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Intense fluorescence background is a major problem in the application of Raman 

spectroscopy. An appropriate algorithm which can faithfully retrieve weak tissue Raman 

signals is required. In this article, we propose a new algorithm for automated and artifact-

free recovery of Raman spectra which combines a novel Raman peak recognition method 

(RPR method) with an improved iterative smoothing method (SG-SR method). SG-SR 

method, based on the modified Savitzky-Golay iterative process, substantially improve its 

convergence speed. By applying a novel negative relaxation factor to the Successive 

Relaxation iterative method, an automatic recognition of Raman peak is realized . In the 

proposed algorithm (RIA-SG-RPR algorithm), a real Raman peak position is firstly detected 

by RPR method to serve as the intrinsic criterion of convergence for the  SG-SR method to 

avoid human interference. Then, real Raman signals are recovered from the iterative  

procedure of SG-SR method. This algorithm has been optimized and validated with 

mathematically simulated Raman spectrum as well as experimentally measured Raman 

spectra from varied fluorescent samples, resulting in a significant improvement on the 

rejection of both high fluorescence background and direct human intervention. This 

algorithm drastically avoids false Raman features to benefit the utilization of Raman 

spectroscopy to characterize molecular specifics in a more challenging Raman applications. 

 

Introduction 

 

In the past decades, Raman spectroscopy has been experiencing 

a period of growing interest in characterizing chemical agents, 

materials and biomedinice,1-4 as an invaluable analytical tool. 

However, during the application of Raman spectroscopy ，

fluorescence， sometimes several orders of magnitude more 

intense than the weak Raman scattering, severely interferes 

with the Raman signals. Both instrumental5–13 and 

computational methods14–23 have been developed to subtract the 

intense background of Raman features for the application of in-

vivo Raman spectroscopy. On one hand, the instrumental 

method based technique includes shifted excitation5-11 and time 

gating.12,13 Recently, thanks to the compact tunable laser 

source5,9-10 and the robust extracted algorithm7,8, shifted 

excitation Raman difference spectroscopy (SERDS) has 

become an applicable tool for the fluorescence subtraction. On 

the other hand, the computational method based techniques 

extract the Raman signal by carrying mathematical post-

processing, including frequency-domain filtering such as 

Fourier transform (FFT),15 iterative moving averaging 

technique,16 wavelet transforms (DWT),17 Shifted-Spectra 

Technique and first- and second-order derivatives21 and 

polynomial fitting.14,19 Each of these methods has its own 

advantage when used in certain situations. Due to its high 

efficiency and simplicity18,19 the polynomial fitting is the most 

popular and widely used method, especially in biomedical 

applications since it was developed. After that, a modified 

multi-polynomial fitting (ModPoly)-based iterative algorithm 

was proposed by Lieber and Mahadevan-Jansen,14 which 

largely reduced the dependence of the spectra on the 

polynomial order in Raman spectra processing. This algorithm 

was further improved by Zhao et al.20 However, the polynomial 

fitting method is sensitive to the choice of the spectral region. 

Recently, Krishna et al24 proposed a Range-independent 

background subtraction algorithm (RIA) based on the Savitzky-

Golay smoothing method. However, Savitzky-Golay iterative 

smoothing suffers from its low speed of convergence, which 

costs huge amount of the computation time in Raman 

processing, especially in the case of large amount of spectral 
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data. In our previous work, we presented a novel modification 

of a Savitzky-Golay based fluorescence subtraction algorithm 

(RIA-SG-SR algorithm)25 which drastically improves 

processing speed. RIA-SG-SR algorithm uses the SG-SR 

method based iteration instead of Savitzky-Golay iteration to 

achieve faster convergence. Real-time chemical analysis benefit 

from the convergence improvement since RIA-SG-SR can 

provide an efficient and rapid recovery of Raman Spectra 

within a few of milliseconds. 

However, both RIA and RIA-SG-SR algorithm are still 

subject to two major limitations, especially in low signal-to-

Fluorescence ratios (SFR) Raman spectra for real-time and 

artifact-free Raman processing systems. The first is that two 

extra artificial Raman peaks must be created as the criterion of 

convergence for these two algorithms, which means the 

retrieval of Raman signatures still suffers from their 

dependence on direct human intervention to manually specify 

the height and width of the two artificial Raman peaks. 

Nevertheless, subjective human intervention must be 

minimized for practical automated fluorescence subtraction. 

