Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

Page 1 of 14

 $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

1	Non-destructive evaluation of total volatile basic nitrogen (TVB-N) and K-values
2	in fish using colorimetric sensor array
3	¹ Xingyi Huang*, ¹ Riqin Lv, ¹ Liya Yao, ¹ Chao Guan, ¹ Fangkai Han, ² Ernest Teye
4	¹ School of Food and Biological Engineering, Jiangsu University,
5	Xuefu Road 301, Zhenjiang 212013, Jiangsu, P. R. China
6	² School of Agriculture, Department of Agricultural Engineering,
7	University of Cape Coast, Cape Coast, Ghana
8	*Corresponding author: Xingyi Huang, Email: h_xingyi@163.com
9	Tel: +86-51188792368, Fax: +86-51188797308
10	Abstract
11	For rapid evaluation of fish freshness, a colorimetric sensor array has been developed
12	for the sensitive detection to measure simultaneously TVB-N and K value of fish
13	during its storage period. Silver carps were taken as fish samples which were stored at
14	constant temperature of 4°C during experiment period. 10 kinds of porphrin
15	compounds and 6 pH indicators were selected as chromogenic materials in this
16	experiment according to the previous study and the theoretical research. For
17	comparison, total volatile basic nitrogen (TVB-N) values of fishes were tested by
18	conventional chemical method, and the K-values were measured using High
19	Performance Liquid Chromatography (HPLC). As sensing materials used in the sensor
20	array were chromogenic, the color of the sensor array changed when reacting with
21	odor emitted by fish sample. The color change profiles of the sensor array before and
22	after exposure to the odor of each sample were got using image processing method.
23	And color features were extracted to be analyzed using principal component analysis
24	(PCA), linear discriminant analysis (LDA). The relationship between these analysis
25	results and the TVB-N values and K-values obtained by conventional methods were
26	established using support vector regression (SVR). And therefore models were set up
27	for rapid prediction of TVB-N values and K-values, respectively. For the SVR model
28	of TVB-N content and K-values, calibration correlation coefficient (R_{tr}) was 0.8564
29	and 0.8712, and the root mean square error of calibration (RMSEC) was 4.2177 and
30	0.06127, respectively. It is feasible to predict TVB-N values and K-values according
31	to experiment results of colorimetric sensor array. The results indicated that the novel
32	method based on colorimetric sensor array developed provide a feasible way for rapid
32	and nondestructive evaluation of fish freshness.
34	Keywords: fish freshness; colorimetric sensor array; total volatile basic nitrogen;

Analytical Methods Accepted Manuscript

K-values

1.0 Introduction

For thousands of years, the fish product is deeply favored by the people in many countries as it is rich in protein and of delicious taste. However, fish also has the disadvantage of comparatively short shelf life (Yao, Zhang et al. 2011). Public attention to fish quality and safety has increased significantly in recent decades, due in part to changes in consumer behavior and the gradually increasing consumption of fish. The safety of fish is of course important to consumer. Loss of freshness and spoilage of fish are rather complex processes and various factors such as microbiology, enzyme influence the spoilage pattern. In fact, the development of reliable methods to assess fish freshness and to evaluate quality criteria has been researched for many years (Di Natale, Olafsdottir et al. 2001). The traditional methods for determining fish freshness are based on physical, chemical, microbiological measurement and human sensory evaluation (Olafsdottir, Nesvadba et al. 2004). The human array evaluation is an immediate assessment of quality and can be done with no damage to fish. On the other hand, it is not easy to keep evaluation results consistent among different assessments, because the evaluation score is subjective. Other methods including microbiological measurement and chemical methods are limited in the laboratory and not convenient on-site because they are time consuming and destructive detection. Instrumental method independent of the subjective opinion of human judge is needed to meet the demand for quality measurement in the fish industry.

