

Guest-induced Supramolecular Chirality in Ditopic Azoprobe/Cyclodextrin Complex in Water

Journal:	<i>ChemComm</i>
Manuscript ID:	CC-COM-06-2014-004227.R1
Article Type:	Communication
Date Submitted by the Author:	27-Jun-2014
Complete List of Authors:	Nonaka, Kentaro; Sophia University, Department of Materials and Life Sciences Yamaguchi, Mai; Sophia University, Department of Materials and Life Sciences Yasui, Masashi; Sophia University, Department of Materials and Life Sciences Fujiwara, Shoji; Sophia University, Department of Materials and Life Sciences Hashimoto, Takeshi; Sophia University, Department of Materials and Life Sciences Hayashita, Takashi; Sophia University, Department of Materials and Life Sciences

SCHOLARONE™
Manuscripts

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

Guest-induced Supramolecular Chirality in Ditopic Azoprobe/Cyclodextrin Complex in Water

Kentaro Nonaka, Mai Yamaguchi, Masashi Yasui, Shoji Fujiwara, Takeshi Hashimoto, and Takashi Hayashita*

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX

DOI: 10.1039/b000000x

We report a novel supramolecular chirality induced by the twisted structure change of two ditopic azoprobe (**15C5-Azo-dpa**) inside the chiral cavity of γ -cyclodextrin (γ -CyD) due to multi-point recognition of guest ions by **15C5-Azo-dpa** molecules in water.

Chirality control by supramolecular assemblies and helical polymers based on chiral templates has received much attention in recent years.¹ Those systems have been widely used in chiroptical devices,² memories,³ and chiral catalysis.⁴ Pioneering work on supramolecular chirality was conducted by Yashima's group, who designed chiral recognition systems by using helical polymers.⁵ Recently, Kumar *et al.* reported that naphthalene diimide amphiphiles functionalized with the dipicolethylenediamine motif self-assembled with tunable chirality upon molecular recognition of various adenosine phosphates.⁶ They showed that competitive guest binding induced the dynamic reversal of the helix assemblies. Such guest-induced chirality control is expected to have potential application in the development of versatile chiral switching and sensing devices.⁷

Here we report a simple system of guest-induced chirality control in the 2 : 1 inclusion complex of ditopic azoprobe with γ -cyclodextrin (γ -CyD) in water. The ditopic azoprobe is a receptor possessing two different recognition sites that are expected to show excellent recognition function when two guest molecules exist in the system. As shown in Fig. 1, we have designed a ditopic azoprobe (**15C5-Azo-dpa**) that bears benzo-15-crown-5 (B15C5) and dipicolyamine (dpa) as the recognition sites (Fig. 1).

The azochromophore moiety can be used as a photosignal transducer.⁸ Although **15C5-Azo-dpa** is almost insoluble in water, γ -CyD can improve its solubility in water by forming a stable inclusion complex with it. The **15C5-Azo-dpa**/ γ -CyD complex was found to show a unique response based on the guest-induced supramolecular chirality in water. An induced circular dichroism (ICD) response was noted upon the addition of carbonate (CO_3^{2-}) or acetate (CH_3CO_2^-) ions in the presence of both K^+ and Zn^{2+} ions. Such supramolecular responses were successfully used to sense guest anions in water.

The synthesis of **15C5-Azo-dpa** proceeded with the azocoupling of 4'-aminobenzo-15-crown-5 with phenol, followed by the introduction of a bromoethylene spacer using the Williamson ether synthesis.⁹ Then, a dpa moiety was introduced

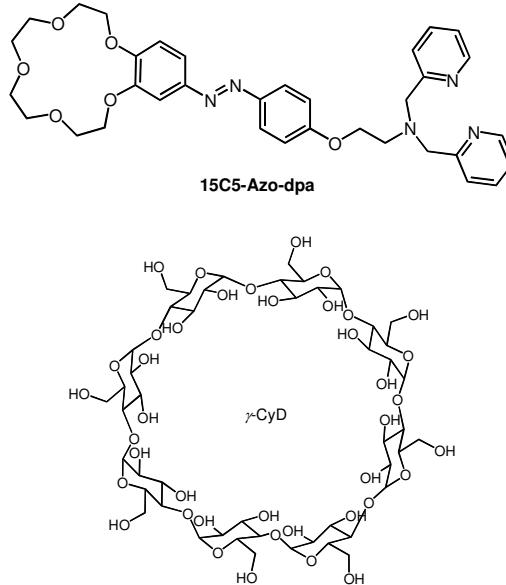


Fig. 1 Structure of **15C5-Azo-dpa** and γ -CyD.