The second limitation is that the subtractions of the two 

algorithms are found to lead to distortions and false peaks in the 

recovered spectrum in the low Signal-to-Fluorescence ratio 

situation. Considering the typically low SFR of the raw Raman 

spectrum collected from biological tissue and other highly 

fluorescent samples, false peaks will significantly limit the 

application of RIA and RIA-SG-SR in clinic. 

In this article, we present a novel fluorescence subtraction 

algorithm, named RIA-SG-RPR algorithm, based on an initial 

Raman peak recognition method to avoid or minimize certain 

shortcomings of RIA and RIA-SG-SR algorithms. The 

fundamental idea of this peak recognition method is that high-

frequency components (Raman peaks) grow much faster than 

the baseline in a specific iterative process and the peaks can be 

determined subsequently. Compared with our previous work in 

Ref. 25, the novelties and findings of this manuscript are 

addressed to the improvement on automated and artifact-free 

subtraction while yielding consistent rejection of the intense 

fluorescence in low SFR Raman spectra. RIA-SG-RPR hardly 

needs direct human intervention to manually specify the 

convergence criterion. More importantly, RIA-SG-RPR 

substantially avoids false peaks and distortions added on 

recovered Raman signals in the case of highly fluorescent 

samples. This algorithm has been optimized and validated with 

mathematically simulated Raman spectrum as well as 

experimentally measured Raman spectra from varied 

fluorescent sample. 

 

 

Materials and Methods 

Fluorescence Subtraction Problem 

Measured spectral data obtained on N detector channels can be 

represented as 

                     O0(v)=R(v)+B(v)+n(v)                                         (1) 

where v is the Raman shift in cm-1. The background 

fluorescence B(v) and random noise n(v) are added on the real 

Raman signal R(v). O0(v) is the measured spectra. The purpose 

of fluorescence subtraction is to produce an estimation of R(v) 

from O0(v). Actually, some filtering methods should be firstly 

applied on the raw spectrum to reduce interference by noise 

prior to fluorescence subtraction algorithm26. And 

developments in hardware system can also largely suppress 

noise and provide better signal-to-noise ratios. After that, Eq. 1 

can be simplified as 

                            O(v)=R(v)+B(v)                                           (2) 

The concerns with fluorescence subtraction problem are 

addressed to isolate the Raman features from intense 

fluorescence. Raman signals always include some sharp Raman 

lines (~ 10 to 30 cm-1 or less in spectral width) which are high-

frequency components compared with the broad underlying 

continuum of fluorescence background. A feasible method is to 

remove those high-frequency features through robust low-pass 

filters. From this point of view, Savitzky-Golay based 

smoothing method has been successfully applied to RIA24 and 

RIA-SG-SR25 algorithm. In details, the RIA and RIA-SG-SR 

algorithms are iterative smoothing of the measured raw Raman 

spectrum (O(v)) in such a manner that the high-frequency 

Raman peaks (R(v)) are gradually eliminated, finally leaving 

the underlying broad baseline (B(v)) which can be subtracted 

from the raw spectrum to yield the true Raman signal. 

 

 
Fig.1 (a), (b), and (c) are the example simulated Raman spectra 

superimposed on Gaussian baseline with three different Signal-to-

Fluorescence Ratios (SFR) 0.5, 0.05 and 0.005, respectively. (d) is the 

mathematically simulated Raman spectra. 

 

In general, the line-profile of R(v) is considered to be 

Lorentzian in nature27. Hence, Lorentzian expression is also 

utilized in this article to model the simulated Raman signals, as 

seen in Fig. 1(d). Four types of baselines, including fifth-order 

polynomial, exponential, Gaussian and sigmoidal distributions 

are applied to simulate the complicated background (B(v)), 

which are depicted in Ref. 25 and also discussed in other 

reports16,18. Signal-to-Fluorescence Ratios (SFR) are varied in 

our paper to evaluate the reconstruction performances of 

different algorithms, mathematically and experimentally. It is 

defined as /
max min max min

R R FSFR F  , where 
max(min)

R  represents 

the maximum (minimum) intensity of Raman peaks and 

max(min)
F  represents the maximum (minimum) intensity of 

fluorescence. As an example, Fig. 1 (a), (b) and (c) show the 

Raman signal added to Gaussian baseline with different SFRs: 

SFR=0.5, SFR=0.05 and SFR=0.005. It is pertinent to mention 

here that the rest of three types have the similar trends 

qualitatively, in other words, the Raman peaks gradually 

disappeared with the decrease of the SFR. 

Raman Peak Recognition (RPR) method 
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The Savitzky-Golay smoothing method is a type of filter, first 

described in 1964 by Abraham Savitzky and Marcel J. E. 