Recently, plentiful rapid instrumental analytical techniques also have been developed for the sensitive detection of the spoilage of fish, such as near infrared (NIR) spectroscopy (Armenta, Coelho et al. 2006), electronic tongue (Han, Huang et al. 2014), and electronic nose (Limbo, Sinelli et al. 2009). Odor is one of the most important parameters for evaluating the freshness of food. Once the fish dies, a very large amount of microbes of fish breed produces volatile organs (VOCs), which are closely related to the freshness of fish. Each product has a characteristic profile of volatile compounds and therefore its own characteristic odor. Likewise, spoilage will result in a different but still characteristic profile of volatile compounds in the same product. Kenneth has previously reported the colorimetric array detection of a wide range of odorants, using a family of metalloporphyrins immobilized on reverse-phase silica and on hydrophobic membranes (Suslick, Rakow et al. 2004). Gas sensor array, a new concept of electronic nose, compared with traditional electronic nose, the

Analytical Methods

69	technology has the advantages of high precision, wide range and it is not influenced
70	by humidity (Huang, Xin et al. 2009). It transformed olfactory information into visual
71	information by color's change after pigments reacted with volatile compounds and
72	chemometrics analysis was carried out on the visual information (Zou and Zhao 2008).
73	In the past decades, many kinds of colorimetric sensors have been developed to
74	monitoring food freshness based on different chromogenic materials. Artificial
75	olfaction system has been applied to the analysis of beer (Zhang, Bailey et al.
76	2006) and soft drink (Zhang and Suslick 2007, Chen, Liu et al. 2013), classification of
77	tea (Chen, Liu et al. 2013), evaluation of pork freshness, and monitor fish packaging
78	(Kuswandi, Restyana et al. 2012). Our previous research also has applied colorimetric
79	sensor array to evaluate fish freshness (Huang, Xin et al. 2011). Researches
80	mentioned above show that an artificial olfactory technique based on colorimetric
81	sensor array has huge potential in the analysis of food, according to their volatile
82	organic compounds (VOCs).
83	Silver carps were taken as fish samples in this study. Because the silver carp is
84	different from other fish detected before in physical size and composition, it is
85	necessary to optimize the test parameters including the way of gas sampling and array
86	keeping. In previous study, volatile organic compounds were acquired by applying
87	carrier gas to bring the top gas of sample to reaction chamber and the colorimetric
88	sensor array was kept in a nitrogen atmosphere. In this study, volatile organic
89	compounds were acquired by free-diffusion in reaction chamber and each array was
90	kept in a Hermetic bag.
91	This study is therefore intended to develop an E-nose system of fish freshness
92	based on TVB-N and K-values, regarding the silver carp which has the largest
93	products and sales as detection object. The detailed work was arranged as follows: (1)
94	fabricating an E-nose system of colorimetric sensor arrays (2) determining chemical
95	indicators (3) using Fisher linear discriminant (Fisher LDA) for sensors data
96	classification, and support vector regression (SVR) models for prediction of quality
97	parameters (TVB-N and K-values).
98	2.0 Materials and methods
99	2.1. Samples preparation
100	Silver carp fishes (Hypophthalmichthys molitrix) from a local aquaculture farm
101	of average size of 950g were adopted in the experiment. Before the tests, all the fishes
100	ware closed which and ware individually placed in fractionary protection made and

were cleaned, weighted and were individually placed in freshness protection packages.

Page 4 of 14

Analytical Methods Accepted Manuscript

2
3
4
5
с С
ю
7
8
à
10
10
11
12
13
10
14
15
16
17
18
2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 7 8 9 10 11 2 13 14 15 16 7 8 9 10 11 2 13 14 15 16 7 8 9 10 11 2 3 2 4 5 6 2 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 8 9 10 11 2 3 4 5 8 9 10 11 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
10
20
21
22
23
20
24
25
26
27
20
20
29
30
31
32
32
33
34
35
36
27
31
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
55
56
57
58
59
60