under the basic condition with K_2CO_3 , and the obtained product was purified by silica column chromatography. The structure of **15C5-Azo-dpa** was confirmed by ^1H NMR and combustion analyses (Fig. S1, Fig. S2, Fig. S3, ESI). Details of the synthesis are available in ESI (Scheme S1, ESI).

In our previous work, we showed that B15C5 azoprobe selectively formed a 2 : 1 inclusion complex with γ -CyD in the presence of K^+ ions in water.¹⁰ Meanwhile, Hamachi's group and other research groups reported that the Zn^{2+} complexes of dpa units interacted with various phosphate anion derivatives through the unoccupied coordination sites in the Zn^{2+} /dpa complexes.¹¹ Thus, it is interesting to examine how such guest species affect the response function of the **15C5-Azo-dpa**/ γ -CyD complex in water. Figure 2 shows the ICD spectra and the UV-Vis absorption spectra of **15C5-Azo-dpa** (40 μM) in 5.0 mM γ -CyD aqueous solution with K^+ ions (a), with Zn^{2+} ions (b), with K^+ and Zn^{2+} ions (c), and with K^+ , Zn^{2+} , and triphosphate (Tri) ions (d). Interestingly, the split-type Cotton effect was observed only in the presence of both K^+ and Zn^{2+} ions (spectrum c in the top panel of Fig. 2). In addition, the UV-Vis absorbance ratio of 366 nm to 425 nm (A_{366}/A_{425}) exhibited the largest blue shift in the presence of both K^+ and Zn^{2+} ions. The azobenzene

chromophores are known to exhibit strong ICD by forming an inclusion complex with CyDs based on the chiral nature of the CyD cavities.¹² We have shown that this ICD response was affected by the dimer formation of the azoprobes inside γ -CyD to induce a split-type Cotton effect.⁸ In addition, an exciton interaction of the azodimer was found to induce clear changes in the UV-Vis absorption spectra. Thus, the observed split ICD in spectrum c in the top panel of Fig. 2 and the largest blue shift in the UV-Vis spectra indicated the formation of a clockwise twisted dimer of **15C5-Azo-dpa** probes inside γ -CyD in the presence of both K^+ and Zn^{2+} ions. The addition of triphosphate was found to inhibit the twisted structure formation of the **15C5-Azo-dpa**/ γ -CyD complex in water, probably due to the coordination of the triphosphate anion with the Zn^{2+} /dpa complex in **15C5-Azo-dpa**.

