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The ring opening reaction of 1, 3-dithiol-2-one systems is fully 

reversible 

Ashta Chandra Ghosh,a Jakob Klaus Reinhardt,a Markus Karl Kindermann,a 

Carola Schulzke*a 

The deprotection of a common precursor moiety in dithiolene 
chemistry was discovered to be fully reversible, which, 
besides being relevant for researchers working in very 
different fields with these non-innocent ligand systems, may 
even have an impact on CO2 housekeeping as the deprotected 
ligand acts as a respective trap. 

The 1, 3-dithiol-2-ones comprise a class of molecules with 

demonstrated synthetic utility for the synthesis of metal dithiolene 

complexes, tetrathiafulvalenes and related materials. Due to the 

ligands’ non-innocent character and the rich electrochemical and 

photophysical behavior associated with metal dithiolene complexes, 

a variety of research fields exploits these systems regularly. 

Investigations are for instance aimed at applications such as 

molecular conductor materials1, ferromagnets2, sensing devices3, IR 

dyes4, catalysis5, liquid crystals6 and others. In order to generate 

dithiolene metal complexes from 1, 3-dithiol-2-ones the C=O moiety 

needs to be released from the precursor in basic conditions, which is 

most commonly done using ethanolic alkaline metal hydroxide 

solution (Scheme 1)7. The typical excess of hydroxide described in 

the literature lies in between 2 and 53a, 8 per ligand precursor; in 

some cases even higher9. However, the minimum or exact 

stoichiometry needed for a successful yet complete de-protection of 

the dithiolene has not been investigated comprehensively so far.  

 

Scheme 1. Release of C=O moiety from 1, 3-dithiol-2-ones ring in 

basic conditions in order to generate metal-dithiolene complexes. 

Further, it is not clear, how these values were derived and if it may 

not be better to work at the lowest possible base concentrations in 

specific cases. In ongoing work towards investigating dithiolene 

compounds by UV-Vis methods it had become important for us to 

work at the lowest possible excess of base due to potentially base 

sensitive substituents and reaction partners. Therefore quite a 

number of titration experiments have been conducted in order to 

determine the optimal amount of base. The optimum base:precursor 

ratio was found to be 2.5:1. This was, however, not the most 

interesting finding in course of conducting these experiments. To our 

great surprise and entirely by chance it was found, that the de-

protection reaction in basic solution was actually fully reversible by 

addition of an equal amount of acid. This finding sheds some light 

on the side products of the de-protection reaction and allows more 

insight into its mechanism, which is of interest for all who are 

working in the large variety of research fields depending on this 

reaction. Possibly even more importantly: this behavior together 

with the proposed mechanism (explained below) suggests, that 

dithiolate salts may be useful traps for CO2. 

For the initial titration experiments one of the simplest, 

symmetrically substituted compounds bearing the 1, 3-dithiol-2-one 

moiety was chosen: 4, 5-dimethyl-1, 3-dithiol-2-one. Besides being 

rather simple and therefore easy to handle and characterize, from a 

synthetic point of view this compound should be easily modifiable 

for instance by bromination of the methyl group and subsequent 

nucleophilic substitution10. This makes it an interesting starting 

material for differently substituted dithiolenes. It has also been used  
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