Golay28, which yields the smoothing value by use of the 

polynomial least square, 

                                   X GX
i i

                                                 (3) 

where, [ , , , , ]
1 0 1

i i i i iX x x x x x
i k k k k

 is the raw spectrum data. 

[ , , , , ]
1 0 1

i i i i iX x x x x x
i k k k k

 is the result of smoothing. G is 

determined by the window length (2k+1). In RIA-SG-SR25 

algorithm, we proposed an improvement on the Savitzky-Golay 

smoothing method to accelerate the iterative procedure and 

obtain great reduction of the computation time. This smoothing 

method is denoted as SG-SR method and its iterative form are 

as follows, 

            (1 ) ( )X w X w L X DX UX
i i i i i

    (4>w>0)                        (4) 

            1( ) ((1 ) )X E wL w D U X
i i

    (4>w>0)                           (5) 

where, E  is identity matrix. G=D+U+L; D, U and L are 

strictly lower triangular matrix, diagonal matrix and strictly 

upper triangular matrix, respectively. From the mathematical 

demonstration procedure in Ref. 24, the range of 4>w>0 is the 

condition for the convergence of SG-SR method. In that case, 

high-frequency Raman peaks (R(v)) are gradually eliminated 

and O(v) gradually converges to B(v).  

It is important to point out that, the convergence or 

divergence of Eq. 5 is determined only by the relaxation factor 

w. Here, we firstly attempt to apply SG-SR method to an 

appropriate negative relaxation factor. 

                 1( ) ((1 ) )X E wL w D U X
i i

    (w<0)                          (6) 

Unlike the convergence in Eq. 5, Eq. 6 is divergent and 

X
i

would head for infinity with the increase of iteration. 

Contrary to SG-SR method, high-frequency components 

(Raman peaks) grow much faster than the baseline in the 

iterative process. And on this basis, an innovative Raman Peak 

Recognition (RPR) method is proposed, which could be used to 

suppress the broad background and extract high-frequency 

Raman peaks, with an appropriate negative relaxation factor w 

after an appropriate iteration number.  

 

 
Fig.2 The determination of the optimal relaxation factor based on 

different baselines (a) and different SFRs (b), respectively. (c): One-

order polynomial fitting result with logarithmic coordinates. (d): The 
residual error is within ±0.002. 

 

Typically, the RPR method with an optimal value of the 

negative relaxation factor results in a more reliable recognition 

of Raman peaks. So, the next discussion should be addressed to 

the determination of the optimal w. At first, peak-to-

background ratio (PBR), which is defined 

as /Background PeakPBR P Baceak kground  , of processed curve with 

different baselines after 100 iterations are calculated, shown in 

Fig. 2(a). A larger PBR means that one can recognize the tallest 

Raman peak more easily. It can be seen from Fig. 2(a) that, 

PBR gradually approaches to 1 with the increase of the absolute 

value of w quickly. Here, the w, corresponding to the PBR of 

0.5 is chosen as the optimal relaxation factor for RPR method. 

In this case, the maximum peak is three times the intensity of 

background to ensure the accurate recognition of the most 

prominent Raman peak. It is noticed that the optimal valves for 

four different baselines are slightly different (-0.040, -0.035, -

0.043 and -0.041, respectively). Fig. 2 (b) illustrates the choice 

of w with different SFRs and different baselines. The absolute 

value of w decreases as the increase of SFR. When the SFR is 

large enough, w is chosen as zero and X
i

 would remain 

unchanged. It means that Raman peaks can be determined 

directly, instead of the iterative procedure. Even though w is 

slightly different between different baselines, all the four types 

have the similar trends qualitatively. Given that the measured 

background is the combination of various baseline types, the 

average value of different baselines of w can be used in the 

practical processing. Furthermore, using polynomial fit 

technique, a more accurate equation of the average w and SFR 

can be obtained with logarithmic coordinates in Fig. 2(c). 

Obviously, it is a mode of linear relation as: 

                   0.0072 ln( ) 0.0202w SFR                                    (7) 

                        
0.0202

exp( )
0.0072

w
SFR                                          (8) 

And the residual error is within ±0.002 in Fig. 2(d). In fact, 

since the SFR of a raw Raman spectrum can be 

approximatively estimated by visual inspection firstly, one can 

determine an approximate w with small tolerance from Eq. 7. It 

is necessary to point out that iteration number brings as great 

influence as w to the peak recognition result. PBR increases 

with the increase of iteration number. However, excessive 

iterations should be avoided from the perspective of reducing 

computational cost. Given that, 100 iterations is chosen for 

RPR method in this paper. Then, one can also determine the 

optimal w to obtain adequate PBR to find real Raman peaks as 

mentioned above. 