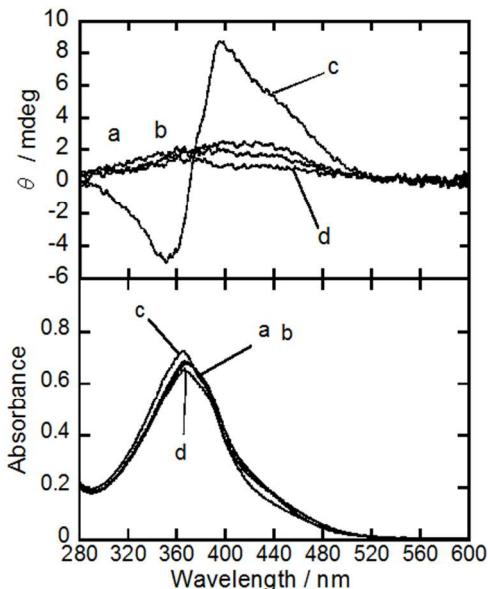


Fig. 2 ICD and UV-Vis spectra of **15C5-Azo-dpa**/ γ -CyD sensors. $[15C5\text{-Azo-dpa}] = 40 \mu\text{M}$, $[\gamma\text{-CyD}] = 5 \text{ mM}$, and (a) K^+ , (b) Zn^{2+} , (c) $K^+ + Zn^{2+}$, (d) $K^+ + Zn^{2+} + \text{Tri}$, in 4% DMSO aq., pH = 11.0 at 25 °C; K^+ (50 mM K_2CO_3), Zn^{2+} (40 μM $Zn(NO_3)_2$), Tri (3.0 mM $Na_5P_3O_{10}$); (M = mol dm⁻³).

Figure 3 shows an absorbance vs. wavelength plot and the effects of Zn^{2+} concentration on the UV-Vis absorbance ratio (A_{366}/A_{425}) of the **15C5-Azo-dpa**/ γ -CyD complex in the presence of 50 mM K_2CO_3 in water. It is evident that the absorbance ratio gradually increased with the addition of Zn^{2+} and reached a plateau near the equivalent point with **15C5-Azo-dpa** (20 μM). The finding that an amount of Zn^{2+} in excess of 20 μM caused no spectral changes attests the 1 : 1 complex formation of Zn^{2+} with the dpa binding site in **15C5-Azo-dpa**. The sigmoid response observed in Fig. 3 indicates the occurrence of a successive binding reaction of Zn^{2+} with the two **15C5-Azo-dpa** molecules inside γ -CyD. The formation of the 2 : 1 complex of **15C5-Azo-dpa** probes with γ -CyD was confirmed by the analysis of Job's plots (Fig. S4, ESI).

To elucidate the mechanism of the split ICD noted for the **15C5-Azo-dpa**/ γ -CyD complex, we examined the salt effect by substituting 100 mM KNO_3 and 100 mM KOH for 50 mM K_2CO_3 in the presence of 40 μM Zn^{2+} . Interestingly, no split ICD

was observed for the KNO_3 and KOH systems, indicating the

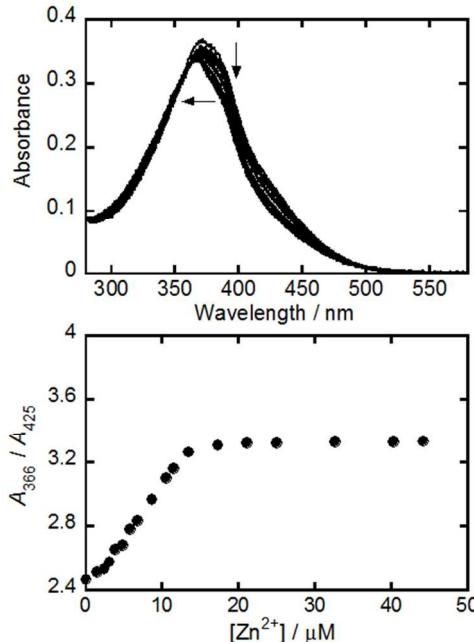


Fig. 3 Titration Zinc ion by UV-Vis spectra of **15C5-Azo-dpa**/ γ -CyD sensors, $[15C5\text{-Azo-dpa}] = 20 \mu\text{M}$, $[Zn^{2+}] = 0 - 45 \mu\text{M}$, $[K_2CO_3] = 50 \text{ mM}$, $[\gamma\text{-CyD}] = 5 \text{ mM}$, in 4% DMSO aq., pH = 11.0 at 25 °C; (M = mol dm⁻³).

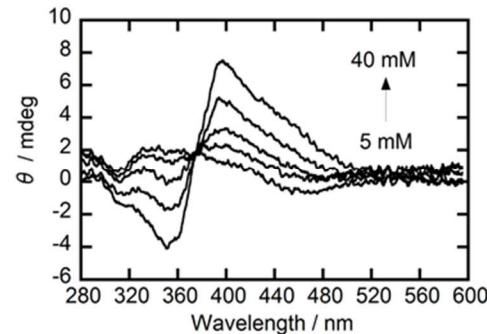


Fig. 4 ICD spectra of **15C5-Azo-dpa**/ γ -CyD sensors, $[15C5\text{-Azo-dpa}] = 40 \mu\text{M}$, $[Zn^{2+}] = 40 \mu\text{M}$, $[K_2CO_3] = 5 - 40 \text{ mM}$, $[\gamma\text{-CyD}] = 5 \text{ mM}$, in 4% DMSO aq., pH = 11.0 at 25 °C; (M = mol dm⁻³).

