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Telomerase is an attractive drug target to develop new generation drugs against cancer. Telomere appears 
from the chromosomal termini and protects it from the double-stranded DNA degradation. A short 
telomere promotes genomic instability like end-to-end fusion and regulates over-expression of the 
telomere repairing enzyme telomerase. Telomerase maintains the telomere length which may lead to 
genetically abnormal situations leading to cancer. Thus, the design and synthesis of efficient telomerase 10 

inhibitor is a viable strategy toward the anticancer drug development. Accordingly small molecule 
induced stabilization of the G-quadruplex structure formed by the human telomeric DNA is an area of 
contemporary scientific art. Several such compounds efficiently stabilize the G-quadruplex forms of 
nucleic acid which often leads to telomerase inhibition. This feature article presents the discovery and 
development of telomere structure, function and evolution in the telomere targeted anticancer drug design 15 

and incorporates the recent advances in this area and discuss the pros and cones in the methods and 
prospects for future. 

Introduction 

Nucleic acid is a common drug target for the regulation of a 
number of genetic disorders and diseases. Negatively charged 20 

nucleic acids remain in ‘super-compact’ form as complexes with 
positively charged histone protein. However, they open up in 
presence of specific enzyme to perform various biological roles. 
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Revelation of its polymorphic nature has taken nucleic acids 
research beyond the sequence-specificity paradigm. Telomere, a 
part of the nucleic acid chromosome, demonstrates a significant 
propensity to polymorphism. It plays an important role in the 45 

genomic maintenance, stability and expression. One of the most 
deadly genetic diseases, cancer, is believed to be related to the 
abnormality of telomere function. The G-quadruplex DNA 
binding molecules are potential transcriptional regulators of 
oncogenes. Hence such low molecular mass ligands should in 50 

principle exert anti-proliferative properties selectively on cancer 
cells and could be considered as potential drugs. Here we discuss 
the evolution, activity and the prospects of telomere targeted drug 
design that may add to the new generation anticancer arsenals. 
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Discovery of telomere 

From the discovery of DNA by Miescher1 in 1869, it took more 
than a century to decode the tale of nucleic acid arsenal, 
chromosome, known as telomere (Figure 1A,B).2 The key 
breakthrough in the elucidation of double-stranded DNA 5 

structure came up in 1953 by Watson and Crick.3 This was 
followed by understanding of the three-dimensional packaging 
and storage of DNA into chromosome which was originally  
 
 10 
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 25 

 
 
 
proposed by Boveri in 1880’s.4 The chromosomal structure 
contains constriction point known as the centromere which 30 

divides it into two segments, the short arms are known as the ‘p’ 
arm whereas the long arms are known as the ‘q’ arm. The 
telomeric end telomere (from Greek, ‘telos’ for end and ‘meros’ 
for part) are found in both the arms. 
 In 1930’s McClintock first discovered the special features of 35 

chromosomal end to protect from DNA damage and ‘end-to-end’ 
fusion.5 DNA-histone complex chromosomal structure maintains 
a non-coding single-stranded overhang from its 3’-end.6 Although 
the telomeric overhang is crucial for the chromosomal protection 
it is not still clear how the overhang emerges.7 

40 

Role of telomere in the genomic maintenance 

Till the 1960’s the fundamental question that engaged the 
scientists was to find out why a normal cell dies? The theory of 
unlimited replication capacity was modified when Weismann 
proposed that normal cells can have only finite number of cell 45 

division capability9 which was proved by Hayflick and Moorhead 
in 1961. These authors observed that the cultured normal diploid 
human fibroblasts could undergo only 60–80 population 
doublings after which they stopped dividing and suffered a 
growth arrest known as ‘senescence’. This revolutionary concept 50 

is popularly known as ‘Hayflick limit’. The cellular process was 
addressed at genomic level when Watson discovered that the 
DNA polymerase enzyme which accounts for the DNA 
replication cannot fully copy the 3’-end of linear DNA. This 
mechanism was attributed primarily to Olovnikov who termed it 55 

as the ‘end-replication problem’10 (Figure 1C). The telomere 

length plays an important role for the chromosomal protection 
and long-term viability. However, each cell doubling results in a 
shortage of ca. 150–200 bases in the telomere end which 
eventually causes genomic instability and the cell enters into 60 

phase III or M1 stage. When the telomere reaches a critical 
length, the cell enters into M2 or crisis stage where the 
proliferation and cell death restore a kind of balance. When the 
length of the telomere becomes extremely critical, the cell 
undergoes an apoptosis (Figure 2).11  65 
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Figure 2. Effect of telomere length, telomerase activation and telomerase 
inhibition on normal, germ and stem cell viability. 85 

Protection of genome and beyond 

To overcome the genomic instability caused due to the telomeric 
DNA deletion,12 or double-strand scission13 or end-replication 
problem,14 cell adopts certain cellular mechanism like fusion of 
the broken chromosomal ends together via the DNA repair 90 

machinery. On the other hand in crisis stage, it activates a 
telomere repairing protein which restores the short ‘unstable’ 
telomere (Figure 2). In 1982, Blackburn and Szostak discovered 
telomere terminal transferase or telomerase activity in 
Tetrahymena telomeric DNA sequences inside yeast vector.15 The 95 

human telomerase, is a ribonucleoprotein containing the human 
telomerase RNA (hTR) and the human telomerase reverse 

 
 

Figure 1. (A) Schematic location of telomeric G-quadruplex inside cell. (B) Image of chromosomes from an hTERT-telo1 cell stained with a telomere 
PNA probe. Telomeres are stained with FITC and chromosomes are stained with DAPI. Adapted with permission from reference (8), copyright 2007, 
BioMed Central. (C) Telomere replication and ‘end-replication-problem’. Adapted with the permission from reference (2), copyright 2003, The 
Company of Biologists Ltd. 
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transcriptase (hTERT) which can reverse transcribe onto its own 
RNA template to add the nucleotides to the non-coding telomere 
under crisis stage.16,17 Thus telomerase can play a great role 
towards the maintenance of genomic stability. Unfortunately, 
sometimes cells over-express telomerase which maintains the 5 

telomere length and transforms the cells into ‘immortal’ or 
cancerous state. Indeed telomerase is over-expressed in cancer 
cells up to 85-90% instances whereas there is hardly any evidence 
of their presence in normal somatic cells.18 Thus the presence of 
telomerase discriminates the cancer cells from the healthy 10 

somatic cells. 