103	The samples were then stored in a refrigerator at 4°C. The chemical and E-nose
104	analyses of the samples were conducted every day and lasted for 12 days.
105	2.2. Colorimetric sensor array
106	Fabricating a colorimetric sensor array is often based on two crucial requirements:
107	(1) every chemically responsive dye must contain a center interacted strongly with
108	analytes, and (2) the interaction center must be strongly coupled to an intense
109	chromophore. The required dye classes include: (i) Lewis acid/base dyes (i.e., metal
110	ion containing dyes), (ii) Brønsted acidic or basic dyes (i.e., pH indicators), and (iii)
111	dyes with large permanent dipoles (i.e., zwitterionic solvatochromic dyes) (Janzen,
112	Ponder et al. 2006)Porphyrins and their metal complexes are a natural choice for
113	recognition of analytes with Lewis acid/base capabilities. Metalloporphyrins are
114	nearly ideal for the detection of metal-ligating vapors because of their open
115	coordination sites for axial ligation, their large spectral shifts upon ligand binding, and
116	their intense coloration. Common pH indicator dyes change color in response to
117	changes in the proton (Brønsted) acidity or basicity of their environment (Suslick,
118	Rakow et al. 2004). Colorimetric sensor array was made by printing the chemical
119	responsive dyes on the hydrophbic plate, silicagel plate which were used as the plate
120	of the sensor array in the experiment according to the experiment conducted before
121	(Huang, Xin et al. 2011). To choose optimum chromogenic sensing materials, the
122	characteristic gases of silver carps were determined by Gas Chromatography-Mass
123	Spectrometer (GC-MS). Combined with the theoretical research (Gu, Huang et al.
124	2014, Gu, Huang et al. 2014, Huang, Gu et al. 2014), ten porphyrin compounds and
125	six pH indicators were used as sensing pigments. The colorimetric sensor array was
126	prepared by placing each material onto the silicagel plate to obtain a 4×4 array. The
127	ten porphyrins or metalloporphyrins materials were purchased from Sigma Chemical
128	(USA), including:
129	5, 10, 15, 20-Tetraphenyl-21H, 23H-porphine manganese (III) chloride
130	Zinc 2, 3, 9, 10, 16, 17, 23, 4-octakis-(octyloxy)-29H, 31H-phthalocyanine
131	2, 3, 7, 8, 12, 13, 17, 18-Octaethyl-21H, 23H-porphine manganese (III) chloride
132	5, 10, 15, 20-Tetraphenyl-21H, 23H-porphine copper (II)
133	5, 10, 15, 20-Tetraphenyl-21H, 23H-porphine zinc, (low chlorin, synthetic)
134	5, 10, 15, 20-Tetrakis (pentafluorophenyl)-21H, 23H-porphyrin iron (III) chloride
135	5, 10, 15, 20-Tetraphenyl-21H, 23H-porphine

 $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

136	5, 10, 15, 20-Tetraphenyl-21H, 23H-porphine iron (III) chloride
137	5, 10, 15, 20-Tetraphenyl-21H, 23H-porphine cobalt (II)
138	5, 10, 15, 20-Tetraphenyl-21H, 23H-porphine nickel (II)
139	Six types of pH indicators were obtained from Sinopharm Chemical Reagent Co. Ltd.,
140	including: (1) Bromocresol Green, (2) Bromothymol Blue, (3) Methyl Red, (4)
141	Neutral Red, (5) Bromocresol Purple, and (6) Cresol Red.
142	The detailed steps of fabricating colorimetric sensor were arranged as follow: (1)
143	dissolve the porphyrins and metalloporphyrin materials in chloroform, and dissolve
144	the pH indicators in ethanol and; (2) 16 kinds of pigments solution of 2 mg/mL were
145	eventually obtained after ultrasound for hours;(3) Each pigments solution was printed
146	on the plate using 0.1 μ L microcapillary pipettes, constructing a 4×4 sensor array; (4)
147	dried the sensor arrays in fume hood, and kept each of them in a Hermetic bag before
148	use.
149	2.3. E-nose system and data acquisition
150	A fully functional prototype device for fish was constructed and the schematic
151	diagram is shown in Fig 1. The enriched VOCs from samples were collected by free
152	diffusion. In this experiment, the details were as follows: (1) an initial image was
153	acquired before a sensor was used by HP scanjet 4890 flatbed scanner. (2) A complete
154	fish was put in the sample room, and then the prepared sensor array chips were
155	sticked on the sealing cap, with the surface containing pigments facing down. And (3)
156	a final image was acquired after chubs' headspace volatile gas reacted with the
157	chromogenic materials on the sensor array for 2 minutes.
158	The response of each of the sixteen pigments in the sensor was represented by
159	the red, green and blue values, which resulted in a 48 dimensional vector (16dyes×3
160	color components RGB). This visual representation extracted from differences of
161	images before and after experiment was obtained in the environment of OPENCV. All
162	the data of RGB components were used in statistical and quantitative analyses and
163	subsequent pattern recognition.
164	2.4. TVB-N and K-values
165	The total volatile basic nitrogen is one of the main physical and chemical
166	experiments to evaluate the freshness of fish. The total volatile basic nitrogen of each
167	fish samples was measured with micro Kjeldahl method according to SC/T3032-2007
168	(South China Sea fisheries research institute 2007). A 10g portion of sample was