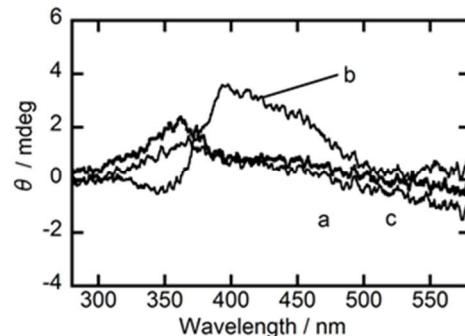


Fig. 5 ICD spectra of **15C5-Azo-dpa**/ γ -CyD sensors, $[15C5\text{-Azo-dpa}] = 40 \mu\text{M}$, $[Zn^{2+}] = 40 \mu\text{M}$, $[\gamma\text{-CyD}] = 5 \text{ mM}$, (a) $[CH_3CO_2Na] = 50 \text{ mM}$, (b) $[CH_3CO_2K] = 50 \text{ mM}$, (c) $[CH_3CO_2Cs] = 50 \text{ mM}$, in 4% DMSO aq., pH = 7.0 at 25 °C; (M = mol dm⁻³).

possibility of CO_3^{2-} bridging between the two Zn^{2+} /dpa binding sites (data not shown). The effect of CO_3^{2-} concentration on the ICD spectra of the **15C5-Azo-dpa**/ γ -CyD complex is depicted in Fig. 4. It is evident that the addition of CO_3^{2-} ion enhanced the split ICD for the **15C5-Azo-dpa**/ γ -CyD complex at pH 11.0. The ICD intensity change as a function of CO_3^{2-} concentration under constant K^+ concentration of 0.10 M was well fitted by a 1 : 1 binding isotherm, and the apparent 1 : 1 binding constant of CO_3^{2-} ion was calculated to be $83.5 \pm 6.0 \text{ M}^{-1}$ (Fig. S5, ESI). The triphosphate binding may break this CO_3^{2-} bridging of the two **15C5-Azo-dpa** molecules inside γ -CyD to reduce the split ICD. In addition, direct evidence of the relative orientation of the azoprobes and the macrocyclic ring was obtained by NOESY experiments. Cross peaks between H3 protons inside the CyD cavity and protons of the azoprobes were clearly observed (Fig. S8, ESI).

If this CO_3^{2-} bridging were the key mechanism for the induction of the split ICD, a similar split ICD induced by the CH_3CO_2^- bridging would be expected in the neutral pH condition. In fact, we observed the typical split ICD in the presence of 50 mM $\text{CH}_3\text{CO}_2\text{K}$ at pH 7.0 (Fig. 5). However, it should be noted that the split ICD had peak shapes that differed from those of the CO_3^{2-} bridging system, indicating that a somewhat different mode of the twisted structure was formed inside γ -CyD. In contrast, no split ICD was noted in the presence of 50 mM $\text{CH}_3\text{CO}_2\text{Na}$ or 50 mM $\text{CH}_3\text{CO}_2\text{Cs}$. This indicated that the clockwise twisted structure of the two **15C5-Azo-dpa** molecules inside γ -CyD was induced by only the presence of K^+ , Zn^{2+} , and the bridging anion of the two dpa/ Zn^{2+} binding sites, such as CO_3^{2-} or CH_3CO_2^- ions. By titration analysis of CH_3CO_2^- under the constant K^+ concentration of 0.10 M, the apparent 1 : 1 binding constant of CH_3CO_2^- for the **15C5-Azo-dpa**/ γ -CyD complex in the presence of an equivalent amount of Zn^{2+} was determined to be $180 \pm 27 \text{ M}^{-1}$ at pH 7.0 (Fig. S6, ESI).