Fig. 3 illustrates the recognition results of Raman peaks. Fig. 

3(a) gives a specific example of this method. The Raman peak 

parts of high-frequency on the curve are gradually extracted 

after 100 iterations when the relaxation factor is set as -0.040. 

What is important is that the maximum points coincide with the 

positions of real Raman peaks in the simulation, which means 

the iterative result with negative relaxation factor can be used to 

determine the positions of Raman peaks. To be specific, the 

envelop curve is firstly achieved by fitting and interpolation of 

spline curve; and then peak positions can be accurately detected 

from this curve, shown in Fig. 3(a) with green filled circles. 

Then, the position of the maximum Raman peak, P, is picked as 

the criterion of convergence to avoid human interference for the 

subsequent iterative procedure. The performance of RPR 

method with respect to different SFRs and different baselines 

are also demonstrated in Fig. 3(b)-(f). 

Other Raman peak detection methods such as second-order 

derivatives and ridge lines mentioned in Ref. [17], have been 

practically proven to attain reliable positions of Raman peaks, 

good peak-width estimation and also the true Raman signals. 

These methods can be considered as integrated processing 
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system. In contrast, RPR method cannot subtract baseline from 

the raw spectrum by itself, but provide a simpler and quicker 

process. Therefore, it finds its application on detecting the 

positions of Raman peaks, one of which can be served as the 

intrinsic criterion of convergence for the subsequent subtraction 

algorithm. 

 
Fig.3 (a), (b) and (c): Recognition results of RPR method after 100 iterations based on fifth-order polynomial baseline with SFR=0.05, SFR=0.005 and 

SFR=0.0005, respectively. (d), (e) and (f): Recognition results of RPR method after 100 iterations based on different baselines with SFR=0.0005. P represents 

the optimal Raman peak position which is chosen to serve as the intrinsic criterion of convergence for the subsequent iterative procedure. 

RIA-SG-RPR algorithm 

RIA and RIA-SG-SR algorithms are iterative smoothing of the 

measured raw Raman spectrum. Compared with the RIA 

algorithm, the initial Savitzky-Golay smoothing method is 

replaced by the SG-SR methods in the RIA-SG-SR algorithm to 

achieve additional improvement in the convergence speed over 

the Savitzky-Golay procedure. The details of RIA and RIA-SG-

SR algorithms can be found in Ref. 24 and Ref. 25.  

 

Fig.4 (a): Flowchart of the RIA-SG-RPR algorithm for background subtraction. (b): Pictorial demonstration of the working of the RIA-SG-RPR 

based on Gaussian baseline with SFR of 0.0005. 

For practical automated fluorescence rejection, subjective 

direct human intervention must be minimized, and thus the 

concerns with the two algorithms must be addressed to obtain 

more truly representative Raman spectra. However, it’s 

impossible for RIA and RIA-SG-SR algorithm to avoid human 

interference because of the two extra artificial Raman peaks 

served as the criterion of convergence in the iterative 

procedure. An initial Raman peak recognition can find a way to 

the artifact-free recovery of Raman spectra in RIA-SG-RPR 

algorithm as well as good rejection of low Signal-to-

Fluorescence spectra. The underlying basis of the RIA-SG-RPR 

is iterative smoothing of the measured raw Raman spectrum. 

The algorithm uses a model based on the initial Raman peak 

recognition (RPR) method and the improved SG-SR iterative 

smoothing of the measured Raman spectrum. A detailed layout 

of the RIA-SG-SR algorithm is shown in Fig. 4(a). The first 

step is to perform the Raman peak recognition (using the RPR 

method discussed before) of the input spectral data to derive the 

positions of the maximum Raman peak, P, as the criterion of 

convergence. Following Raman peak recognition, the whole of 
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the input spectrum is subjected to a modified iterative 

smoothing based on the SG-SR method. The SG-SR method is 

equivalent to a low-pass filter, which tends to filter out the 

high-frequency components of a signal leaving the low-

frequency baseline intact. The process of smoothing by SG-SR 

is iterated until the convergence criterion is met, which 

means 1i ix x
P P

 . Here, ix
P

 represents the value of P position 

after the i -th iteration. Then this output curve, representing the 

background, is subtracted from the raw spectrum to obtain the 

true Raman spectrum with zero background. In this article,  is 

chosen as 0.00001 to ensure that the Raman signal has been 

completely removed that has been demonstrated in our practical 

experiment. Fig. 4(b) provides a pictorial demonstration of the 

working of the RIA-SG-RPR applied on the mathematically 

generated raw Raman spectrum based on Gaussian baseline 

with SFR of 0.0005. 
 