Decoding of telomere 

From the genomic point of view, the stability and ageing of cell 
depends upon the telomeric length. Critical shortening of 
telomere leads to cell senescence and death. However, restoration 15 

of full length of telomere results into cellular immortality, a case 
in point is cancer cell. Thus an understanding of the structural 
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Figure 3. (A) Formation of the G-tetrad through Hoogsteen H-bonding 
among the guanine bases. (B) Representative intramolecular G-30 

quadruplex DNA structure.  

 
features of the telomere are important for the search of possible 
clinical applications. Interestingly the telomeric DNA contains 
very conserved and repetitive stretches of sequences which are G-35 

rich in nature. The telomere repeat of vertebrates, plants, 
tetrahymena and oxytricha contain tandem repeats of 
d(TTAGGG), d(TTTAGGG), d(TTGGGG) and d(TTTTGGGG) 
respectively.19 In 1987, Blackburn first proposed the possibility 
of a non-Watson-Crick G-G base pairing in a short stretch of 40 

telomere.20 Williamson et al. in 1989 described that a long 
telomeric DNA containing four contiguous stretch of G-residues 
could fold into a more compact structure in presence of mono-
valent metal ions like Na+ and K+. These ions get sandwiched 
between the four planar array of Hoogsteen-paired G-tetrads 45 

(Figure 3).21 Thereafter the tetraplex structure containing the 
guanine residues has been widely known as the G-quadruplex 
(G4) DNA. It is believed that the single-stranded telomeric 
overhangs remain in equilibrium in different conformations under 
physiological conditions. Extensive studies have revealed that the 50 

G-quadruplex DNA structures are easily formed and these are 
quite stable in the physiological conditions. The discovery of the 
G-quadruplex structure opened a new chapter in dealing with the 
telomere and its possible role in oncology as well.22 

Significance of G-quadruplex structure 55 

Like Watson-Crick duplex DNA, the G-quadruplex DNA also 
has high kinetic and thermal stability. An in vitro study confirms 
that the telomerase protein does not recognize the G-quadruplex 
DNA even under the physiological conditions whereas it is active 
on single-stranded DNA rather efficiently.6 The existence of G-60 

quadruplex structure could not be ascertained in vivo until 
Schaffitzel et al. demonstrated the direct evidence of the 
existence of G-quadruplex DNA at the telomeric ends of 
macronuclei in Stylonychia lemnae using G-quadruplex DNA 
specific antibodies in 2001.23 However, the basic conceptual 65 

query that remains unanswered as to how the single-stranded 
telomeric DNA coexists with the kinetically and 
thermodynamically more stable G-quadruplex structures. Cech in 
2005 reported that human POT1 (protection of telomeres protein 
1) protein can disrupt the telomeric G-quadruplexes allowing 70 

telomerase extension in vitro (Figure 4).24,25 Thus it was 
established that the telomerase protein which can act only on 
single-stranded telomere, remains silent to the higher order 
structures like G-quadruplexes. It offered an opportunity for the 
design of a strategy towards the introduction of ligands that can 75 

stabilize the G-quadruplex DNA structure and shift the 
equilibrium towards it in solution. Thus the conversion of the 
telomere structure to a non-recognizable form like G-quadruplex 
DNA has become an important step towards the telomerase 
inhibition and its consequent therapeutic intervention. 80 

 

 

 

 

Figure 4. Model for hPOT1 disruption of intramolecular G-quadruplex 85 

DNAs, allowing their extension by telomerase. When hPOT1 binds near 
the 5’-end of the primer, leaving an 8-nt tail, it can be extended by 
telomerase. When hPOT1 binds near the 3’-end of the primer, leaving a 2-
nt tail, there is no reaction (N.R.). Adapted with the permission from 
reference (24), copyright 2005, National Academy of Sciences, USA. 90 

 
 For the last two decades, various researchers have exploited 
the strategy of developing numerous G-quadruplex binding 
ligands and demonstrated their effectiveness with the help of 
different experimental methods. These include spectroscopic 95 

(UV-Vis, CD, Fluorescence, Raman, SPR, NMR), spectrometric 
(Mass), calorimetric (ITC and DSC), electrophoretic mobility 
shift (EMSA), enzymatic (TRAP or TRAP-LIG assay, 
polymerase stop assay, DNA cleavage experiments), cellular 
(MTT assay, cell cycle analysis), and in vivo studies 100 

(tumorigenesis and drug effect) along with theoretical 
calculations (docking and molecular dynamics simulation). 
 To achieve an effective and a potent drug targeting to a 
specific biological active site, one must consider few parameters 
like the target’s size, electronic environment and the surrounding 105 

features of the active site. After the discovery of telomeric G-
quadruplex DNA, it became essential to explore its structural 
characteristics. In the early 90’s, the chiral property of DNA was 
closely examined and various predictions were made on the 
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Figure 5. Schematic representation of an intramolecular human telomeric 
G-quadruplex DNA as obtained from NMR or X-ray crystal structural 
analysis. Adapted with the permission from reference (31), copyright 
2006, American Chemical Society. 15 

 
basis of its circular dichroism (CD) spectra. In 1990, Sen and 
Gilbert first reported the Na+/K+ switch of the G-quadruplex 
DNA structure.26 The involvement of the guanine bases was 
confirmed using base-specific DNA cleavage experiments. Jin et 20 

al. correlated the results with the CD spectra and proposed a 
putative structure of the guanine tetrads.27 The CD spectral 
measurements and NMR studies using guanine rich DNA 
sequences d(TG3T) and d(TG3T2G3T) suggested that an 
intermolecular anti-parallel structure is formed solely by the Na+ 25 

ions, whereas the more strongly bound K+ ion induced a transition 
to the intermolecular parallel G-quadruplex DNA organization.27 
 NMR spectroscopy has been used for the prediction of the 
higher order DNA structures in solution. Henderson et al. in 1987 
reported the hairpin structure formed by the tetrahymena 30 

telomeric DNA sequence (T2G4) stabilized by the hydrogen 
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Figure 6. Top view (A) and side view (B) of the X-ray crystal structure of 65 

a parallel G-quadruplex DNA (PDB 1KF1) derived from human 22-mer 
telomeric DNA sequence. Orientation of the nucleobases in the parallel 
G-quadruplex DNA structure (C).35  

 
bonds among the guanine residues in a syn-conformation.28 70 

Thereafter extensive NMR studies revealed the structural features 
of the human four-repeat 22-mer DNA sequence as well. NMR 
studies of the human 22-mer in solution containing Na+ suggest a 
basket type G-quadruplex structure is formed comprising a 
mixture of both anti-parallel and parallel stranded intramolecular 75 

structure with three G-tetrads connected by one diagonal and two 
lateral (edgewise) TTA loops.29 The K+-stabilized solution 
showed more than one structures30-33 but the hybrid-type G-
quadruplex structure appeared to be the major one even in the 
presence of Na+ ions at high concentrations.33 The telomeric G-80 

quadruplexes remain in dynamic equilibrium between the two 
conformations, i.e., the hybrid-1 and the hybrid-2 (Figure 5, 
Figure 7).34 Human telomeric DNA sequences may adopt various 
topological geometries depending on the flanking terminal bases, 
stabilizing ions and molecular crowding as presented in the 85 

