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A direct carboxylation of simple arenes under atmospheric 
pressure of CO2 is achieved through a rhodium-catalyzed 
C–H bond activation without the assistance of a directing 
group. Various arenes such as benzene, toluene, xylene, 
electron rich or electron deficient benzene derivatives, and 
heteroaromatics are directly carboxylated with high TON. 

 The direct carboxylation reaction of simple arenes with carbon 
dioxide (CO2), which is an abundant and potentially renewable 
carbon source, has still remained a great challenge due to low 
reactivity of CO2.1-3 Recently several groups developed the 
gold(I) or copper(I) hydroxide-catalyzed carboxylation of 
arenes without a directing group, however, the substrates are 
limited to electron deficient arenes having a rather acidic C–H 
bond since the key arylmetal intermediates are generated 
through deprotonation by the basic metal hydroxides.4 On the 
other hand, we reported rhodium(I)-catalyzed direct 
carboxylation of phenylpyridine derivatives via chelation-
assisted C-H bond activation. Although this reaction showed no 
limitation concerning the acidity of the C-H bond, the pyridine 
moiety was required to promote the reaction effectively.5 
Additionally, the two representative stoichiometric reactions for 
carboxylation of simple arenes with CO2, that is, the base-
promoted Kolbe-Schmitt reaction of phenol derivatives and the 
aluminum-promoted Friedel-Crafts type carboxylation, also 
have some drawbacks of substrate limitation and necessity of 
high pressure of CO2.6-8 Therefore, development of a new direct 
carboxylation reaction of simple arenes with wide generality is 
highly desired. Herein we report a direct carboxylation of 
simple arenes under atmospheric pressure of CO2 through a 
rhodium-catalyzed C–H bond activation without the assistance 
of a directing group.9 The reaction is applicable to both electron 

rich and deficient arenes, demonstrating promising utility as a 
new CO2-fixation reaction.  
 To realize the direct carboxylation of simple arenes, we started 
investigations utilizing the combination of a rhodium catalyst 
and a methylaluminum reagent as a stoichiometric reductant 
based on our previous success in the chelation-assisted 
carboxylation of phenylpyridine derivatives.9 However, the 
rhodium catalyst with a bulky monodentate phosphine ligand, 
which is the active catalyst in our previous report, was totally 
ineffective for the direct carboxylation of benzene under 
various conditions. Extensive screening of the ligand and 
reaction conditions revealed that isolated 1,2-
bis(dialkylphosphino)ethane-rhodium(I) chloride complexes 1 
showed catalytic activity for the carboxylation of benzene in the 
presence of AlMe3 as a stoichiometric reductant. A small 
amount of benzoic acid was obtained with a catalyst turnover 
number (TON) of 2.8 by treatment of the rhodium complex 1c 
bearing 1,2-bis(dicyclohexylphosphino)ethane (dcype) with an 
excess amount of AlMe3 (100 equiv. to Rh) in a mixture of 
benzene and DMA (N,N-dimethylacetamide) (20:1) as solvent 
at 85 ºC for 6 h (entry 3, Table 1). The TON decreased when 
analogous complexes 1a and 1b bearing 1,2-bis(diethyl- or 
diisopropylphosphino)ethane (depe or dippe) were employed as 
a catalyst (entries 1 and 2), suggesting critical effect of 
bulkiness of alkyl substituents probably on stabilization of 
catalytically active, coordinatively unsaturated rhodium species. 
The bidentate structure was also essential as two molar amounts 
of bulky monodentate phosphine, PCy3, was not effective at all 
(entry 4). Furthermore, use of AlMe1.5(OEt)1.5 instead of AlMe3 
dramatically improved efficiency of the reaction,10 achieving 
the TON of 29 in benzene-DMA and of 40 by further addition 
of TMU (1,1,3,3-tetramethylurea), which is believed to 
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stabilize coordinatively unsaturated Rh(I) species through 
coordination, as a second cosolvent (entries 5 and 6).11 
AlMe2(OEt) was slightly less effective than AlMe1.5(OEt)1.5 
(entry 7). It should be noted that the reaction in the absence of 
DMA gave poor result (TON=3.2, entry 8), indicating polar 
cosolvents play important roles.12 

