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An efficient room-temperature palladium-catalyzed direct 2-
arylation of benzoxazoles with aryl bromides is presented.
The Pd(OAc),/NiXantphos-based catalyst enables the
introduction of various aryl and heteroaryl groups, via
deprotonative cross-coupling process (DCCP) in good to
excellent yields (75-99%).

2-Aryl-substituted benzoxazoles are an important class of
heterocyclic compounds that are widely found in bioactive
molecules,' pharmaceuticals’ and natural products.’® As such,
several strategies for their construction have been reported.* Starting
from benzoxazoles, the most common approach is the transition
metal catalyzed direct arylation with aryl halides (Scheme 1A).> 2-
Aryl-substitued benzoxazoles can also be prepared by the reaction of
benzoxazoles with acyl chlorides or aromatic aldehydes via a ring-
opening-ring-closing pathway (Scheme 1B).° These protocols all
require high temperatures (>100 °C), which limits the substrate
scope with temperature-sensitive heterocyclic aryl halides, such as
furan derivatives. Furthermore, in many cases these reactions were
performed in high boiling solvents, such as DMSO, DMF, and NMP,
which complicate product isolation. .

Our group has been interested in the functionalization of weakly
acidic sp® C-H bonds through deprotonative cross-coupling
processes (DCCP), wherein the a weakly acidic C—H of the substrate
is deprotonated by a base and functionalized in the presence of a
transition metal catalyst.  Substrates reported to date include
chromium-activated benzylic amines,’ diarylmethanes,® allylarenes,’
amides,' sulfones,'! sulfoxides,'? imines," phosphine oxides'* and
benzylic phosphonates.”” We have found that van Leeuwen’s
NiXantphos'® (See Scheme 1 for structure) enables a number of
these transformations, whereas other ligands are significantly less
effective or fail to provide even trace products.® '** > The high
reactivity of the NiXantphos-based palladium catalysts may be due
to the deprotonation of the ligand N-H under basic reaction
conditions.®® Based on these studies, we decided to examine DCCP
of sp? C—H bonds. Given the high temperature for metal-catalyzed
direct 2-arylation of benzoxazoles, in combination with the
importance of these compounds, we viewed this coupling as an ideal
testing ground for NiXantphos-based catalysts. Herein, we report a
Pd(OAc),/NiXantphos-catalyzed direct 2-arylation of benzoxazoles
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with aryl bromides at room temperature (Scheme 1C). Unlike most
catalyst systems,” this catalyst promotes coupling with heteroaryl
bromides.
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Scheme 1 Synthesis of 2-arylbenzoxazoles

Our investigations into the direct 2-arylation of benzoxazoles were
initiated by testing six bases [LiO7Bu, NaOrBu, KO7Bu,
LiN(SiMe;),, NaN(SiMe;), and KN(SiMe;),] in THF at 65 °C using
benzoxazole 1a (1.0 equiv) and 1-bromo-4-tert-butylbenzene 2a (1.2
equiv, Table 1, entries 1-6). The nature of the base had a significant
impact on the yield under these conditions, with NaOsBu affording
the coupling product 3a in quantitative assay yield after 12 h (Table
1, entry 2). When the reaction temperature was reduced to room
temperature, however, the assay yield dropped to 55% (entry 7). We
then screened several solvents [DME (1,2-dimethoxyethane), CPME
(cyclopentyl methyl ether), toluene and 1,4-dioxane] at rt and
obtained 93% assay yield when the reaction was conducted in DME
(entry 8). Under these conditions, trace unconverted benzoxazole 1a
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was detected. Using a benzoxazole to aryl bromide ratio of 1.2 : 1.0
at rt, the coupling product 3a was isolated in 98% yield. When the
catalyst/ligand loading was lowered, or the reaction time reduced,
the reactions did not go to completion.

Table 1 Optimization of direct 2-arylation of benzoxazole 1a with 1-
bromo-4-tert-butylbenzene 2a“

@[(’}} + BrO\tB

Pd(OAc); (5 mol %)
NiXantphos (7.5 mol %

Base, Solvent
Temperature, 12h

@@

1a 2a
entry base solvent T(°C) yield (%)b
1 LiOfBu THF 65 56
2 NaO7Bu THF 65 100
3 KO7Bu THF 65 98
4 LiN(SiMe;), THF 65 90
5 NaN(SiMes), THF 65 88
6 KN(SiMes), THF 65 60
7 NaO7Bu THF 25 55
8 NaO7Bu DME 25 93
9 NaO7Bu CPME 25 72
10 NaOrBu toluene 25 trace
11 NaO7Bu 1,4-dioxane 25 8
12¢ NaO7Bu DME 25 98"

“ Reactions performed using 1.0 equiv of 1a, 1.2 equiv of
2a and 2.0 equiv of base on a 0.1 mmol scale in 12 hours. b
NMR assay yields. © This reaction performed using 1.2 equiv
of 1a, 1 equiv of 2a and 2.4 equiv of NaOsBu. “ Isolated
yield.