Figure 7. These observations suggest that K+-stabilized hybrid G-
quadruplex DNA structures exist even in presence Na+ ions and 
could therefore be a putative drug target under physiological 
conditions.34  
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Figure 7. Polymorphic G-quadruplexes. Sequences indicated by ‘I’ represents inosine. Adapted with the permission from reference (118), 
copyright 2012, The Royal Society of Chemistry. 
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 It became clear when a K+-stabilized human telomeric 
quadruplex DNA crystal structure was reported by Neidle in 
2002. The 22-mer human DNA sequence showed orientation of 
all the four DNA strands in parallel direction with the three 
linking trinucleotide loops (TTA) positioned on the exterior of 5 

the G-quadruplex core (Figure 6). The adenine of each TTA 
trinucleotide link swung back to achieve a favorable intercalative 
interaction between the two thymine bases. All the guanine 
glycosidic bonds remain in an anti-conformation with C2’-endo 
sugar puckers to form a flattened tetrad (Figure 6).35 Thereafter, 10 

the thermodynamic and kinetic features of the G-quadruplex 
DNA structure have been widely explored both by theoretical and 
experimental investigations.36-38 

 The G-quadruplex structure possesses tetrads of 10.9×13.6 Å 
side and diagonal lengths respectively held predominantly by π-π 15 

interactions along with four equivalent phosphate grooves created 
by the three TTA loops on the side.39 The tetrads of both ends are 
potential ligand target. Among this the 5’-G-quartet surface is 
relatively more hydrophobic which favour the π-stacking 
interactions whereas the 3’-surface is more optimally poised for 20 

the electrostatic interactions. The groove and loop region may 
also be targeted for the design of a G-quadruplex binding 
ligand.40 To stabilize the negative potential (or positive ion 
channel) created by the electronegative atoms (N, O) in the centre 
of the G-tetrad, monovalent cations like Na+, K+, NH4

+ etc are 25 

essential. The positive ion channel in turn prefers that the ligand 
should be electron-deficient in nature for effectively stabilizing 
stacking interactions. The anionic phosphate backbone confers 
favorable association with a ligand carrying net positive charge. 

Design of the G-quadruplex DNA binding ligands 30 

After the discovery of telomeric G-quadruplex and their impact 
on genetic regulation it was considered to be an ‘open’ subject. 
“Do telomerase antagonists represent a viable anticancer 

strategy?”23 To address this question a number of scientists 
started design and synthesis of organic molecules targeting G-35 

quadruplex DNA and evaluated their effect on G-quadruplex 
DNA starting from biophysical to in vitro biochemical studies. At 
the early stages, the interactions of molecules such as 
actinomycin D, ethidium bromide, and chromomycin A3,41 
bleomycin-Nickel (III) complex,42 carbocyanine dye43 were 40 

investigated with the telomeric G-quadruplex DNA derived from 
a lower organism. By this time, a method to measure the 
efficiency of G-quadruplex binding ligands towards telomerase 
inhibition was also developed which was used as a laboratory 
protocol known as Telomerase Repetitive Amplification Assay 45 

(TRAP assay).44 Subsequently this was modified to TRAP-
LIG45,46 assay in 2007 to include necessary control experiments 
for avoiding wrong interpretation of the biological activity 
involving telomerase. In 1997 Neidle and Hurley developed 2,6-
diamidoanthraquinone derivatives [1] which showed moderate 50 

telomerase inhibition ability by standard telomerase assay (Figure 
8).47 Thereafter extensive development in the drug design was 
carried out especially after the elucidation of NMR and crystal 
structural data of a number of human telomeric G-quadruplex 
DNA sequences. 55 

 DNA is a negatively charged polyelectrolyte having planar 
aromatic bases comprising several hetero-atoms in its 

organization. Binding of a small molecule, with DNA occurs via 
(i) ionic; (ii) π-π stacking; and (iii) H-bonding interactions. 
Therefore an efficient G-quadruplex binding ligand should be 60 

cationic with a planar conjugated pharmacophore having hetero-
atoms capable of acting as H-bond donor as well as acceptor. The 
highly accessible planar end tetrads have been primarily targeted 
for G-quadruplex recognition and accordingly planar molecules 
were designed first. Bhattacharya et al. demonstrated that not 65 

only the planarity is important but the shape of a ligand also 
played an important role in targeting the G-quadruplex DNA. The 
angular V-shaped molecules showed much better activity than the 
linear ones.48 The MD simulation studies also validated the 
experimental findings.48,49 Neidle and Moses independently 70 

highlighted the importance of angular shaped ligand design 
introducing triazole moiety via click chemistry [15].50 The 
conformational switching of the G-quadruplex DNA by 
photoregulation of azene moiety [14] further enriched the ligand 
design strategy.51 Earlier a similar strategy was also exploited 75 

with duplex DNA involving distamycin based azobenzene 
ligands.52 Balasubramanian and co-workers developed bis-indole 
carboxamides [4] with benzene or pyridine moiety as the central 
core to govern the flexibility and rigidity through intramolecular 
H-bonding. However, the lack of availability of DNA interacting 80 

sites in the pyridine system rendered it a less efficient binder to 
the telomeric G-quadruplex DNA.53,54 
 
 
 85 
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Figure 8. G-quadruplex binding ligands [I]. 

 Cationic ligands are known to interact with the G4 DNA more 
strongly. However, they are not likely to be strong enough to bind 
with the G4 DNA in high ionic strength environments including 105 

the physiological conditions. They may also suffer from non-
specific binding and poor discrimination ability over the duplex 
DNA. Planar ligands having flanking groove binder or a moiety 
carrying positive charge showed significantly higher affinity. 
Among these the acridine derivative BRACO 19 [3]55-56 and 110 

naphthalene diimide derivative BMSG-SH-3 [13]57,58 are the 
most important. These compounds are currently in their final 
phase of clinical viability trials. Ethidium bromide which has 
been extensively used as the double-stranded DNA stainer could 
not be used for the G4 DNA staining due to its poor binding  115 
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affinity towards the latter.59,41 In 2001, Mergny derivatized 
ethidium [9] introducing an extended binding moiety to make an 25 

efficient selective G4 DNA binder, stainer and eventually a 
telomerase inhibitor.60 Progressively with time, hundreds of 
researchers spanning across the world have contributed to the 
development of a large library of G4 ligands.61,62 Many of the 
potent molecules have come across different generations of 30 

molecular designs from a common template. Acridine 
derivatives, e.g., 3,6-disubstituted acridine [5],63 3,6,9-
trisubstituted acridine,64 quinoacridinium65 are among the most 
important classes of ligands. Phenanthroline ligands, like 
dibenzophenanthroline derivatives [8],66 phenanthro-imidazole 35 

derivatives,67 PhenDC3 [25], PhenDC6 [26],68 1,10-
phenanthroline-2,9-carboxamide69 etc are also reported for their 
efficient G4 binding activity. Fused ring systems comprising 
quindoline [15],70 berberines [18],71 norfloxacin,72 levofloxacin,72 
daunomycin [7],73 and RHPS4 [17]74 etc are also important. 40 