Table 1. Optimization of Reaction Conditions 

	
  

entry [Rh] [Al] cosolvent TONd 

1 1a AlMe3 DMAb 0 

2 1b AlMe3 DMAb 1.0 

3 1c AlMe3 DMAb 2.8 

4 2 AlMe3 DMAb 0 

5 1c AlMe1.5(OEt)1.5
a DMAb 29 

6 1c AlMe1.5(OEt)1.5
a DMA + TMUc 40 

7 1c AlMe2(OEt) DMA + TMUc 34 

8 1c AlMe1.5(OEt)1.5
a - 3.2 

a 1.1 mmol of the Al reagent was used. See also ref. 10. b 0.1 mL. c 0.1 mL 
DMA + 6 µL TMU. d Calculated based on NMR yield. Effects of other 
factors (other co-solvents, concentrations) were summarized in Supporting 
Information. 

Direct carboxylation of various simple arenes proceeded 
successfully under the optimized reaction conditions (Table 2). 
Simple monosubstituted arenes such as toluene 3b and cumene 
3c were carboxylated to give toluic acids 4b and cumic acids 4c 
as a mixture of regioisomers with good TON (TON=18 for 4b 
and 22 for 4c) at 120 and 145 ˚C (entries 2 and 3). The steric 
repulsion of the bulky isopropyl group suppressed the 
carboxylation at the ortho-position. Among three isomers of 
xylene, the TON of o-xylene 3d was the highest (ΤΟΝ=46) 
while that of m- and p-xylenes decreased to 33 and 22, also 
indicating the importance of steric accessibility for efficient C–
H activation (entries 4-6). The regioselectivity in these 
reactions are clearly different from those in aluminum-mediated 
Friedel-Crafts type carboxylation of arenes (e.g. α:β:γ = 7:3:90 
for 3b and 0:100:0 for 3e by Olah’s report7a), ruling out the 
possibility of electrophilic substitution pathway promoted by 
aluminum species. Importantly, the reaction was also applicable 
to a solid arene such as naphthalene 3h by using cyclooctane as 
an inert solvent to give a mixture of 1- and 2-naphthoic acids 
4h with TON of 16 (entry 8).  

 Furthermore, good compatibility of this reaction with various 
functional groups was demonstrated. Arenes having fluorine 
(3i), chlorine (3p), silicon (3k), and trifluoromethyl (3j and 3n) 
substituents were successfully carboxylated to afford 
corresponding benzoic acid derivatives with high TON of up to 
48 (entries 9-11, 14, and 16).13 Regioselective formation of 3,5-
bis(trifluoromethyl)benzoic acid 4n with high TON is 
noteworthy in the reaction of 3n (entry 14). The reactions of 
electron rich arenes such as anisole 3l, N,N-dimethylaniline 3m, 
and benzo-1,4-dioxane 3o also proceeded (entries 12, 13, and 
15) although the TON slightly decreased probably due to partial 
inhibition by coordination of the oxygen and nitrogen atoms to 
the catalyst.14 Moreover, this reaction is applicable not only to 
benzene derivatives but also to heteroaromatic compounds. 
Carboxylation of benzofuran 3q and 1-methylindole 3r 
proceeded at 2-positions selectively, which are hardly 
carboxylated by Lewis acid or base-promoted carboxylation 
protocols (entries 17 and 18).7,8,15 Interestingly, ferrocene 3s 
showed exceptionally high reactivity, and the TON reached 60 
(entry 19). These results clearly demonstrate several advantages 
and characteristic of this reaction as follows. 1) The reaction is 
applicable to both electron rich and deficient arenes whereas 
previously reported acid- or base-promoted reactions are 
limited to either one of them. 2) Preferential carboxylation with 
different regioselectivities from those of previous reports is 
possible. 3) The reaction proceeds under atmospheric pressure 
of CO2 whereas Al-mediated electrophilic carboxylation 
requires high pressure. Therefore, this rhodium-catalyzed 
protocol demonstrates a new approach toward direct 
carboxylation of simple arenes utilizing CO2 as a C1 source. 