 $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

169	taken aseptically and homogenized after adding 90mL perchloric acid solution. It was
170	filtered and the filtrate was directly distillated, and then titrated.
171	The ATP-related compounds, consisting of inosine-50-monophosphate (IMP),
172	inosine (Ino), and hypoxanthine (Hx), were extracted by perchloric acid and separated
173	and quantified by high-performance liquid chromatography. The analysis was
174	conducted on a high-performance liquid chromatography (Ultimate 3000 Germany
175	DIONEX Company). Separations were made on a reverse-phase Ultrabase
176	C184.6×150 mm, with an internal particle diameter of 5µm (Shimadzu inertsustain).
177	ATP, ADP, AMP, IMP, HxR and Hx were quantified according to the external standard
178	method using calibration curves of the peak area of compound versus the compound
179	concentration under identical chromatographic conditions. K-values were then
180	calculated according to Eq (1).
181	$K(\%) = \frac{100(HxR + Hx)}{ATP + ADP + AMP + IMP + HxR + Hx} $ (1)
182	Where ATP, ADP, AMP, IMP, HxR, Hx represent the concentration (μ mol/g) of
183	adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, inosine
184	monophosphate, inosine, hypoxanthine.
185	2.5. Statistical method
186	In the data processing, Fisher linear discriminant (Fisher LDA) and support
187	vector regression (SVR) were used for statistical analysis. All the analyses were
188	performed using Matlab 2012a (Mathworks, Natick, MA) in windows 7.
189	3.0 Results and discussions
190	3.1. Physico-chemical analyses
191	3.1.1 Measurement of TVB-N by conventional methods
192	The initial TVB-N content of the fish (Fig. 2(a)) was 12.6mg/100g (at Day 1)
193	and the final TVB-N was up to 45.7mg/100g, which could be related to the activity of
194	spoilage bacteria and endogenous activities. TVB-N of silver carp fish remained
195	stable up to day 4, and slightly increased during day 4~day 7 and strongly increased
196	thereafter. In the present study, an arbitrary value for TVB-N of 13mg/100g was taken
197	for the upper acceptability limit of fresh fish and 20mg/100g was used to mark the
198	value of not edible(South China Sea fisheries research institute 2007). The two values
199	were exceeded on day 2 and day 8.
200	3.1.2 ATP related compounds and K-values measured by HPLC
201	The ATP in the fish muscle would degrade in the way of ATP \rightarrow ADP \rightarrow AMP

 $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

202	\rightarrow IMP \rightarrow HxR \rightarrow Hx after fish was died. From Fig. 2(b), the changes of inosine
203	5'-monophosphate (IMP) and hypoxanthine (HX) were depicted during a cold storage
204	of 12 days. The IMP levels at the beginning of the study were at the average of 5 μ
205	mol/g. The concentration of this metabolite progressively decreased throughout
206	storage with levels under 1.24 μ mol/g at the end of this study. HX values increased
207	slowly and remained at low levels during the 12 days of this study.
208	The K-values (Fig. 2(c)), which measures the extension of IMP degradation, was
209	worked out to reduce this variability. The K-values increased during storage from
210	values 10%~52%. The K-values rises faster in the first three days because when it
211	becomes stiff, ATP decomposes quickly, K-values increase rapidly and during this
212	time, protein decomposes slowly. Compared with TVB-N, K-values accurately reflect
213	the changes of freshness of the fish in the early time. It is generally believed that the
214	K-values of fresh fish must be 10% (Yang, Xue et al. 2007, Yao, Zhang et al. 2011),
215	the K-values of fresh goods such as sashimi in Japan 20%, the K-values of the second
216	freshness is $20\% \sim 40\%$ and the K-values of the fish which decompose at the first
217	time is 60% \sim 80%. From Fig. 2(c), it can be seen that in the first day of silver carp's
218	storage, its freshness was close to 10%, 18 samples had K-values that are about 10%,
219	and the average value was 10.64%; In the second day, the average of the K-values was
220	up to 19.67% and most of the silver carps fish were still fresh; in the third to the
221	seventh day, the K-values of the samples were in the range of $20\%{\sim}40\%$ and the
222	silver carps was considered as second level freshness; in the twelfth day, the decay
223	was very obvious.
224	3.2. The change of visual sensor array response
225	Difference maps were obtained by the difference between the red, green and blue
226	(RGB) of each sensing material before and after experiment. The difference in the
227	vector is shown in Fig. 3 as a map of the absolute values of color changes. Fig. 3
228	clearly shows the presence of characteristic color fingerprints for each day, thus
229	confirming the possibility of using this array to monitor fish spoilage. With the
230	changes of the species and the composition of the volatile gases during silver carps'
231	spoilage, almost all the dyes' color changed and the changes was enhanced strength.
232	During the early time of cold storage, the silver carps were fresh and there was less
233	volatile component, most of which were hydrocarbons and short C chain alcohols
234	(Dai, Huang et al. 2012). They could only generate non-specific adsorption with the