Sugar derivatives (rutin,75 epigallocatechin,76 neomycin- 
conjugates [19-22],77,78) and peptide conjugates (peptidyl- 
anthraquinone conjugates,79 acridine-peptide conjugates80) have 
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also been documented for their good G-quadruplex DNA binding 

abilities. 
 Organo-metallic compounds such as, schiff base complexes 
[31],81,82 Ru (II) polypyridyl complexes [33],83 1, 10-85 

phenanthroline Pt (II) complexes84 [29]) evidenced noticeable 
impact on the G-quadruplex DNA binding.  
 The role of the molecular dimension, planarity and the nature 
of metal ion in such organo-metallic complexes has been 
extensively studied. The metal ion present in the complex may 90 

substitute the stabilizing Na+/K+ ions and promote the formation 
of the G-tetrads. Moreover, the electron-withdrawing nature of 
metal ions makes the co-ordinated ligand electron-deficient. This 
in turn increases the π-π stacking interactions among the metal 
complex and the G-tetrad.81 It has been observed that with an 95 

increase in the available π-surface (from bipyridine to 
phenanthroline [29,30,32,33]), the affinity of a ligand with G-
tetrad increases.67,83,84 Phenanthroline moiety with an extended 
pyridyl co-ordination site [28] is reported to form 2:1 complexes 
with both Ni2+ and Cu2+ metal ion. Ni2+ providing a d8 electronic 100 

system forms a ‘tight’ octahedral complex whereas Cu2+ being a 
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d9 electronic system forms a ‘loose’ octahedral complex.82 Thus, 
Cu2+-complex gives enhanced molecular planarity than the 
corresponding Ni2+-complex and prefers to interact with the 
planar G-tetrad more effectively. In contrast relatively more non-
planar Ni2+-complex prefers to interact with the grooves of the G-5 

quadruplex DNA giving a prominent induced circular dichroism 
(ICD) band. Surprisingly, this variation in the central metal ion 
results in a subtle change in molecular planarity which governs 
their preferential affinity towards the groove vs. the G-tetrad. It 
also inhibits the two complexes to share a common binding site 10 

even in a co-existing situation.82 Further the angular cylindrical 
metal complexes target the chiral grooves of the G4 DNA 
structure. For instance, the P-enantiomers of the metallo-
supramolecular complexes (Ni2+ or Fe2+) [34] are known for their 
remarkable chiral preference. On the other hand, planar metal 15 

complexes comprising an extended π-surface, similar to the G-
tetrad dimension have been found to be efficient G4 DNA 
binder.85 

 

 
20 

 

 

 

 

 
25 

 

 

 

 

 
30 

 

 

 

 

 
35 

 

 

 

 

 
40 

 

 

 

 

 
45 

 

 

 

 

 
50 

 

 

 

 

 
55 

 

 

 

 Benzimidazole ligands which were long known for their 
duplex DNA binding activity86,87 emerged as efficient and 60 

selective G-quadruplex DNA binders upon appropriate 
modification [11,12] (Figure 9).48,49,88-90 Among others, triazine 
derivatives [6],91 PIP-PIPER [27],92 bis-quinolinium compounds 
[10],39 carbazole system BMVC [24],93 pyridostatin (PDS) [23],94 
coumarin derivatives [2],95 have also been shown to possess good 65 

G-quadruplex stabilizing activity. 
 Another important family of G4 ligand comprises cyclic 
molecules (Figure 10). Among these cyclic ligands, natural 
product telomestatin [39] is distinguished for its remarkable 
activity.96-100 This was isolated from the bacteria streptomyces 70 

anulatus by Shin-ya et al. in 2001. One interesting fact is that 
between its two isomers, the (S)-isomer showed better telomerase 
inhibition activity with a IC50 value of ~5 nM on the basis of 
TRAP assay.101 The first total synthesis of telomestatin was 
achieved by Takahashi et al.102 in 2006, which was followed by 75 

Shin,103 Vedejs,104 Chattopadhyay,105 and Pattenden.106 Many 
other cyclic molecules were discovered which demonstrated 
excellent telomerase inhibition activity among which the C2-
symmetric hexaoxazoles,107 porphyrazine [37,38],108 HXDV 
[40],109 cyclo[n] pyrroles,110 pyridyl polyoxazole [46],111 cyclic 80 

oligoamides [44],112 cyclicoxazole based tripeptide [43]113 
deserve special mention. Porphyrin [35],114,115 corrole [36],116 
sapphyrin117 and phthalocynine [41,42]118 are another family of 
G4 ligand which made contributions in telomere chemistry and 
biology. Phthalocyanine [41] having significantly higher 85 

molecular planarity than porphyrin [35] with an extended π-
surface matches with the G-tetrad dimension more closely and as 
a result the former showed almost two orders of higher magnitude 
of binding affinity over the later.118 Phthalocyanine and porphyrin 
have excellent photophysical property which may be also used in 90 

imaging and in photo-dynamic therapy. The complexation of 
diamagnetic metal ions (Zn2+, Al3+ and Ga3+) enhances the 
photosensitivity while that with paramagnetic metal ions (Cu2+, 
Ni2+, Co2+, Fe2+, Cr3+, Vo2+ and Pd2+) eliminates the photoactivity 
by reducing the triplet state (T1) lifetime.118 95 

 To enhance the efficiency of ligand binding by minimizing 
entropic penalty, strategies involving development of dimeric 
(gemini) molecules have been adopted (Figure 11). Bhattacharya 
and co-workers have exploited the design of dimeric (gemini) 
ligands through the variation in spacer length [48-53].88,89 It has 100 

been found that an oligo-oxyethylene spacer is superior to the 
corresponding ones based on oligo-methylene ones (unpublished 
results). All the gemini ligands showed better activity than their 
corresponding monomers. Nagasawa also reported a series of 
hexaoxazole dimers [54] with different spacer lengths, although 105 

the affinity of the dimer was found to be nearly comparable to 
that of the monomers in this case.119 The other notable dimeric 
ligands are bis-HT [47],120 BOQ1 (bis-ortho-quinacridine) [45]121 
and bisA (bis-acridine)122 which formed non-planar cage like 
structures and showed better binding affinity than their 110 

monomeric analogues. 
 The discovery of thiazole orange [63] by Monchaud et al. in 
2007 as a useful probe for the fluorescence sensing of G-
quadruplex DNA opened up a new strategy for the G4 ligand 
screening.123 Sintim and co-workers in 2011 have shown the 115 

interaction of different aromatic dyes like acriflavine [55],  
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proflavine [56], pyronin [61], methylene blue [62], anthracene 
[57], malachite green [58], crystal violet [59] etc with the G-
quadruplex DNA (Figure 12A).124 Mergny and Fichou discovered 15 

the affinity based G4 ligand displacement assay for identifying 
selective G-quadruplex binders using a thiazole orange dye.125 
Later on in 2011, Mergny developed a “fluorescent intercalator 

displacement assay for screening G4 ligands towards a variety of 

G-quadruplex structures” (Figure 12C,D).126 The discovery of a 20 

BODIPY-labeled macrocyclic heptaoxazole [60] by Nagasawa 
provided an impressive visual evidence of its G-quadruplex 
binding (Figure 12A,B).127  
 Recently, Alcaro et al. reported ligand and DNA structure-
based virtual screening of molecular structures by means of 25 