 

Results and Discussions 

Rejection of low SFRs based on different baselines 

A background subtraction algorithm is desired to accurately 

recover the Raman signal from the raw Raman spectrum 

irrespective of the SFRs. However, in practice, low SFRs 

always pose challenges for background subtraction. Both RIA 

and RIA-SG-SR result in distortions when they are applied on 

low SFR spectra, especially in the applications on biological 

samples with tense fluorescence. In contrast, RIA-SG-RPR 

algorithm provides a more powerful rejection of low SFRs.  

To analyse the performance of the three different algorithms 

(RIA, RIA-SG-SR, and RIA-SG-RPR) with respect to SFRs, 

they were applied on the mathematically generated raw Raman 

spectra of various SFRs, ranging from relatively high to much 

lower values. Fig. 5(a)–(c) shows the recovered Raman spectra 

after processing. It is apparent from the figures that in all the 

situations the Raman peaks subtracted by RIA-SG-RPR 

algorithm have been faithfully retrieved without any distortions. 

However, the performances of the RIA and RIA-SG-SR vary 

with SFR. It is found that Raman peaks could be faithfully 

retrieved without any distortions up to SFR of ≥0.05, shown in 

Fig. 5(a) and (b), using RIA and RIA-SG-SR. With SFR below 

~0.05, the subtractions of the two algorithms are found to lead 

to distortions and false peaks in the recovered spectrum, which 

is similar to the discussions in Ref. 24. The similar results are 

also found in Fig. 5(d) and (e) and (f), based on the three other 

baselines with low SFRs. It should be noted that the major 

Raman lines after RIA-SG-RPR processing show a broad 

shoulder on the left side. These little artifacts can be ascribed to 

the modified small-window moving technique. In the small-

window moving process, subsequent values shows a better 

approximation to the actual solutions compared with the 

previous ones. These little artifacts are negligible, because the 

presented method substantially obtains the consistent removal 

of Raman peak with correct height, width and locations which 

play a more important role in characterizing molecule.   

 
Fig.5 Comparison of different subtraction algorithms with respect to different SFRs and different baselines. (a), (b) and (c) are recovered Raman 
spectra of three different raw spectra (fifth-order polynomial baseline with three different SFRs), using RIA, RIA-SG-SR and RIA-SG-RPR, 

respectively. (d), (e) and (f) are recovered Raman spectra of different raw spectra based on three different baselines (exponential, Gaussian and 

sigmoidal) with SFR of 0.005, using RIA, RIA-SG-SR and RIA-SG-RPR, respectively. 

 

To measure the merits of the recovered spectra, the 

quantitative performance assessments were evaluated on the 

basis of the following merits between the true spectrum Ro and 

the recovered spectrum R: the root of mean square 

error
2

( ) /
0

oNRMSE R R N
i ii

 , the Pearson’s correlation 

coefficient

( )( )

1

2 2( ) ( )

1 1

N
o oR R R R

i i i i
iCC

N N
o oR R R R

i i i i
i i

  and the self-weighted 

correlation coefficient29

( )( )

1

2 2( ) ( )

1 1

N
o ow R R R R

i i i i i
iWCC

N N
o ow R R w R R

i i i i i i
i i

 . R
i

 

and oR
i

 are the mean of corresponding spectra in CC, while 

they are weighted mean defined as /R w R w
i i i i

 and 

/o oR w R w
i i i i

  in WCC. RMSE represents the average 

difference between the two spectra, with a small RMSE 
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corresponding to a good match. Pearson’s CC represents the 

average similarity between the trends of the true and the 

recovered spectra, and the larger values denote a better match. 

As an improved version of Pearson’s CC, Griffiths’ WCC 

places emphasis on those Raman bands in the spectrum and 

thus can obtain a more reliable measure of the similarity, which 

is also consistent with visual comparison. Table I shows the 

resulting RMSE, CC, and WCC for each method on the 

simulated data with different SFRs. When the SFR is equal to 

0.05, all the three methods achieve almost the same evaluations. 