In conclusion, we have shown a novel supramolecular chirality induced by the twisted structure change of two **15C5-Azo-dpa** molecules inside the γ -CyD chiral cavity due to multi-point recognition of guest ions by the ditopic azoprobes in water. In this system, all components of the guest species induce the split ICD response, making the specific detection of each component feasible by maintaining the other two components in the **15C5-Azo-dpa**/ γ -CyD complex solution. To our best knowledge, this is a first example of a simple ditopic receptor exhibiting multi-recognition function based on supramolecular chirality in water.

This work was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (22350039 and 21655030). This paper is dedicated to Professor Shinkai Seiji (Kyushu University, Sojo University) on the occasion of his the 70th birthday.

Notes and references

Department of Materials and Life Sciences, Sophia University
7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
E-mail: ta-hayas@sophia.ac.jp

† Electronic Supplementary Information (ESI) available: measurement conditions, synthesis of azoprobes, and the measurements of NMR spectra. See DOI: 10.1039/b000000x/

- 1 M. Crego-Calama, D. N. Reinhovdt, Eds. *Supramolecular Chirality*, In *Top. Curr. Chem.* 2006, **26**; K. Soai, Ed. *Amplification of Chirality*, In *Top. Curr. Chem.* 2008, **284**; D. B. Amabilino, Ed. *Chirality at the Nanoscale*, Wiley-VCH : Weinheim, 2009; R. Raval, *Chem. Soc. Rev.* 2009, **38**, 707; Crassous, *J. Chem. Soc. Rev.* 2009, **38**, 830.
- 60 2 K. C. -F. Lrung, C. -P. Chak, C. -M. Lo, W. -Y. Wong, S. Xuan, C. H. K. Cheng, *Chem. -Asian J.*, 2009, **4**, 364; R. Klajn, J. F. Stoddart, B. A. Gtrzybowski, *Chem. Soc. Rev.*, 2010, **39**, 2203; J. W. Canary, S. Mortezei, J. Liang, *Coord. Chem. Rev.*, 2010, **254**, 2249; C. Colvccini, A. Mazzrnti, D. Pasini, *Org. Biomol. Chem.*, 2010, **8**, 1807; M. Caricato, C. Colvccini, D. Dondi, D. A. Vander Griend, D. Pasini, *Org. Biomol. Chem.*, 2010, **8**, 3272; M. Caricato, A. Olmo, C. Gargivlli, G. Gattuso, D. Pasini, *Tetrahedron*, 2012, **68**, 7861; Y. Nakatani, Y. Frosho, E. Yashima, *Org. Biomol. Chem.*, 2013, **11**, 1614.
- 65 3 M. Ziegler, A. V. Davis, D. W. Johnson, K. N. Raymond, *Angew. Chem. Int. Ed.*, 2003, **42**, 665; A. Mammana, A. D'Vrso, R. Lauceri, R. Pvrrello, *J. Am. Chem. Soc.*, 2007, **129**, 8062; L. Rosaria, A. D'Vrso, A. Mammana, R. Purrello, *Chirality*, 2008, **20**, 411; I. D. Cat, Z. Gvo, S. J. George, E. W. Meijer, A. P. H. J. Schenning, S. D. Feyter, *J. Am. Chem. Soc.*, 2012, **134**, 3171; P. A. Korevaar, S. J. George, A. J. Markvoort, M. M. J. Smulders, P. A. J. Hilbers, A. P. H. J. Schenning, T. F. A. de Greef, E. W. Meijer, *Nature*, 2012, **481**, 492.