Analytical Methods Accepted Manuscript

porphyrin-based compound and the sensor response was slight. The response of the pH indicators was more evident than porphyrin-based compound, which were mainly due to the action of a small amount of acid gases. During the medium-term of storage, silver carps were in the second level freshness and the fish began to decompose, producing volatile gases containing of nitrogen, sulfur and so on. As the time of cold storage prolonging, the concentration of some species of the volatile gases in fish began to decrease, while the concentration of the nitrogen-containing and sulfur-containing gases continued to rise. This phenomenon led to the porphyrins response which became more obvious than the pH indicators and the overall color of array was obviously different from that in early times. 3.3. Correlation between colorimetric sensor array method and conventional method PCA was used for classification of the samples from three types of fish in this work. PCA is a linear, unsupervised and pattern recognition technique used for analyzing, classifying and reducing the dimensionality of numerical datasets in a multivariate problem (Zhao and Lin 2012). It can transform original variables into a few new variables, known as principal compounds (PCs). To visualize the cluster trends of these samples, a 3-dimensional scatter plot (see Fig. 4(a)) was constructed using PC1, PC2 and PC3. Herein, the top three PCs accounted for 82.53% of total variances in raw data. The first six factors explained 91.2% of total variance. But PCA is an unsupervised technique and hence LDA was employed. LDA is probably the most frequently used supervised pattern recognition. The optimal transformation in classical LDA is obtained by minimizing the within-class distance and maximizing the between-class distance simultaneously, thus achieving maximum class discrimination (Zhao and Lin 2012). Similar to PCA, a 2-dimentional plot was constructed using DF1 and DF2 in this work, and all samples cluster can be visualized in this plot as shown in Fig. 4(b). DF1 and DF2 can explain almost100% of total variances. According to TVB-N determination results, the output of the LDA model can be defined as three levels--- fresh (group-1), not fresh (group-2), not edible (group-3). A total of 216 samples were ranked in order of spoilage time. All samples were divided into two sets, one sample taken out from every six samples was assigned to the test set and the other five samples were assigned to the train set. As a result the train set has 180 samples and the test set has 36 samples. In test set, 6 samples were classified in error and in train set, 28 samples were classified in error. The accuracy of test set and train set were 83.33% and 84.44%.