However, for SFR below 0.05, the case is opposite. It shows 

that RIA-SG-RPR suppresses distortions and false peaks better 

than RIA and RIA-SG-SR, especially based on the Gaussian 

and sigmoidal baselines where the RMSE of the latter two 

methods are much larger than that of the proposed method 

while the CC and WCC is in the opposite case. These 

quantitative evaluations are consistent with visual assessment 

and show superiority over RIA and RIA-SG-SR, especially 

with complicated non-linear background. As mentioned above, 

the higher WCC means a better match between the Raman 

bands in the two compared spectra which actually reveal the 

“Molecular fingerprint”. That is, RIA-SG-RPR provide more 

exact spectral details. Considering the possible erroneous 

judgment leading by the false peaks, one can benefit from the 

high WCC, which is of crucial importance in the application of 

Raman spectroscopy. 
 

Table 1 Comparison of the performance of RIA, RIA-SG-SR and RIA-SG-RPR in two SFR conditions. For CC and WCC, higher values imply 

superior performance, while lower RMSE values imply improved performance. 

 

Merits Method RMSE CC WCC 

0.05 0.005 0.05 0.005 0.05 0.005 

Fifth-order 

polynomial 

RIA 0.3525 0.4292 0.9846 0.9708 0.9830 0.9811 

RIA-SG-SR 0.3586 0.7592 0.9553 0.9242 0.9812 0.9798 

RIA-SG-RPR 0.3342 0.3321 0.9844 0.9845 0.9870 0.9871 

Exponential 

RIA 0.3612 0.6814 0.9837 0.9204 0.9828 0.9769 

RIA-SG-SR 0.3829 1.6905 0.9541 0.7326 0.9813 0.7603 

RIA-SG-RPR 0.3345 0.3351 0.9844 0.9846 0.9870 0.9870 

Gaussian 

RIA 0.3626 2.8488 0.9825 0.3872 0.9830 0.1057 

RIA-SG-SR 0.3932 4.4622 0.9530 0.1976 0.9809 0.1252 

RIA-SG-RPR 0.3442 0.3237 0.9845 0.9867 0.9870 0.9876 

Sigmoidal 

RIA 0.3628 1.2088 0.9821 0.7711 0.9829 0.8574 

RIA-SG-SR 0.3741 1.6569 0.9520 0.6571 0.9814 0.6942 

RIA-SG-RPR 0.3349 0.3403 0.9843 0.9843 0.9870 0.9870 

As is known to all, a linear least square fit (using a 

polynomial of degree one) of linear regression of the input 

spectral data is used to extrapolate two sets of linear data at the 

two ends of the selected portion of the spectral range in RIA 

and RIA-SG-SR. After that, two Gaussian peaks, one on each 

side, are added to the extended linear portion to serve as the 

criterion of convergence for the subsequent iterative procedure. 

This extension can be used to explain these distortions and false 

peaks on each side of the recovered spectrum. Linear fit of the 

input spectral data is only a crude approximation of the 

baseline, which causes the discontinuity of the hybrid curve. 

This discontinuity is further amplified in the iterative process 

and regarded as a “Raman peak” because of its high frequency. 

This hypothesis is clearly manifested in Fig. 5 and Table I, 

especially under the condition of complicated background 

(exponential, Gaussian and sigmoidal baselines in Fig. 6(d)-(f)), 

because it’s more difficult to fit these non-linear baselines using 

just a linear polynomial. One can further deduce that, results 

will get worse when these two methods are applied to a more 

complicated input data experimentally. However, RIA-SG-RPR 

is totally free of this problem. 

Artifact-free and automated fluorescence subtraction 

In the case of the RIA and RIA-SG-SR, successful use of the 

two algorithms require appropriate selection of a number of 

different parameters used for the criterion of convergence, 

including the heights and widths (FWHM) of the two added 

Gauss peaks. However, this involves user intervention and is 

clearly a disadvantage for its automated use. According to Ref. 

[24], a simple criterion is that the height of the Gaussian peak is 

chosen as equal to the maximum of the ordinate values of the 

raw spectrum to guarantee that the recovery of all the Raman 

peaks is completed. However, it doesn’t mean this selection is 

optimal, because the maximum of the ordinate values is 

generally much larger than the real heights of Raman peaks and 

the computing cost multiplies at an astonishing rate with the 

increase of the heights in our processing. While, a smaller 

Gauss peak means that the iterative smoothing operation would 

be terminated before the Raman peaks are recovered fully. 

Fig. 6 illustrates that human intervention to specify the height 

and width of the two artificial peaks have direct severe impact 

on the recovered Raman signals in the practical application of 

RIA and RIA-SG-SR. Normal height and width were 

determined after several prospective attempts to guarantee that 

the Raman peaks are recovered fully. However, it’s difficult to 

determine appropriate height and width facing with measured 

Raman spectra since no one knows the real Raman peaks. 