Table 2. Carboxylation of benzene derivatives 

	
  

entry arene temp. 
/ºC TONa regiob 

(α:β:γ) 

1 

 

R = H 
3a 85 4a 37 – 

2 R = Me 
3b 120 4b 18 17:57:26 

3 R = iPr 
3c 145 4c 22 0.67:33 

4 

 

3d 145 4d 46 12:88:– 

5 

 

3e 145 4e 33 0:33:67 

6 
 

3f 145 4f 22 – 
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7 

 

3g 145 4g 25 23:77:– 

8c 

 

3h 145 4h 16 46:54:– 

9 

 

R = F 
3i 85 4i 39 59:29:12 

10 R = 
CF3 3j 120 4j 44 0.77:23 

11 
R = 

SiMe3 
3k 

145 4k 39 0:64:36 

12 
R = 

OMe 
3l 

145 4l 15 23:54:23 

13 
R = 

NMe2 
3m 

145 4m 9 0:56:44 

14 

 

3n 145 4n 48 0:0:100 

15d 

 

3o 145 5o 22 55:45:– 

16 

 

3p 145 4p 15 49:51:– 

17d 

 

3q 145 5q 12 100:0:– 

18d 

 

3r 145 5r 21e 86:14:– 

19c,d 

 

3s 145 5s 60f – 

a Calculated based on the isolated yield of products. b Determined by 1H 
NMR. c 5.0 mmol of an arene was used in 2.0 mL of cyclooctane. d Isolated 
after Me-esterification. e Small amounts of other regioisomers were detected 
by GC-MS. The TON was calculated based on the yield of α- and β-isomers. 
f Small amounts of dicarboxylated products were detected. 

 A tentatively proposed reaction mechanism is shown in 
Scheme 1. The reaction starts with generation of a 
methylrhodium(I) complex A from 1c and AlMe1.5(OEt)1.5 
followed by oxidative addition of an sp2 C–H bond of a simple 
arene to A, giving an aryl(hydride)(methyl)rhodium(III) 
intermediate B. Reductive elimination of methane from B 
affords a highly reactive arylrhodium(I) complex C.16 
Nucleophilic addition of C to CO2 gives a rhodium(I) benzoate 
complex D,17 which is converted to the methylrhodium(I) A 
through transmetallation with AlMe1.5(OEt)1.5.18  

 
Scheme 1. Proposed Mechanism. 

To obtain mechanistic insights, the competitive reaction of 
C6H6 and C6D6 was examined in the same vessel. After 
esterification with benzyl bromide, the KIE value ([6a-d0]/[6a-
d5]) at the point of 1 h reaction time was estimated to be 5.5, 
which suggests that the C-H bond activation step is the rate-
determining step.19 

 
Scheme 2. KIE Experiment. 

 In conclusion, we have developed a novel method for direct 
carboxylation of simple arenes with 1 atm CO2 through a 
rhodium-catalyzed C–H bond activation without the assistance 
of a directing group. This reaction demonstrates wide generality, 
intriguing regioselectivity,that are not achieved by previous 
acid- or base-promoted protocols. These findings are highly 
promising to expand synthetic utility of the direct carboxylation 
of simple arenes even though a stoichiometric amount of 
aluminum reagent is required at present. Further improvement 
of the efficiency of the reaction and investigations on the 
reaction mechanism are in progress. 
 This research was supported by Grant-in-Aid for Scientific 
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A direct carboxylation of various simple arenes under atmospheric pressure of CO2 is achieved through a  

rhodium-catalyzed C–H bond activation without the assistance of a directing group.
 5 

cat.

1 atm CO2

DMA + TMU, 85-145 ˚C

AlMe1.5(OEt)1.5 (reductant)

H
�

R

COOH

R

P
Rh

P
CyCy

CyCy

Cl

• TON up to 60
• applicable to benzene, toluene, 
  electron-rich/deficient arenes, heteroaromatics, ferrocene
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