Page 9 of 14

Analytical Methods

2	69 Since the PCA and LDA analyses of the colorimetric measurements and
	physico-chemical values classified the samples into similar groups, the SVR statistical
	tool was used to predict physicochemical values from the optoelectronic array data.
	72 SVR is a novel learning method that has solid theoretical basis and requires only
	73 small amount of sample. Different from present statistical approaches, it doesn't
	involve probability measure, law of large numbers and so on. In essence, it avoids
	traditional process from induction to deduction, realizing the efficient transductive
	76 inference from training sample to forecast sample, which greatly simplified the
	regression process. A rapid increase in TVB-N content with time was accompanied by
	78 parallel in the formation of K-values and the color changes of the colorimetric sensor
	array. The input values were the first six factors from PCA. To develop a TVB-N and
	K value prediction model, the samples were divided into two sets as before. The
	experimental values versus the values predicted by the SVR statistical models for both
	TVB-N content and K-values are shown in Fig. 5. Fig. 5 (a) shows the SVR-predicted
	TVB-N versus the actual TVB-N, and Fig. 5 (b) shows the SVR-predicted K-values
	versus the actual K-values. A preliminary evaluation of the accuracy of the created
	prediction model can be made by visually inspecting the difference between the
	measured and predicted values. However, a more rigorous analysis was achieved by
	linearly or nonlinearly fitting the experimental points. The correlation coefficients
2	relate to accuracy in the prediction, whereas the root mean square error (RMSEC)
	relates to the SVR model's precision (Zhao and Lin 2012). Good correlations between
2	the gas sensor array results and both TVB-N analysis and K value analysis were
2	obtained. In the model, for TVB-N, correlation coefficients (r2) of 0.733 and 0.627 in
2	train set and test set are obtained, while for K value, correlation coefficients (r2) of
2	0.759 and 0.596 in train set and test set are obtained, respectively. Moreover, values of
2	4.2177, 4.9563 and 0.06127, 0.0789 were found for RMSEC for the train set and
2	RMSEP for the test set of TVB-N content and K-values, respectively. In this way, the
2	ability of the electronic nose to predict TVB-N and K value was investigated for the
2	fish samples. Due to the good correlation between the colorimetric sensor array and
2	78 TVB-N and K value, the colorimetric sensor array could be used as a rapid
2	non-destructive testing for TVB-N and K Value of Silver Carps and also could be used
3	00 for grouping fish freshness.
3	01 4.0 Conclusions

4.0 Conclusions

A colorimetric sensor array for monitoring fish spoilage has been developed. The

Analytical Methods Accepted Manuscript

array consisted of sixteen chromogenic sensing materials including ten porphrin compounds and six pH indicators. The detection of TVB-N content and K-value was also carried out. All fish were classified into fresh, not fresh, not edible according to the test. PCA and Fisher LDA analysis were employed to analyze the chromogenic data from sensor arrays. The images obtained from PCA and Fisher LDA analysis both clearly showed three main clusters that correlated quite well with the classification from chemical analysis. A good correlation was obtained by SVR statistical analysis between the gas sensor array response and both TVB-N content and K value. Compared with the commercial studies, the colorimetric sensor array is just a chip, with no space occupation and simple to make with 3 minutes only. Besides, it is cheap and easy to detect products with no destruction quickly. And considering the relation between the chromogenic data and fish decay, the results indicated that the novel method based on colorimetric sensor array developed provide a feasible way for rapid and nondestructive evaluation of fish freshness.

317 Acknowledgements

This work was financially supported by research grant from Major Program of University Natural Science in Jiangsu Province (14KJA550001), Special Fund for Agro-scientific Research in the Public Interest (No.201003008), National Natural Science Foundation of China (No.31071549), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and research grant from the Program Sponsored for Scientific Innovation Research of College Graduate in Jiangsu Province (CXZZ13_0698).

- **Reference**
- Armenta, S., N. Coelho, R. Roda, S. Garrigues and M. de la Guardia (2006). "Seafood
 freshness determination through vapour phase Fourier transform infrared
 spectroscopy." <u>Analytica chimica acta</u> 580(2): 216-222.
- Chen, Q., A. Liu, J. Zhao and Q. Ouyang (2013). "Classification of tea category using
 a portable electronic nose based on an odor imaging sensor array." Journal of
 pharmaceutical and biomedical analysis 84: 77-83.
- South China sea fisheries research institute, C. a. o. f. s. (2007). Determination of
 total volatile basic nitrogen in fishery products, industry standard-Fishery. SC/T
 3032-2007.
- Dai, H., X. Huang, L. Yao and Z. Sun (2012). "Study on evaluating of fish freshness by
 GC-MS combined with pattern recognition." Journal of Food Safety & Quality
 337 3(06): 639-643.
- Di Natale, C., G. Olafsdottir, S. Einarsson, E. Martinelli, R. Paolesse and A. D'Amico
 (2001). "Comparison and integration of different electronic noses for freshness
 evaluation of cod-fish fillets." <u>Sensors & Actuators: B. Chemical</u> 77(1-2):
 572-578.