docking experiments.128 The authors further validated the 
findings with the help of various spectroscopic techniques. 
Chaires and coworkers have developed a competitive dialysis 
assay for the identification of potential G-quadruplex binding 
ligand and this is a convenient tool in the ligand screening 30 

process.129 Template-assembled synthetic G-quadruplex (TASQ) 
has also provided a convenient method to investigate and 
understand the ligand-DNA interaction.130 
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Besides targeting the G4-tetrads, a parallel research activity on 
targeting highly accessible G-quadruplex grooves and loops have 
been gaining importance in medicinal chemistry as putative 
candidates for the development of therapeutic drugs (Figure 
13).131-133 In 2003, Maity et al. reported moderate affinity of 75 

duplex DNA binder Hoechst molecule [69] toward G-quadruplex 
DNA through an interaction with the AAGGT loop.134 In the 
same year, Cocco et al. reported the inhibition of protein 
interactions with the G-quadruplex DNA by distamycin A [70] 
via stacking on the terminal G-quartets and contacting through 80 

the flanking bases.135 In 2006, Neidle reported a comparative 
investigation of distamycin and its analogues with human 
telomeric G-quadruplex DNA and compared their affinity with 
the A-T rich duplex DNA.136 These authors have shown that 
though distamycin A has rather poor selectivity towards the G-85 

tetrads, the selectivity could be increased with the introduction of 
more number of pyrrole groups which allows binding with the 
mixed groove/G-quartet in a stacking mode. Randazzo and co-
workers have carried out an extensive investigation on the 
interaction of distamycin A and its derivatives (by replacement of 90 

its amidinium group with an uncharged N-methyl amide moiety) 
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Figure 11. G-quadruplex DNA binding dimeric ligands [IV]. 
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SAS. 

% of TO displacement

< 0    0    20  40   60  80  100  >100

TrisK

BRACO-19

Piper

TrisQ

Phen-DC3

Phen-DC6

BSU1051

BiPy-DC3

Cu-ttpy

832A

307A

360A

Bipy-DC6

12459

iPDC

2
2

A
g

d
x

1
2

d
s
2

6

ligands

oligos
D B 

C 

O
N

N
H

O

N

O

N O

N
O

O N

O

N

BODIPY-heptaoxazole (60)

N

H

O

O

N

3
3

N

N
B

F

F

S

N

N

thiazole orange (63)

NH2N NH2

R1

R1 = CH3: Acriflavin (55)
R1 = H: Proflavin (56)

Anthracene (57)

N

N

R2

R2 = H: Melachite green (58)
R2 = NMe2: Crystal violet (59)

X

N

NN

X = O: Pyronin (61)
X = S: Methylene blue (62)

A 

Page 8 of 16ChemComm

C
he

m
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t



 

This journal is © The Royal Society of Chemistry [year] Journal Name, [year], [vol], 00–00  |  9 

with Tetrahymena G-quadruplex sequence. An NMR spectral 
study revealed that distamycin A interacts with the groove of the 
G-quadruplex DNA.137-139 A Dist-A derivative MEN 10716 [71] 
containing five N-methyl-pyrrole rings inhibits the human 
telomerase enzyme in a dose-dependent manner with an IC50 of 5 

24 ± 3 µM.140 Cyanine dye derivatives represent another class of 
G-quadruplex DNA groove binding agents. Thus the cyanine 
derivative, 3, 3′-diethyloxa-dicarbocyanine (DODC) [66] shows 
its binding capability with the grooves of a dimeric hairpin G4 
DNA.141 The appearance of ICD band (534−626 nm) gives direct 10 

evidence for its groove targeting. Importantly, DODC shows 
significantly preferential binding ability towards G4 DNA even in 
presence of a large amount of the duplex DNA. Among others, 
DTC [67]142 and DTDC [68]143 also show excellent G4 DNA 
binding ability predominantly through groove targeting. Recently 15 

Paul et al. have developed benzimidazole derivatives containing 
non-planar Troger’s base scaffolds [64,65] and showed their 
significant potential in binding via targeting the groove in the G-
quadruplex DNA structure and telomerase inhibition ability.144 
As a matter of the fact, a groove binder may generally have lower 20 

affinity towards the G4 DNA and may also lack in the ability to 
discriminate between the G4 DNA from the duplex DNA. A 
planar pharmacophore preferably of G-tetrad dimension attached 
to a groove binder may improve the efficiency of binding.  
 25 

 
 
 
 
 30 

 
 
 
 
 35 

 
 
 
 
 40 

 
 
Figure 13. G-quadruplex binding ligands [VI]. 

Does G-quadruplex really exist in vivo? 

Widespread data on the G-quadruplex DNA like their high 45 

kinetic and thermodynamic stability, NMR and crystal structures, 
characteristic CD signatures, FRET studies and DNA sequencing 
assays even in physiological conditions evidenced their existence 
in vitro. But there is no guarantee for the in vitro biomolecular 
structure to exist in vivo as well. Towards this end, quite a few 50 

G4 ligands have been developed which interfere with events in 
telomere biology probably through the G4 DNA binding. For 
instance, certain coumarin derivatives (Figure 8, ligand 2) inflict 
selective DNA damages at telomeric level resulting in the 
apoptosis and senescence on tumor cells.95 Additionally, 55 

telomestatin mediated telomere shortening associated with 
apoptosis was also evident in some freshly obtained leukemia 

cells from acute myeloid leukemia patients.97 However, despite 
these, an unambiguous claim pertaining to their biological role 
may not be made with confidence. 60 

 Schaffitzel et al. furnished the first experimental evidence of 
the existence of the G-quadruplex DNA at the telomeric ends of 
macronuclei in stylonychia lemnae in vivo using G-quadruplex-
specific antibodies.23 These authors showed that G-quadruplex 
formation can be a mechanism for telomere capping along with 65 
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Figure 14. Zoomed AFM images of the G-quadruplex structures with 
corresponding diagrammatic representations of the DNA arrangements. 
Areas (140×140 nm2) show regions of transcribed plasmids containing 85 

loops (A, B), a blob (C) and a spur (D), Adapted with the permission from 
reference (151), copyright 2007, Oxford University Press. TRF analysis 
of (E) HL60, (F) CA46 cells treated with increasing ligand concentrations 
or untreated for 16 days, Adapted with the permission from reference 
(70), copyright 2008, American Chemical Society. (G) G4-DNA 90 

recognized in TEM by recombinant biotinylated Nucleolin-
428/streptavidin gold beads. Arrows indicate beads bound at loops. Bar, 
200 nm. Adapted with the permission from reference (145), copyright 
2004, Cold Spring Harbor Laboratory Press. 

