrated using NVT en-
semble at T=298K followed by a productive NVE simulation
of 1.2ns using a relatively smaller time step ∆t = 0.5fs to en-
sure the conservation of total energy. The two walls are fixed
at z=±2.25nm. Three types of methods, SPMF, the Ewald2D
method18 and the Ewald3D method with an artificial empty
space of about 10nm have been used to treat the nonuniform
electrostatics. SPMF is more than an order of magnitude faster
than the other two methods in the present setup and in general
SPMF (O(N)) must be much more efficient than the regular
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PME method (O(N logN)) for the electrostatics at interfaces.
As was known previously9,10, an accurate treatment of the

nonuniform electrostatics becomes very important when the
system responses to a strong external electric field. Indeed,
Fig. 2 (a) shows that, at E0 = 20V/nm, the total internal elec-
tric field, Etot(z) defined as Etot(z) = E0 +

∫ z
−∞ dz′

⟨
ρq

s (z′, Z̄)
⟩

from SPMF overlaps that from the Ewald2D method but dif-
fers significantly from that from the Ewald3D method. More
importantly, Fig. 2 (b) shows that the present method of SPMF
reproduces the survival probability (see e.g.24,25) of the oxy-
gen atom in the interfacial region, S(∆t)=P(z(∆t)< zb|z(0)⩾
z0)

25, where the barrier position zb = 1.92nm and the well po-
sition z0 = 2.0nm are determined from the local minimum and
maximum of the oxygen density distribution close to the inter-
face. This agreement for S(∆t) reflects the advantage of SPMF
using VR(z, Z̄) rather than LMF using

⟨
VR(z, Z̄)

⟩
7.

To further check the validity of SPMF we compute the ra-
dial angle distribution. This depends on the distance between
the oxygen atoms in two molecules and their relative orienta-
tion26 g(r,θ) = 1

Nc
∑Nc

i ̸= j

⟨
δ(r− ri j)δ(θ−θi j)

⟩
, where Nc is the

number of the oxygen atoms contained in the same interfacial
region of z ⩾ zb. g(r,θ) is normalized to 1 at large distances
and reduces to the usual radial distribution function in the bulk
region26. The contour plot in Fig.1 of the Supplementary In-
formation (SI) shows that SPMF works well for the correlated
structural features.

Traditionally the regular Ewald3D method and its PME al-
ternatives (e.g.8) are used for complex nonuniform electrostat-
ics and often produce reasonable results from MD simulation.
Indeed, for the weak electric field E0 = 2V/nm, the Ewald3D
method using the present conservative setup works equally
well for both the survival probability and the correlated struc-
ture (see Fig.2 and Fig.3 in SI). However, other properties
might be very sensitive and require a very accurate treatment
of the 2D electrostatics even in the weak field case. The in-
set of Fig. 2 (a) shows that Etot from SPMF/Ewald2D reaches
a fluctuating value around but in average very slightly above
zero in the bulk region while the Ewald3D method gives the
corresponding result of a negative plateau value. The averaged
slightly positive value explains the dielectric property of bulk
water saying that the internal total electric field, Etot inside
water under a weak external electric field is proportional to E0
with a very small coefficient 1/ε0 (experimental value ε0 ≃ 80
for bulk water). However, the use of the Ewald3D method vi-
olates this essential thermodynamical argument about the di-
electric response in bulk water.

Obviously, the present SPMF approach shares the same ad-
vantage of the computational efficiency and speed gains as the
LMF approach does7. Moreover, the analytical expression of
the effective field in eqs. (8), (9) and (10) makes no difficulty
in coding the simple SPMF algorithm in any leading MD sim-
ulation engines. We believe that SPMF with the advantages

inherited from LMF and with the additional merits from sim-
plifying the Ewald2D method can be used to study a large
variety of liquid systems at interfaces.
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for how to present this work.
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