The substrate scope of aryl bromides 2a—s with benzoxazole 1a
was investigated (Scheme 2) with the optimized reaction parameters
[benzoxazole 1a (1.2 equiv), aryl bromide 2 (1.0 equiv), Pd(OAc),
(5 mol %), NiXantphos (7.5 mol %), and NaOsBu (2.4 equiv) in
DME at room temperature for 12 h]. In general, aryl bromides
possessing electron-donating, electron-withdrawing and sterically
hindered substituents afforded products in good to excellent yields
(60-99%).

Electron neutral 4-fert-butyl bromobenzene and the parent
bromobenzene led to the expected products in 98 and 92% yield,
respectively.  Aryl bromides bearing 4-methoxy and 4-N,N-
dimethylamino substituents gave coupling products 3¢ and 3d in 88
and 86% yield, respectively. Electron withdrawing substituents (4-
Cl, 4-F, and 4-CN) on the aryl bromide were well tolerated,
providing products in 81-99% yield. The most challenging substrate
for this system was N-(4-bromophenyl)acetamide, with an acidic N—
H that could also undergo Buchwald-Hartwig coupling with itself."”
In this case, the Pd(OAc),/NiXantphos-based catalyst exhibited good
chemoselectivity, generating the 2-aryl benzoxazole product 3h in
60% yield. Both of 3-bromotoluene and 3-bromobenzotrifluoride
provided the coupling products 3i and 3k in 85% yield. Sterically
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hindered 1-bromonaphthylene was a good substrate, furnishing the
coupled 2-arylbenzoxazole 3j in 84% yield.

As mentioned earlier, coupling of heteroaryl bromides is
particularly important, but more challenging. To evaluate
Pd(OAc),/NiXantphos-based catalyst, we examined a series of
heteroaromatic coupling partners with benzoxazole. The reactions
proceeded very well with heteroaryl bromides such as 3-
bromopyridine, 2-bromofuran, 2- and 3-bromothiophenes, 4-
bromoquinoline, 3-bromobenzothiophene and 5-bromobenzofuran to
afford products in 75-98% yield. It should be noted that direct
arylation of benzoxazoles with aryl heteroaryl bromides was carried
out with excess amounts of heteroaryl bromides due to possible
competing Heck-type reactions. Because of high chemoselectivity
of the Pd(OAc),/NiXantphos-based catalyst, we were able to use
heteroaryl bromides as a limiting reagent. To the best of our
knowledge, this is the first successful coupling with sensitive 2-
bromofuran (2m).

Scheme 2 Scope of aryl bromides in direct 2-arylation of

benzoxazole 1a
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Based on the successful room temperature coupling of

benzoxazole with aryl bromides, we briefly explored the scope of
substituted benzoxazoles (Scheme 3). In each case, benzoxazoles
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substituted with neutral, electron-rich or electron-withdrawing
groups coupled with heterocyclic aryl bromides to generate
diheteroaryl products with an average yield of 90%. Benzoxazoles
possessing chlorine, fluorine, methyl, or methoxy groups coupled
with 2-bromothiophene to provide 2-(thiophen-2-yl)benzoxazoles 3t
and 3w-y in >90% yield at room temperature. DCCP of 5-
chlorobenzoxazole with 3-bromothiophene or 3-bromopyridine
afforded 5-chloro-2-(thiophen-3-yl)benzoxazole 3u and 5-chloro-2-
(pyridin-3-yl)benzoxazole 3v in 86—-88% yield.

Scheme 3 Scope of substituted-benzoxazoles in the arylation with
heteroaryl bromides
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We also evaluated the scalability of the DCCP by performing the
coupling of 5-chlorobenzoxazole 1b with 2-bromothiophene 20 on
gram scale. The coupling product, 5-chloro-2-(thiophen-2-
yl)benzoxazole 3t was isolated in 84% yield. This yield is
reasonably high, considering that the Pd(OAc),/NiXantphos-based
catalyst can activate aryl chlorides in related reactions.®
Surprisingly, however, aryl chlorides were not successful coupling
partners with benzoxazoles under these reaction conditions.

Scheme 4 Arylation of 5-chlorobenzoxazole with 2-bromothiophene
on gram scale
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In summary, we have developed the first room-temperature
direct arylation of benzoxazoles with aryl bromides and
heteroaryl bromides. The coupling reaction shows good
substrate scope and proceeds in high yields (average > 85%).
Other catalysts that promote this reaction are typically
employed at temperatures >100 °C and exhibit only limited
substrate scope. The key to success of our reaction is the
Pd(OAc),/NiXantphos-based catalyst, which operates via a
deprotonative cross-coupling process. This work is the first
demonstration that the Pd(OAc),/NiXantphos-based catalyst is
capable of promoting efficient functionalization of sp?

hybridized C-H bonds. We expect that this catalyst will be
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applicable to many of the known arylation reactions that
involve deprotonation of substrates possessing weakly acidic
sp” hybridized C—H’s.
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