Deviation from normal values can lead to great distortions, 

shown in Fig. 6(b) and (c). Whereas the results of RIA-SG-RPR 

algorithm can keep stable without the human interference. In 

addition, the position where the peaks should be added on is 

also depended on the user intervention which can further lead to 

inaccuracy of background subtraction.  
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Fig.6 The variations of the recovered spectra with different heights and 

widths of the two false Gaussian peaks for RIA and RIA-SG-SR. 

Normal height and width were determined after several prospective 
attempts to guarantee that the Raman peaks are recovered fully. 

In our proposed algorithm, only one parameter, the SFR 

should be specified by direct human intervention in 

preprocessing. It can be approximatively estimated by visual 

inspection. After that, w is obtained from Eq. 7. Actually, since 

different SFR leads to little difference of w, this user 

intervention will not bring as great influence as the RIA to the 

recovered Raman signals. So, it is pertinent to mention here that 

RIA-SG-RPR algorithm can provide a more robust, automated 

and artifact-free recovered Raman spectra compared with RIA 

and RIA-SG-SR. 

Effects of noise on RIA-SG-RPR 

Synthetic spectra were generated with a signal-to-noise ratio 

(SNR) of 10, which is a reasonably challenging level of noise, 

by adding a constant level of Gaussian (white) noise with an 

original standard deviation of 1.0 to the spectrum. These 

baselines permitted us to investigate the RIA-SG-RPR’s 

performance on a variety of dissimilar baselines to gain 

quantitative estimates of its performance. First, we want to 

demonstrate the robust rejection of noise of RPR method. Fig. 

7(a)-(d) give the results of peak recognition with respect to 

different baselines. It is clear that, all the optimal Raman peak 

(P) have been found, exactly the same as Fig. 3. Then, an 

automated smoothing26 was applied on the raw spectrum to 

reduce interference by noise. Followed by the RIA-SG-RPR 

algorithm, the recovered Raman signal can be seen in Fig. 7(a), 

(b), (c) and (d). Due to the smoothing process for reducing 

noise, the intensity of each Raman peak decreases, compared to 

the true Raman signals in Fig. 1 (d). What’s more, the noise 

removal prior to fluorescence subtraction algorithm is found to 

lead to distortions and the emergence of small false peaks in the 

recovered spectrum. So, controlling the noise is very important 

in the previous measurement. In spite of the interference by 

noise, this algorithm is found to substantially obtain the 

consistent removal of Raman peak with correct profile and 

locations. 

 
Fig.7 (a)-(d): the Raman peak recognition results based on four baseline types with constant SNR of 10. (e)-(f): the recovered Raman signal based 

on four baseline types with constant SNR of 10. 

Recovered Raman signals from measured spectra 

In order to demonstrate the utility of the proposed fluorescence 

removal algorithms, experiments were carried out to measure 

the Raman spectra of chemical agents.  

First of all, qualitative demonstrations of the applicability of 

this propose method is shown in Fig. 8 by applying it to carbon 

tetrachloride, solid triacontanol and porcine skin in vitro, 

respectively. CCI4 hardly exhibits fluorescence with the 

emission wavelength at 785nm. The subtraction algorithm just 

correct baseline drift (e.g., shot noise) slightly, but to keep the 

original spectral contours and intensities over the entire range 

in Fig. 8 (a), which proves that, RIA-SG-RPR can be used in 

the common case where the fluorescence is not strong. In 

contrast, triacontanol and porcine are two highly fluorescent 

samples. Porcine skin is a very difficult sample to measure not 

only due to its intense fluorescence, but also due to the complex 

Raman bands emitted from diversified proteins and amino 

acids.
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Fig.8 The experimentally measured raw Raman spectra (red line) and the recovered Raman spectra using RIA-SG-RPR(green line) of (a) carbon 

tetrachloride, (b) solid triacontanol and (c) porcine skin, respectively. 

In Fig. 8 (b) and (c), the recovered Raman spectra both show 

dramatically reduction of fluorescence and Raman signals are 

more resolvable. More importantly, further quantitative analysis 

based on the Raman intensity can be implemented after this 

subtraction. In the more challenging Raman application, all the 

Raman characteristics of porcine skin30 have been faithfully 

retrieved without any artifacts being introduced. 