- 70 4 M. Weis, C. Waloch, W. Seiche, B. Breif, *J. Am. Chem. Soc.*, 2006, **128**, 4188; J. Meewissen, J. N. H. Reek, *Nat. Chem.*, 2010, **2**, 615; P. W. N. M. Van Leeuwen, D. Rivillo, M. Ranal, Z. Frexa, *J. Am. Chem. Soc.*, 2011, **133**, 18562; M. Hatano, K. Ishihara, *Chem. Commun.*, 2012, **48**, 4273.
- 75 5 E. Yashima, K. Maeda, Y. Okamoto, *Nature*, 1999, **399**, 449; H. Ito, M. Ikeda, T. Hasegawa, Y. Furusho, E. Yashima, *J. Am. Chem. Soc.*, 2011, **133**, 3419; H. Yamada, Y. Furusho, E. Yashima, *J. Am. Chem. Soc.*, 2012, **134**, 7250; H. Yamada, Z. Q. Wu, Y. Furusho, E. Yashima, *J. Am. Chem. Soc.*, 2012, **134**, 9506; Y. Nakatani, Y. Furusho, E. Yashima, *Org. Biomol. Chem.*, 2013, **11**, 1614; W. Makiguchi, S. Kobayashi, Y. Furusho, E. Yashima, *Angew. Chem. Int. Ed.*, 2013, **52**, 5275; S. Yamamoto, H. Iida, E. Yashima, *Angew. Chem. Int. Ed.*, 2013, **52**, 6849.
- 80 6 M. Kumar, N. Jonnalagadda, S. J. George, *Chem. Commun.*, 2012, **48**, 10948.
- 85 7 S. Akine, S. Sairenji, T. Taniguchi, T. Nabeshima, *J. Am. Chem. Soc.*, 2013, **135**, 12948; J. Crassous, *Chem. Commun.*, 2012, **48**, 9684; H. Miyake, H. Tsukube, *Chem. Soc. Rev.*, 2012, **41**, 6977; R. Lin, H. Zhang, S. Li, L. Chen, W. Zhang, T. B. Wen, H. Zhang, H. Xia, *Chem. -Eur. J.*, 2011, **17**, 2420.
- 90 8 C. Shimpuku, R. Ozawa, A. Sasaki, F. Sato, T. Hashimoto, A. Yamauchi, I. Suzuki, T. Hayashita, *Chem. Commun.*, 2009, 1709.
- 95 9 F. Sato, M. Tsukano, K. Sakamoto, W. Umemoto, T. Hashimoto, T. Hayashita, *Bull. Chem. Soc. Jpn.*, 2008, **81**, 1589; F. Sato, K. Sakamoto, W. Umemoto, Hashimoto, and T. Hayashita, *Chem. Lett.*, 2007, **36**(10), 1243.
- 100 10 T. Hayashita, D. Fujita, T. Hashimoto, A. Endo, H. Zhao, K. Odagiri, S. Takahashi, M. M. Mohamad and N. Teramae, *ARKIVOC*, 2010 (vii), 203. T. Hayashita, A. Yamauchi, A. -J. Tong, J. C. Lee, B. D. Smith, N. Teramae, *J. Incl. Phenom.*, 2004, **50**, 87; A. Yamauchi, T. Hayashita, A. Kato, S. Nishizawa, M. Watanabe, N. Teramae, *Anal. Chem.*, 2000, **72**, 5841; A. Yamauchi, T. Hayashita, S. Nishizawa, M. Watanabe, N. Teramae, *J. Am. Chem. Soc.*, 1999, **121**, 2319.
- 105 11 Y. Kurishita, T. Kohira, A. Ojida, I. Hamachi, *J. Am. Chem. Soc.*, 2012, **134**, 18779; L. Yan, Z. Ye, C. Peng, S. Zhang, *Tetrahedron*, 2012, **68**, 2725; H. T. Ngo, X. Liu, K. A. Jolliffe, *Chem. Soc. Rev.* 2012, **41** 4928, and references therein.
- 110 12 B. Mayer, Zhang, X.; Nau, W. M.; Marconi, G. *J. Am. Chem. Soc.*, 2001, **123**, 5240; M. Kodaka, *J. Am. Chem. Soc.*, 1993, **115**, 3702; M. Kodaka, *J. Phys. Chem.*, 1991, **95**, 2110; K. Harata, H. Uedaira, *Bull. Chem. Soc. Jpn.*, 1975, **48**, 375; I. Tinoco, Jr. *Adv. Chem. Phys.*, 1962, **4**, 113.