 95 

the t-loops and TEBP (oxytricha telomere binding protein) 
binding. Maizels in 2004 first reported an electron microscopic 
evidence of the G-loops and the G4 DNA within plasmid 
genomes transcribed in vitro in E. coli (Figure 14G).145 
 In 2008, Gu reported a few 5-N-methylated quindoline 100 

derivatives (Figure 9, ligand 15) which show remarkable 
cessation in population growth and cellular senescence phenotype 
accompanied by a shortening of the telomere length (Figure 
14E,F).70 A telomeric restriction fragment (TRF) length assay 
showed ligand induced shortening in the telomeric length in 105 

leukemia cell HL60 and lymphoma cell CA46 which was in 
accordance with the cytotoxicity results obtained by MTT 
assay.55,70 Regulation in the expression levels of the associated 
genes by the G-quadruplex binding ligands, proteins and antibody 
was indirect yet a strong evidence in favour of the existence of 110 

the G-quadruplex DNA structure in vivo.145-150 In 2009, 
Edwardson and co-workers first visualized the G-quadruplex 
structure in vivo by atomic force microscopy (Figure 14A-D).151 
Afterwards, Balasubramanian and Edwardson showed a ligand- 
induced perturbation of G-quadruplexes in a plasmid DNA using 115 

atomic force microscopy.152  
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Figure 15. Modulation of G-quadruplex structures during cell-cycle 
progression. (a) BG4 staining in synchronized MCF-7 mammary 
adenocarcinoma cell populations at the G0/G1 and G1/S boundaries, and 15 

during the S phase. Nuclei are counterstained with DAPI (blue). Scale 
bars, 20 µm. (b) Quantification of BG4 foci number per nucleus for a. 100 
nuclei were counted per stage and the s.e.m. was calculated from a set of 
three replicates. (c) A greater than two-fold reduction in the BG4 foci 
number after inhibition of DNA synthesis by aphidicolin treatment (5 µM 20 

for two hours). (d) Quantification of the BG4 foci number with or without 
aphidicolin treatment. 100 nuclei were counted and the S.E.M. was 
calculated from a set of three replicates. These experiments demonstrate 
that G-quadruplex structures are modulated during the cell cycle and, in 
particular, support the replication-dependent formation of endogenous 25 

DNA G-quadruplexes. Adapted with the permission from reference (153), 
copyright 2013, Nature Publishing Group. 

 In 2013 Balasubramanian et al. reported the quantitative 
visualization of G-quadruplex DNA structures in human cells by  

structure-specific antibody (BG4) and G4 ligand assisted 30 

enhancement of the G-quadruplex staining. The authors 
demonstrated the presence of endogenous G-quadruplex DNA 
also outside the telomere using TRF2 (telomere repeat-binding 
factor 2) co-localization. Interestingly, the relative abundance of 

G-quadruplex DNA in different stages of cell cycle has been 35 

reported for the first time (Figure 15).153 The authors further 
established a G4 ligand, pyridostatin, mediated DNA damage 
which emphasised the G-quadruplex DNA formation probed by a  

 

 40 
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 50 

 
 
 
 
 55 

DNA damage marker γH2AX (Figure 16A,B).154 These findings 
provide significant evidence for the existence of G4 DNA in vivo 
which also justifies the G4 DNA targeted anticancer drug design 
strategy through telomerase inhibition pathway (Figure 16C). 

G-quadruplex ligand’s activity in vivo  60 

The availability of cellular G-quadruplex structures and 
telomerase enzymes provides an opportunity to target the cancer 
cell selectively. As the double-stranded DNA is overwhelmingly 
more abundant than the G-quadruplex DNA, a potent ligand 
should have very high selectivity towards the G4 DNA over the 65 

normal B-DNA. Most of the efficient G4 ligands show excellent 
in vitro cancer cell cytotoxicity keeping the healthy cells intact. 
The lack of selectivity in cellular cytotoxicity affects the normal 
cells as well. The G4 ligand mediated telomere shortening,70 
DNA damage (Figure 17)155 and selective cancer cell anti-70 

proliferative activity in vivo provide strong boost to the telomere 
research. A potent G4 ligand terminates cell cycle at S, G2/M 
phases and enhances sub-G1 populations leading to induction of 
apoptosis in cancer cells (Figure 18).156 

 75 

 
 
 
 
 80 

 
 
 
 
Figure 17. Delayed DNA damage signalization induced by 12459 (Figure 85 

8, ligand 6) in A549 cells. (A) Cells untreated or treated with 12459 for 4 
h (10 and 20 µM) and for 24 h (10 µM) were examined for γ-H2AX foci 
(red). Hoechst staining of DNA is shown in blue. As a positive control for 
DNA damage, A549 cells were treated with 12459 (0.5 µM) for 8 days. 
Adapted with the permission from reference (155), copyright 2013, 90 

Oxford University Press. 
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Figure 16. Visual analysis of pyridostatin targets. (A) DNA damage signals induced by pyridostatin were mainly nontelomeric and the areas within the 
white dotted lines indicate the locations of nuclear DNA. Scale bar, 10 µm; the zoomed images are ×4 magnifications of the main images. The yellow 
dotted boxes in the merged images indicate the area of magnification. (B) Quantification of the experiment shown in a. n = 3; >100 cells were scored per 
condition per replica; error bars represent S.E.M. Adapted with the permission from reference (154), copyright 2012, Nature Publishing Group. (C) 
Schematic representation of G4 ligand mediated telomerase inhibition and anticancer activity. 
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 5 

Figure 18. HXDV induces robust apoptosis. HeLa cells were treated with 
3 µm HXDV in the absence or presence of the caspase inhibitor (labeled 
CI) for 16 h. DNA was stained with propidium iodide (P.I.) and analyzed 
by FACS. DMSO, dimethyl sulfoxide. Adapted with the permission from 
reference (156), copyright 2009, The American Society for Biochemistry 10 

and Molecular Biology. 

 Even though medicinal chemists have developed a number of 
potent G4 ligands, still the question remains, whether a G-
quadruplex ligand would be an anticancer drug in the near future. 
To answer this question, scientists have moved forward from the 15 

in vitro study to appropriate in vivo model. Telomestatin which is 
among the most potent G4 ligands, induces senescence and 
apoptosis in a number of different tumor cells without any 
significant toxicity to the normal progenitor cells.  
 When the drug was administered in mice containing U937 20 

xenografts, it could suppress the tumor volume significantly.92 
However, so many steps involved in its total synthesis makes it 
prohibitively expensive and restricts its application in real life. 
Among others, polyoxazole derivative HXDV and macrocyclic 
pyridyl polyoxazole [46] are potential drug candidates.111 The 25 

pyridyl polyoxazole shows enormous tumor suppression ability in 
human tumor xenografts athymus nude mice model established 
using MDA-MB-435 breast cancer cells (Figure 19).111 
 
 30 

 
 
 
 
 35 

 
 
 
 
 40 

 
 
 
 
 45 

Figure 19. The test compounds, irinotecan (▲), 10 mM citrate (♦), and 
46 (Figure 10) (■) were administered by ip injection to athymic nude 
mice with human tumor xenografts established using MDA-MB-435 
breast cancer cells. Mice were injected ip 3× weekly. Negative controls (7 
mice) were injected with 150 µL of 10 mM citrate. The positive control 50 

group (8 mice) received irinotecan by ip injection at a dose of 20 mg/kg, 
3× weekly, for all four weeks. Compound 46 was similarly administered 
to seven mice, 3× weekly, at a dose of 25 mg/kg starting at week 2 with 
increasing doses of 32 and 42 mg/kg on weeks 3 and 4, respectively. Data 
are presented as the mean ±SE. The % T/C (average tumor volume of 55 

treated as compared to control group) is 27.7% for 46 and 6.1% for 
irinotecan. Adapted with the permission from reference (111), copyright 
2010, American Chemical Society. 