 $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

342 343	Gu, H., X. Huang, L. Yao, E. Teye and Y. Wen (2014). "Effects of substitute group axial ligand and volatile organic compounds on binding ability of colorimetric
344	sensor array." <u>Materials Technology: Advanced Performance Materials</u> .
345	Gu, H., X. Huang, L. Yao, E. Teye and Y. Wen (2014). "Study on the binding ability of
346	cobalt-porphyrin with small volatile organic compounds based on density
347	functional theory." <u>Analytical Methods</u> 6(10): 3360-3364.
348	Han, F., X. Huang, E. Teye, F. Gu and H. Gu (2014). "Nondestructive detection of fish
349	freshness during its preservation by combining electronic nose and electronic
350	tongue techniques in conjunction with chemometric analysis." <u>Analytica</u>
351	<u>Methods</u> 6(2): 529-536.
352	Huang, X., H. Gu, L. Yao, E. Teye and Y. Wen (2014). "Probing the Reactions of
353	Colorimetric Sensor Array and Volatile Organic Compounds Using
354	Time-Dependent Density-Functional Theory." Journal of Computational and
355	<u>Theoretical Nanoscience</u> 11(10): 2194-2198.
356	Huang, X., J. Xin and J. Zhao (2011). "A novel technique for rapid evaluation of fish
357	freshness using colorimetric sensor array." Journal of Food Engineering 105(4)
358	632-637.
359	Huang, X., J. Xin, X. Zou and J. Zhao (2009). "Study on characteristics of
360	colorimetric sensors for rapid detection of food odors." Chinese Journal o
361	sensors and Actuators 22(7): 913-917.
362	Janzen, M. C., J. B. Ponder, D. P. Bailey, C. K. Ingison and K. S. Suslick (2006)
363	"Colorimetric sensor arrays for volatile organic compounds." <u>Analytica</u>
364	<u>chemistry</u> 78(11): 3591-3600.
365	Kuswandi, B., A. Restyana, A. Abdullah, L. Y. Heng and M. Ahmad (2012). "A nove
366	colorimetric food package label for fish spoilage based on polyaniline film.
367	<u>Food Control</u> 25(1): 184-189.
368	Limbo, S., N. Sinelli, L. Torri and M. Riva (2009). "Freshness decay and shelf life
369	predictive modelling of European sea bass (< i> Dicentrarchus labrax
370	applying chemical methods and electronic nose." <u>LWT-Food Science and</u>
371	<u>Technology</u> 42(5): 977-984.
372	Olafsdottir, G., P. Nesvadba, C. Di Natale, M. Careche, J. Oehlenschläger, S. V
373	Tryggvadottir, R. Schubring, M. Kroeger, K. Heia and M. Esaiassen (2004)
374	"Multisensor for fish quality determination." Trends in Food Science &
375	<u>Technology</u> 15(2): 86-93.
376	Suslick, K. S., N. A. Rakow and A. Sen (2004). "Colorimetric sensor arrays for
377	molecular recognition." <u>Tetrahedron</u> 60(49): 11133-11138.
378	Yang, W., C. Xue, D. Xu, Q. Zhu and Q. Lou (2007). "Changes of ATP-related
379	compounds contents and freshness evaluation of Pseudosciaena crocea mea
380	during iced storage." <u>Transactions of the CSAE</u> 23(06): 217-222.
381	Yao, Y., J. Zhang, W. Gu, R. Ji and Y. Hu (2011). " Effect of storage temperature or
382	freshness of silver carp (Hypophthalmichthys molitrix)." Journal of Zhejians
383	<u>University (Agric. & Life Sci.)</u> 37(2): 212-218.
384	Zhang, C., D. P. Bailey and K. S. Suslick (2006). "Colorimetric sensor arrays for the
385	analysis of beers: a feasibility study." Journal of agricultural and food chemistry
386	<i>54(14): 4925-4931.</i>
387	Zhang, C. and K. S. Suslick (2007). "Colorimetric sensor array for soft drink
388	analysis." Journal of agricultural and food chemistry 55(2): 237-242.
389	Zhao, J. and H. Lin (2012). <u>Nondestructive determination methods of data processing</u>
/	and analysis of food and agricultural products, Beijin: Science press.
390	ana anaiysis of food and agricultural broducis, bellin. Science press.

Figures

Fig.1. Schematic diagram of artificial olfaction system for fish freshness

Fig. 2 (a) Changes of TVB-N content of silver carp during the cold storage

Analytical Methods Accepted Manuscript

Fig.3 Characteristic images of silver carp during the cold storage

Fig.4. Classification results achieved by PCA (a) and LDA (b)

Analytical Methods Accepted Manuscript