The most important point of RIA-SG-RPR in the article is 

the rejection of high fluorescence background. So, a well-

designed experiment is unitized to illustrate this issue 

quantitatively, based a synthetic sample. IR775 is a near-IR 

laser dye with absorption maximum of 775 nm and strongly 

fluorescent when excited with a 785 nm laser. A trace amount 

of the IR775 was dissolved in pure ethanol to form a 

fluorescent sample with a known Raman spectrum. Since the 

concentration of the ethanol is many orders of magnitude larger 

than the dye, it is assumed that the dye’s contribution to the 

Raman spectrum is negligible. The mixed solution of Ethanol 

and IR775 serve as samples with different SFRs, from 

relatively high to low by changing the concentration of IR775 

in the mixed solution, with no immediately resolvable Raman 

peaks. This experimental system was also used in our previous 

work25. 

The experimentally measured raw Raman spectra from the 

mixed solutions are shown in Fig 9(a), (b) and (c). As the 

concentration increased from 10-6M to 10-4M, the SFRs 

decreased from 0.0666 to 0.00515. The recovered Raman 

spectrum of ethanol following processing with RIA and RIA-

SG-RPR are also shown in Fig. 9. RIA leads to the emergence 

of false peaks on the two sides of the recovered spectra when 

the SFR drops. Contrary to RIA, it is clear from the figures that 

all the Raman characteristics of ethanol31 have been faithfully 

retrieved without any artifacts being introduced. It can be 

concluded that RIA-SG-RPR algorithm can provide better 

rejection of the low SFRs compared to other fluorescence 

subtraction methods. Although it is claimed that RIA could 

faithfully retrieve without any distortions up to an SFR value of 

≥ 0.005 in Ref. 24, false peak also occurs when the SFR 

decreases to ~0.0106 in Fig. 9 (b). Considering the typically 

low SFR of the raw Raman spectrum collected from biological 

tissue or other fluorescent samples, false peaks will 

significantly limit the use of RIA, and RIA-SG-SR, whereas 

RIA-SG-RPR algorithm can provide robust and faithful Raman 

processing. 

Fig.9 The experimentally measured raw Raman spectra (blue line) and the recovered Raman spectra using RIA-SG-RPR(red line) and RIA (green 

line) for solution of (a) 1×10−6 M, (b) 1×10−5 M and (c) 1×10−4 M near-IR laser dye IR775 dissolved in ethanol, respectively.  

 

For various applications in general and tissue diagnostic 

applications and fluorescent chemical agents in particular, it is 

often required to background subtract a large number of Raman 

spectra measured experimentally from highly fluorescent 

samples. In such situations, it is always desirable to have a 

background subtraction algorithm that can provide an efficient, 

automated and rapid recovery of Raman spectra with respect to 

different SFRs. Besides, false Raman peaks should be 

drastically removed which reveal the nonexistent “molecular 

fingerprints” and bring confusion and misunderstanding to 

analytical chemistry, materials and biomedicine. Though there 

exists little artifacts, RIA-SG-RPR algorithm shows significant 

improvement on the artifact-free, automated subtraction and 

rejection of false Raman features to benefit the utilization of 

Raman spectroscopy to characterize molecular specifics, 

compared with RIA, RIA-SG-RPR algorithm in these 

challenging Raman applications. Besides, this algorithm still 

achieves two orders of magnitude reduction in computation 

time compared with RIA thanks to the improved iterative 

procedure of SG-SR method. It can achieve a rapid recovery of 

Raman Spectra within a few of milliseconds, from which real-

time chemical analysis application can benefit a lot.  

 

Conclusions 

A novel Raman peak recognition method based fluorescence 

subtraction algorithm (RIA-SG-RPR) that substantially 

improves the rejection of low signal-to-fluorescence ratio is 

presented. The fundamental idea of this peak recognition 

method is to extract the high-frequency components (Raman 

signals) through a specific iterative process. This innovation 

also avoids direct human intervention to obtain more reliable 

and robust recovered Raman signals. This algorithm is 

optimized and validated with mathematically simulated Raman 

spectrum as well as experimentally measured Raman spectra 

from varied fluorescent samples. In the simulation, the Raman 

signals have been faithfully retrieved with almost fairly 

consistent spectral contours and intensities when the SFR drops 

to 0.005 with different type of baselines. Furthermore RIA-SG-

RPR algorithm recovered the real Raman signals in the 

experimentally measured raw Raman spectra of biological 

samples with intense fluorescence. Compared with RIA and 

RIA-SG-SR, RIA-SG-RPR can be applied to those highly 

fluorescent samples with low SFRs. Considering the typically 

low SFR of the raw Raman spectrum collected from biological 

tissue or other fluorescent samples in general, RIA-SG-RPR 

algorithm can provide more automated and faithful Raman 

processing. 
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