 

 Recently Neidle reported a tetra-substituted naphthalene 60 

diimide, BMSG-SH-357 [13] as a potent G-quadruplex DNA 
stabilizing ligand with telomerase inhibitory activity in cells 
(Figure 20). The drug seems to be the first G-quadruplex ligand 
to show anticancer activity in vivo through telomerase inhibition 
action in a pancreatic cancer model.57 65 

 Another trisubstituted acridine compound BRACO-19 showed 
an excellent response in UXF1138L human uterine carcinoma 
xenograft models and showed a good hope for the future in 
cancer research.56 RHSP4 [17] is another potent G4 ligand, which 
showed complete remissions in UXF1138L human uterine 70 

carcinoma xenograft tumor model in combination with 
established anticancer drug Taxol.88,157-159 Quarfloxin is among 
the first G4 ligand which has potential to disrupt the G-
quadruplex-nucleolin complexes. The G-quadruplex DNA binder 
has reached phase II clinical trials for the treatment of 75 

neuroendocrine/cancerous tumors.160,161 Unfortunately for a 
ligand, bioactivity is not the only hurdle to cross in order to be a 
potent drug, other issues like targeting capability, bioavailability, 
cellular availability and clearance after its function etc are also 
essential. Quarfloxin could not however, proceed beyond the 80 

phase II clinical trials due to its limited bioavailability even 
though it showed promising drug criteria.162  

Needs for Further Investigations 

The DNA-ligand interactions have been quite extensively probed 
with the aid of various physical methods. However, still, there are 85 

a number of parameters from the findings from the in vitro 
studies which need to be correlated for more accurate 
predictability at the biological level. For instance, a study of 
energetics of G-quadruplex DNA-ligand interactions provides 
key information on the thermodynamic parameters that govern 90 

the biomolecular interactions. As opposed to popular 
spectroscopic methods such as UV-Vis absorption, fluorescence 
emission and circular dichroic spectral studies, techniques like 
isothermal titration calorimetry (ITC) offer a direct measurement 
of the binding enthalpy, stoichiometry and affinity 95 

constants.163,164 By careful dissection of the enthalpic and 
entropic components of binding, it may be possible to optimize 
drug-G-quadruplex DNA complexation more accurately. 

Detection of G4 DNA structure by visual methods in vivo 
using a ligand’s emission property is a major challenge. Recently 100 

few reports have come on staining of G-quadruplex DNA in vivo 
using antibody conjugate, damage marker and G4 ligands (Figure 
21).165 However, more information has to be extracted by 
following this method.166,167 ‘Light-up’ probes that display a 
strong enhancement in G4 binding and ‘light-off’ probes that 105 

display a quenched fluorescence upon binding in cellular 
environment should report involvement of specific biological 
functions. 
 On the other hand, over-expression and availability of 
telomerase in most of the cancer cells justified the telomerase 110 

targeted anticancer drug design provided the cytotoxicity remains 
minimal towards normal cells. The G4 ligands reported so far are 
mostly small molecules having good cell membrane permeability 
and high binding affinity. There are a number of reports on G4 
ligands which could enter into pre-clinical or clinical trials. The 115 

number of such molecules is expected to increase in the near 
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future.168 Nevertheless, a few challenges that a G4 ligand has to 
meet to perform as a telomere targeted anticancer drug. The G-
quadruplex DNA structure which was identified primarily in the 
telomere region has also been found in other genomic regions. 
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There are over 350,000 predicted sequences in the genome which 
can fold into G-quadruplex structures and are believed to be 35 

involved in the genome maintenance.168-170 
 
 
 
 40 
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 55 
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 65 

 
 
 
 

Ligand G4-DNA affinitya     Telomerase inhibition (IC50; µM) Reference 
Kd (µM) ∆Tm (°C) TRAP TRAP-LIG 

1 NR NR 23.0  NR 48 
3     0.063c NR     0.48 6.3 55, 45 
4 6.0b 21.5b NR NR 53 
8 NR NR   0.3 NR 121 
9   0.12d 10.7e 0.1-0.2 NR 60 

10 1.7f NR NR NR 186 
13 NR 28.3g NR NR 57 
16 NR   6.2h NR                  35.0 187 
18 7.5i              20i 14-28 NR 73 
35  0.94j NR   0.7 8.9 45, 188 
37 0.2k 4l NR NR 191 
38 1.0 k  4 l NR NR 191 
39 NR NR 0.005-0.02 0.6 102,45 
40 NR NR 0.2-0.6  NR 109 
41   0.12m 10.5n     0.23 NR 192 
42     0.006o NR NR NR 118 
43   12-56p 4.5-6.4i NR NR 189 
44 NR 33.8q NR NR 190 
45 NR             28r     0.13 NR 121 
51  0.82s             24 s NR                  38.6 88 
52   4.92 s             33 s NR                  32.2 88 
53   6.16 s             38 s NR 5.9 88 
64 7.0t             15 t NR                  34.7 144 
65 2.3 t             17 t NR                  14.5 144 
      

Table 1. Binding parameters and telomerase inhibition properties of various G4-ligands. 

aKd is the dissociation constant of the telomeric G-quadruplex DNA-bound ligand complexes and ∆Tm is the extent of elevation observed in the G-
quadruplex DNA denaturation temperature upon ligand binding. NR: Not reported. bMethod: UV, ODN: d[A(G3T2A)3G3T]; cMethod: SPR, ODN: (5’-
Biot-d[AG3(TTAG3)3]); dMethod: fluorescence, ODN: d[AG3(TTAG3)3]; e,qMethod: FRET, ODN: 5’-(FAM-d[GGG(TTAGGG)3]-TAMRA)-3’; 
fMethod: SPR, ODN: 5’-SH-d[TTT TTT TTT TAG GGT TAG GGT TAG GGT TAG GG]-3’; gMethod: FRET, ODN: (5’-FAM-d[GGG TTA GGG 
TTA GGG TTA GGG]-TAMRA-3’); hMethod: FRET, ODN: 5’-(FAM-d[GGGTTAGGGTTAGGGTTAGGGTTAGGG]-TAMRA)-3’; iMethod: 
FRET, ODN: (5’-FAM-d[GGG(TTAGGG)3]-TAMRA-3’); jMethod: UV, ODN: d[AG3(T2AG3)3]; kMethod: UV and lCD, ODN: (5-biotin-
d[GTTA(GGGTTA)4GG]-3); mMethod: SPR, ODN: 5’-biotin-d[AG3(TTAG3)3]-3’; nMethod: UV, ODN: d([T2AG3]4; oMethod: FRET, ODN: (FAM-
d[GGGAGGGAGGGAAGGAGGGAGGGAGG-GA]-TAMRA); pMethod: SPR, ODN:  d[5’-biotin-GT2A(G3T2A)4G2]; rMethod: FRET, ODN: 5’-
(Fluo-d[G3(T2AG3)3]-3’-Tamra); sMethod: UV, ODN: d(T2AG3)4; tMethod: UV, ODN: d[G3(T2AG3)3]. 

Figure 20. (A) Bio-distribution of BMSG-SH-3 in major organs. Fluorescent BMSG-SH-3 was visualized ex-vivo 48 h after the last of four cycles of 
3 mg/kg given 3 times/week intra-peritoneally. (B) Development of MIA-Pa-Ca2 flank xenograft tumors volume treated with BMSG-SH-3. Animals 
received 3 mg/kg intraperitonally 3/week tumor. Adapted with the permission from reference (57), copyright 2011, Elsevier. 

Untreated BMSSG-SH-3

Tumor

Liver

Kidneys

Spleen/Heart

Lungs

Pancreas

A 

Treatment (days)

R
e
la

ti
v
e
 T

u
m

o
r 

V
o
lu

m
e

BMSG-SH-3

Untreated

B 

Page 12 of 16ChemComm

C
he

m
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t



 

This journal is © The Royal Society of Chemistry [year] Journal Name, [year], [vol], 00–00  |  13 

 
 
 
 
 5 

 
 
 
 
 10 

 
 
 
 
 15 

 
 
 
 
 20 

 
 
 
 
 25 

Figure 21. (A) Structure of ligand 72 and photographic images of 72 (5 
µM) alone and in the presence of telomere G-quadruplex telo21, BSA 
protein, duplex DNA ds26 and Ct-DNA in Tris–HCl buffer containing 60 
mM KCl under UV light (λex = 302 nm). Adapted with the permission 
from reference (165), copyright 2011, The Royal Society of Chemistry. 30 

(B, D) Fluorescence microscopic images of fixed MCF7 cells stained with 
2 µM ligand 72for 15 min and (C, E) 2 µM DAPI for 20 min. Adapted 
with the permission from reference (165), copyright 2011, The Royal 
Society of Chemistry. 

  35 

 Thus a potential telomerase inhibitor should not only have the 
sequence and topology specificity but also have discrimination 
ability among different G-quadruplex DNA topologies distributed 
throughout the genome. Though telomerase is known mostly for 
its association with cancer, there are instances where telomerase 40 

plays an important role in renewal capacity of the normal stem 
cells.171 Additionally, G4 ligands may also shorten telomere 
length in bone marrow like cells which are extremely susceptible 
towards telomere length shortening over time.172 According to 
Harley, this kind of cells may need telomere-activation therapy in 45 

the near future which may interfere with the telomerase inhibition 
mediated anticancer therapy.171 Cancer cells are known to survive 
in the most robust conditions and are not unexpected to escape 
the telomere dependent survival like recombination based 
alternative lengthening of telomeres (ALT).173 So telomerase 50 

targeted anticancer therapy needs to be under scanner particularly 
in case of the long term treatment. Besides telomeric, oncogenic 
promoter (c-myc, c-kit and variant bcl-2) DNA G-quadruplexes, 
there is evidence for the existence of RNA G-quadruplex (from 
5’-untranslated regions, 5’-UTRs) as well which could also be 55 

targeted.174,175 Thus, telomere targeted telomerase inhibition 
mediated anticancer therapy needs to be looked at closely to 
overcome the hurdles acquiring the opportunities at the same 
time. 

Future outlook 60 

For the last two decades various researchers have enriched the 
library of telomeric G4 binding ligands with many potential 
candidates. Parallel research targeting telomerase or telomere 
binding proteins would be the other strategy for the regulation of 
genetic expression.11,171,176,177 Both the findings with G4 ligands 65 

in vitro and in vivo are encouraging to carry on further 
investigations in search of the superior drugs. For the design of 
more effective and promising ligands, newer strategies have to be 
adopted. One possibility is to include design and synthesis of G4 
ligands having the capability of inducing DNA cleavage which 70 

could be triggered through an external stimulus. Such kind of 
ligands may not only be able to inhibit the telomerase activity, 
but also the same should be able to nick an elongated telomere to 
restore it to the ‘normal’ length. In the other strategy, a DNA 
sequence complementary to the telomeric overhang may be 75 

conjugated with a ds-DNA stabilizing ligand. The attached 
complementary DNA can form a Watson-Crick duplex with an 
elongated single-stranded telomere. This may be stabilized by the 
duplex binding ligand available in the proximity. Favorable 
energy factors associated with the additional duplex formation 80 

may govern the selectivity of the conjugate to enable targeting of 
the single-stranded overhang. To protect the conjugated 
complementary DNA sequence from nucleolytic degradations 
one can employ a corresponding PNA as well. On the other hand, 
a G4 ligand may be conjugated with the complementary hTR 85 

sequence (AUCCCAAUCUGUU).171 The conjugated ODN 
(TAGGGTTAGACAA) may bind with the hTR template and 
may thus block the telomere docking. Moreover, the conjugated 
G4 ligand may stabilize the telomere overhang available in the 
proximity. Thus, targeting both telomerase function as well as 90 

telomere stabilization may lead to higher activity. 
 
 
 
 95 

 
 
 
 
 100 

 
 
 
 
 105 

 
 
 
 
 110 

 
 
 
Figure 22. Comparison of [111In]DTPA-folate uptake in a patient with 
stage III ovarian cancer (left) and that in a healthy volunteer (right). 115 

Adapted with the permission from reference (179), copyright 2010, 
American Chemical Society. 
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 Another important strategy could involve receptor targeted 
drug design. Most of the cancer cells need higher level of 
nutrients to carry out telomere loss mediated ‘genetic time bomb’ 
activity.178 Cancer cells over-express receptors from the cell 
surface to enhance the endocytosis process.  5 

 The common receptors include folate, tyrosine kinase, biotin, 
transferrin and G protein-coupled receptors. Some of these have 
already been identified for over-expression in many human 
cancer cells.32,179-182 Among these, the most aggressively up-
regulated receptor is folate which has been detected in cancers of 10 

the ovary, lung, kidney, endometrium, breast, brain, colon, and 
myeloid cells of hematopoietic lineages. Folate-diethylene 
triamine penta acetic acid (DTPA) complex, [111In]DTPA-folate, 
has been found to have excellent targeting ability in ovarian 
cancer patients. Interestingly, it did not show any accumulation in 15 

healthy human organs except kidneys before it rapidly gets 
excreted into the urine (Figure 22).179 This observation raises the 
possibility of receptor-mediated selective targeting of conjugated 
G4 ligands. The G4 ligand conjugated with molecular entities 
targeting such receptors may enhance the cellular uptake and 20 

improve bioavailability. This in turn may lead to the reduction in 
normal cell cytotoxicity.183-185 Moreover, a highly active G4 
ligand with lower selectivity could be made superior with this 
strategy. Lastly, effort and time will provide us the right path to 
achieve the desired objectives. 25 
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